Professor Steve Dunnett
Professor / Sêr Cymru Research Chair in Neurobiology
- Sylwebydd y cyfryngau
Trosolwyg
Research overview
Advances in our understanding of mechanisms of cell death, plasticity and regeneration in the central nervous system offer new opportunities for remediation and repair in several of the most distressing neurodegenerative diseases of adulthood, in particular Parkinson's and Huntington's disease. In the Brain Repair Group, we are seeking to develop new strategies for therapy based on a multidisciplinary approach in several converging problems.
Research division
Ymchwil

Schematic illustration of the methods for preparation and implantation of embryonic cells as a dissociated cell suspension into the striatum of the adult rat brain. The embryonic mesencephalon contains the dopamine neurones lost from the host brain following 6-OHDA lesions of the dopamine fibre bundle in an experimental model of human parkinsonism.
Advances in our understanding of mechanisms of cell death, plasticity and regeneration in the central nervous system offer new opportunities for remediation and repair in several of the most distressing neurodegenerative diseases of adulthood, in particular Parkinson's and Huntington's disease. In the Brain Repair Group, we are seeking to develop new strategies for therapy based on a multidisciplinary approach in several converging problems:
Models of disease
We require valid models of disease in order to evaluate novel treatments. We compare neurochemical, excitotoxic, metabolic and transgenic strategies, both in vitro and in vivo, for their accuracy in reproducing the specific patterns of neuropathology and mechanisms of cell death observed in human disease, and for their reliability in providing stable models within which to compare different treatments strategies.
Neural transplantation
Improving the yield of surviving cells has turned out to be a key factor in viability of neural transplantation in Parkinson's disease, and this is likely to be of equal importance when applied to other neurodegenerative diseases such as Huntington's disease or multiple sclerosis. We are working to refine the methods for neural transplantation into the nervous system to yield optimal survival and growth of the implanted cells. Critical factors involve identification, dissection and handling of embryonic donor cells, and the surgical implantation protocols that maximise accuracy of placement and minimise trauma both to the host and to the implants.
Alternative cells for therapy
The successful clinical trials of transplantation have to date all used embryonic donor tissues. However, whereas surgeries based on using human embryonic tissues can provide a 'proof of principle' the long term development and wider availability of neural transplantation is critically dependent on the identification of more readily available alternative sources of cells. We are actively exploring expanded populations of human stem cells, xenografts, and genetically manipulated cells and cell lines for their ability to provide safer and more readily available alternative to primary embryonic neurones for transplantation.
Neuroprotection
A complementary approach to cell transplantation (which involves replacing cells once already lost) is to protect damaged or traumatised neurones of the host brain from the assault of injury or disease. A wide number of compounds have been identified which have the potential to block processes of cell death and to promote regrowth of damaged cells, including growth factors, antiapoptotic agents, antioxidants and transcription factors. However a common problem for their use is that they don't get into the brain when injected or ingested peripherally. We are developing ways to deliver neuroprotective agents into precise sites in the brain both by engineering cells for transplantation ('ex vivo gene therapy') and by using viral vectors for direct intracerebral delivery ('in vivo gene therapy').
Neurological assessment
The viability of each strategy needs to be evaluated in functional models of the disease. This requires development of behavioural and other functional models of assessment that are both sensitive to the neuroanatomical systems under investigation and relevant to the specific diseases targeted. A key component of our programme is to refine methods of functional analysis according to these dual goals, with a particular focus on objective operant tests of motor and cognitive function. We are also actively developing new strategies for imaging neurodegeneration and cell-based therapies in vivo, using the School's new 9.4T high field MR scanner.
Grants
2013
- EU FP7 cooperation grant (E Cattaneo, Milano, coordinator with SB Dunnett as partner). FP7–HEALTH–2013–INNOVATION–602245-2. NeuroStemcellRepair: € 6,000,000 (Cardiff: €385,000) over 4 years from 1 Sept 2013.
- EU FP7 cooperation grant (AE Rosser & SB Dunnett, coordinators). FP7–HEALTH–2013–INNOVATION–602245-2. Repair-HD: Human pluripotent stem cell differentiation, safety and preparation for therapeutic transplantation in Huntington's disease € 6,000,000 (Cardiff: €1,900,000) over 4 years from 1 Oct 2013.
- National Institute of Social Care and Health Research (NISCHR), Senior faculty award to S B Dunnett. £!5,000 p.a. 3 years commencing June 2013.
2012
- MRC Centenary awards (Z Bayram-Weston & SB Dunnett). Longitudinal characterisation of neuropathology in transgenic and knock-in Huntington's disease mouse lines, £18,500. 6 months commencing Oct 2012.
- Welsh Office or Research & Development (WORD) Translational Health Research Platform programme. (SB Dunnett & AE Rosser). TRP08-007. Quality-assured human tissues for clinical trials of novel cell transplantation therapies in Wales. £65,000 extension to grant ,12 months commencing Jan 2013.
- CHDI research contract (SP Brooks, L Jones & SB Dunnett). Comparative behavioural, anatomical and molecular changes in mouse models of Huntington's disease. £904,000. 3 years commencing Jan 2012.
- Society of Catholic Mothers (Llandaff branch). Donation to Parkinson's disease research in the Brain Repair group. £1,000. 25 March 2012.
- Parkinson's UK. Project grant (AE Rosser, SB Dunnett & P Kemp) G1105. Are astrocytes required for dopaminergic neuron graft survival? £184,787. 3 years commencing June 2011.
- EHDN. Pilot study grant (SP Brooks, SB Dunnett, AE Rosser & M Busse). A translational study on the beneficial effects of exercise on HD symptomatology. € 50,000 (£41,015). 1 year commencing Feb 2011.
