Dr Paulo Bittencourt
Timau a rolau for Paulo Bittencourt
Darlithydd
Trosolwyg
Rwy'n Ecolegydd Planhigion Trofannol sy'n canolbwyntio ar ddeall sut mae planhigion a dŵr yn gyrru ecoleg, esblygiad a swyddogaeth amgylcheddau trofannol. Mae fy ngwaith wedi'i adeiladu ar ddealltwriaeth fanwl o ecoffisioleg planhigion a datblygu technolegau synhwyrydd newydd, gan fy ngalluogi i astudio sut mae planhigion yn siapio ein planed.
Ddaear - Planhigion Planed
Pe baech chi'n gosod dail pob planhigyn ochr yn ochr, byddent yn gorchuddio wyneb y Ddaear. Ac o dan bob un o'r dail hynny byddai cannoedd o gwndidau microsgopig yn eu cefnogi'n fecanyddol, gan eu cadw wedi'u hydradu a'u cyflenwi â maetholion. Mae'r cwndidau hynny'n ffurfio system cludo dŵr planhigion ac yn gosod y terfynau y gall planhigion weithredu ynddynt ac, o ganlyniad, yn gyrru eu ecoleg, eu esblygiad a'u hymatebion i newid yn yr hinsawdd.
System Cludo Dŵr Planhigion
Esblygiad system cludo dŵr planhigion (h.y. eu system hydrolig) oedd y digwyddiad esblygiadol pwysicaf yn y 550 miliwn o flynyddoedd diwethaf. Mae'r system hydrolig planhigion yn 60% o'r holl biomas byw ac yn dychwelyd 70% o'r holl law yn ôl i'r atmosffer. Newidiodd ei esblygiad bob un broses geomorffolegol, biocemegol a hinsoddol ar y blaned. Sut mae system cludo dŵr planhigion trofannol yn modiwleiddio y prosesau hynny, o nano-ffisioleg i ecoleg ecosystemau a biogeocemeg ar raddfa fawr, yw ffocws fy astudiaethau.
Arbrofion Trofannol ar Raddfa Fawr
Arbrawf Ffrwythloni CO2 aer am ddim Amazon (AmazonFACE, chwith) ac Arbrawf Gwahardd Trwy'r Caxiuanã (eSecaFlor, dde).
Y system cludo dŵr yw nod canolog swyddogaeth coeden. Mae'n nid yn unig yn pennu eu sensitifrwydd sychder ond yn gosod y ffiniau ar gyfer swyddogaeth canopi a gwrthsefyll biomecanyddol wrth ddal y rhan fwyaf o faetholion y goeden. Rwyf wedi bod yn arwain gwaith allweddol yn rhai o'r arbrofion trofannol mwyaf i ddeall sut mae ymatebion coed trofannol i newidiadau mewn argaeledd dŵr, CO2 a maetholion yn cael eu modiwleiddio gan eu system cludo dŵr.
Coedwigoedd Trofannol Enfawr
Dringwr coed ar ben coeden Dinizia excelsa 70m o uchder (chwith) a synwyryddion twf dendrometrig yn cael eu gosod yn ei boncyff (dde).
Rwyf hefyd yn gweithio gyda choedwigoedd trofannol enfawr. Mae gan yr ecosystemau anhygoel hynny ddwysedd uchel o goed mawr, rhai dros 80 m o uchder, sy'n dal symiau enfawr o biomas a bioamrywiaeth unigryw ac sydd heb ei archwilio o hyd. Mae'r coed enfawr hyn yn 1% o'r holl goed trofannol ond maent yn storio >50% o garbon uwchben y ddaear ac rhagwelir y byddant yn wynebu risg gynyddol o farwolaethau a achosir gan sychder, gyda goblygiadau mawr i storfeydd carbon daearol y Ddaear. Nid yw'r coedwigoedd enfawr hynny'n digwydd ar hap ar draws y trofannau ond mewn lleoliadau penodol iawn ym mhob cyfandir. Pam maen nhw'n digwydd lle maen nhw'n digwydd, pwy yw'r coed enfawr hynny, sut maen nhw'n gweithredu ac yn cludo dŵr a pha mor sensitif ydyn nhw i newid yn yr hinsawdd i gyd yn gwestiynau rwy'n ceisio eu hateb.
Deall rhyngweithiadau cymhleth
Goedwigoedd trofannol oedi trothwyon newid hinsawdd critigol o 20+ mlynedd. Gydag effeithiau newid yn yr hinsawdd yn costio dros 1.5 triliwn o ddoleri bob blwyddyn, mae gwybod yn union faint o amser y gall coedwigoedd trofannol ei brynu i ni yn frys. Fodd bynnag, mae modelau presennol yn methu â rhagweld tynged coedwigoedd trofannol. Mae hyn oherwydd y ddealltwriaeth fecanyddol sylfaenol o swyddogaeth coed sy'n deillio o astudiaethau sy'n canolbwyntio ar ffactorau cyfyngol unigol tra bod y gwir yw bod straen lluosog yn rhyngweithio i gyd-gyfyngu ar swyddogaeth coed ar yr un pryd. Er mwyn deall tynged coedwigoedd trofannol, mae angen i ni ddeall sut mae ffactorau biotig (ontogeny, maint, ffylogeni, plastigrwydd) ac abiotig (gwynt, ffrwythlondeb, golau, dŵr, CO2, tymheredd) a straen yn rhyngweithio ac yn cyd-gyfyngu ar swyddogaeth coedwigoedd trofannol.
Y Genhedlaeth Nesaf o Dechnoleg ar gyfer Ecoleg Drofannol
Mae datgelu sut mae coedwigoedd trofannol yn gofyn am fonitro system ddŵr, carbon a biomecanyddol miloedd o goed sy'n tyfu mewn amodau amrywiol ar draws y trofannau. Mae cynnydd yn y maes hwn yn cael ei rwystro gan ddiffyg technolegau monitro addas. Rwy'n credu'n gryf y gall technolegau newydd newid y gêm hon. Er mwyn mynd i'r afael â'r her hon, datblygais gefndir peirianneg electronig cryf a deuthum yn un o'r unig ymchwilwyr sy'n gallu datblygu synwyryddion ar gyfer ecoleg ac amgylcheddau trofannol.
Gweithio yn y maes
Parc Cenedlaethol Mynyddoedd Tumucumaque, Dirgelion Coed Amazonaidd enfawr, llun gan Leonardo Chaves – Revista Fapesp
Rwy'n arbennig o angerddol am waith maes a'r gwerth aruthrol y mae'n ei gynnig. Mae gwaith maes trofannol yn dod â phrofiad trawsddiwylliannol unigryw at ei gilydd sy'n ein galluogi i ddeall yn well sut mae gweithio gyda'i gilydd ag actorion o gefndiroedd amrywiol yn sylfaenol ar gyfer byd gwell. Cysylltu a chryfhau'r grwpiau lluosog hynny, o gymunedau afonol, myfyrwyr, academyddion, arloeswyr a gwneuthurwyr penderfyniadau, yw fy hoff ran o'r swydd hon.
Cyhoeddiad
2025
- Zhang, B. et al. 2025. Soils and topography drive large and predictable shifts in canopy dynamics across tropical forest landscapes. New Phytologist 247(4), pp. 1666-1679. (10.1111/nph.70300)
- Negrão-Rodrigues, V. et al. 2025. Amazonian trees functional adjustments to long term experimental drought are limited and species dependent. Flora, article number: 152821. (10.1016/j.flora.2025.152821)
- Sanchez-Martinez, P. et al. 2025. Amazon rainforest adjusts to long-term experimental drought.. Nature Ecology & Evolution 9, pp. 970–979. (10.1038/s41559-025-02702-x)
- Metcalfe, D. B. et al. 2025. The Wayqecha Amazon Cloud Curtain Ecosystem Experiment: A new experimental method to manipulate fog water inputs in terrestrial systems. Methods in Ecology and Evolution 16(2), pp. 400-413. (10.1111/2041-210X.14483)
2024
- Jackson, T. D. et al. 2024. Wind shapes the growth strategies of trees in a tropical forest. Ecology Letters 27(9), article number: e14527. (10.1111/ele.14527)
- Martius, L. R. et al. 2024. Towards accurate monitoring of water content in woody tissue across tropical forests and other biomes. Tree Physiology 44(8), article number: tpae076. (10.1093/treephys/tpae076)
- Bartholomew, D. C. et al. 2024. Bornean tropical forests recovering from logging at risk of regeneration failure. Global Change Biology 30(3), article number: e17209. (10.1111/gcb.17209)
2023
- Paligi, S. S. et al. 2023. Assessing the agreement between the pneumatic and the flow‐centrifuge method for estimating xylem safety in temperate diffuse‐porous tree species. Plant Biology 25(7), pp. 1171-1185. (10.1111/plb.13573)