2010
- Medical Research Council. Project grant (SB Dunnett & AE Rosser) G1001257. Cell transplantation for basal ganglia disorders: Basic science and preclinical development. £1,119,161. 3 years commencing Feb 2011.
2009
- EHDN network contract (AE Rosser & SB Dunnett). Euro HD Network. £845,414. 5 year commencing 01 Jan 2010.
- Welsh Office or Research & Development (WORD) Translational Health Research Platform programme. (SB Dunnett & AE Rosser). TRP08-007. Quality-assured human tissues for clinical trials of novel cell transplantation therapies in Wales. £249,934 5 years commencing April 2009.
- MRC Centre grant (MJ Owen et al). G0801418. The MRC Centre for Neuropsychiatric Genetics and Genomics. £2,434,604. 1st April 2009 for 5 years.
- EU FP7 large collaborative research project HEALTH-2009-1.4-1 (RA Barker, SB Dunnett and others) HEALTH-F5-2008-222943. TRANSEURO: Neural transplantation in the treatment of patients with Parkinson's disease. €1,180,414 (£873,507) over 4 years from 1 Jan 2010.
2008
- EU FP7 large collaborative research project HEALTH-2007-1.4-6 (E Cataneo, SB Dunnett and others). HEALTH-F5-2008-222943. NeuroStemCell: Stem cell lines for cell-based therapies. €675,000 (£516,093). 4 years commencing Dec 2008.
- EU FP7 small and medium collaborative research programme (P Calabresi, SB Dunnett and others) HEALTH 2007-2.2.1-7. REPLACES: Restorative plasticity and corticostriatal excitatory synapses. €443,568 (£338,975). 4 years commencing Sept 2008
2006
- EU FP6 specific targeted research project (Z Kokaia, A Smith, M Hoehn, L Minicello, SB Dunnett & L Wikström) LSHB-CT-2006-037526. Towards a stem cell therapy for stroke. €385,797 (£262,342) over 3 years, starting 1 Jan 2007.
Collaborations
International
- Prof Anders Björklund & Dr Deriiz Kirik, University of Lund, Sweden.
- Drs Marc Peschanski & Philippe Hantraye, INSERM/CNRS, Paris, France.
- Prof Deniz Kokaia & O Lindvall, University of Lund, Sweden.
- Prof Patrik Brundin, University of Lund, Sweden.
- Profs I Mendez and H Robertson, Dalhousie University, Halifax, Nova Scotia.
- Prof Elena Cataneo, University of Milan, Italy.
- Prof Paulo Calabresi, University of Rome, Italy.
- Prof Bernhard Landwehrmeyer, University of Ulm, Germany.
- Prof Guido Nikkhah & M Döbrössy, University of Freiburg, Germany.
UK
- Dr Roger Barker, Prof John Pickard & Dr Jenny Morton, University of Cambridge.
- Dr Lesley Jones & Dr Eddie Wang, School of Medicine, Cardiff University.
- Drs Monte Gates & Rosemary Fricker Gates, Keele University
Bywgraffiad
I am a behavioural neuroscientist with a primary research interest in understanding mechanisms of degeneration and repair in the brain, with a particular focus on cell transplantation in models of Parkinson's and Huntington's disease.
With Professor Anne Rosser, I co-direct the Brain Repair group in the School of Biosciences.
Education
1957-68 | Eltham College, London SE9 | ||
1969-72 | BA(hons) | Churchill College, Cambridge | Mathematics |
1974-76 | DSW, CQSW | North London Polytechnic | Social Work |
1976 | MA | Churchill College, Cambridge | |
1978 | BSc(hons) | Birkbeck College, London | Psychology |
1981 | PhD | Clare College Cambridge | Experimental Psychology |
1999 | DSc | Cambridge University | Neurobiology |
Employment
- 1968-69: Office clerk, Muhlbach Papier, Geneva, Switzerland
- 1972-78: Social worker, London Borough of Southwark
- 1981-82: Visiting Research Scientist, University of Lund, Sweden
- 1982-83: Wellcome Trust Mental Health Research Fellowship, Cambridge University
- 1983-87: Demonstrator in Experimental Psychology, Cambridge University
- 1987-95: Lecturer in Experimental Psychology, Cambridge University
- 1992-99: Director of Scientific Programmes, MRC Centre for Brain Repair, Cambridge
- 1995-99: Reader in Neurobiology, Cambridge University
- 2000-05: Professorial Research Fellow, Cardiff University, Cardiff, Wales
- 2005- present: Full Professor, School of Biosciences, Cardiff University, Cardiff, Wales
Anrhydeddau a dyfarniadau
- 1969: Open Exhibition to Churchill College, Cambridge.
- 1978: Alexander Silberfield Prize (for top first) in the Faculty of Sciences, and Elaine Gladstone Prize (for top first) in Psychology, Birkbeck College, London.
- 1981: Fellowship, Clare College, Cambridge.
- 1988: Spearman medal of the British Psychological Society.
- 1989: Fellowship of the Royal Society of Medicine.
- 1992: Knight Visiting Professorship, University of Miami School of Medicine.
- 1998: Alfred Mayer medal of the British Neuropathological Society.
- 2001: Institute of Scientific Information, Philadelphia, 100 Most Highly Cited Researchers in the Neurosciences.
- 2001: Institute of Authors, London, Best science textbook of 2001 (second).
- 2002: Honorary Fellowship of the International Behavioural Neuroscience Society.
- 2003: Fellowship of the Academy of Medical Sciences.
- 2008: The NNOXe Pharmaceuticals Award in The Behavioral and Systems Neurosciences, International Behavioural Neuroscience Society.
Aelodaethau proffesiynol
- Member of the Cardiff Institute of Tissue Engineering and Repair.