- Tavares, J. V. et al. 2023. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617, pp. 111-117. (10.1038/s41586-023-05971-3)
- Bittencourt, P., Rowland, L., Sitch, S., Poyatos, R., Miralles, D. G. and Mencuccini, M. 2023. Bridging scales: an approach to evaluate the temporal patterns of global transpiration products using tree‐scale sap flow data. Journal of Geophysical Research: Biogeosciences 128(3), article number: e2022JG007308. (10.1029/2022JG007308)
- Brum, M., Pereira, L., Ribeiro, R. V., Jansen, S., Bittencourt, P. R., Oliveira, R. S. and Saleska, S. R. 2023. Reconciling discrepancies in measurements of vulnerability to xylem embolism with the pneumatic method. New Phytologist 237(2), pp. 374-383. (10.1111/nph.18531)
2022
- Bittencourt, P. R., Bartholomew, D. C., Banin, L. F., Suis, M. A. F. B., Nilus, R., Burslem, D. F. R. P. and Rowland, L. 2022. Divergence of hydraulic traits among tropical forest trees across topographic and vertical environment gradients in Borneo. New Phytologist 235(6), pp. 2183-2198. (10.1111/nph.18280)
- Bartholomew, D. C. et al. 2022. Differential nutrient limitation and tree height control leaf physiology, supporting niche partitioning in tropical dipterocarp forests. Functional Ecology 36(8), pp. 2084-2103. (10.1111/1365-2435.14094)
- Guillemot, J. et al. 2022. Small and slow is safe: on the drought tolerance of tropical tree species. Global Change Biology 28(8), pp. 2622-2638. (10.1111/gcb.16082)
- Giles, A. et al. 2022. Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged experimental drought in a tropical forest. Tree Physiology 42(3), pp. 537-556. (10.1093/treephys/tpab121)
- de V. Barros, F., Bittencourt, P. L., Eller, C. B., Signori-Müller, C., Meireles, L. D. and Oliveira, R. S. 2022. Phytogeographical origin determines tropical montane cloud forest hydraulic trait composition. Functional Ecology 36(3), pp. 607-621. (10.1111/1365-2435.14008)
- Jansen, S., Bittencourt, P., Pereira, L., Schenk, H. J. and Kunert, N. 2022. A crucial phase in plants – it's a gas, gas, gas!. New Phytologist 233(4), pp. 1556-1559. (10.1111/nph.17875)
2021
- Trabi, C. L. et al. 2021. A user manual to measure gas diffusion kinetics in plants: pneumatron construction, operation, and data analysis. Frontiers in Plant Science 12, article number: 633595. (10.3389/fpls.2021.633595)
- Oliveira, R. S., Eller, C. B., de V. Barros, F., Hirota, M., Brum, M. and Bittencourt, P. 2021. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist 230(3), pp. 904-923. (10.1111/nph.17266)
- Signori-Müller, C. et al. 2021. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications 12, article number: 2310. (10.1038/s41467-021-22378-8)
- Rowland, L. et al. 2021. Plant traits controlling growth change in response to a drier climate. New Phytologist 229(3), pp. 1363-1374. (10.1111/nph.16972)
- Rowland, L. et al. 2021. The response of carbon assimilation and storage to long‐term drought in tropical trees is dependent on light availability. Functional Ecology 35(1), pp. 43-53. (10.1111/1365-2435.13689)
- Pereira, L. et al. 2021. Using the Pneumatic method to estimate embolism resistance in species with long vessels: a commentary on the article “a comparison of five methods to assess embolism resistance in trees”. Forest Ecology and Management 479, article number: 118547. (10.1016/j.foreco.2020.118547)
2020
- Bartholomew, D. C. et al. 2020. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long‐term drought than large canopy trees. Plant, Cell and Environment 43(10), pp. 2380-2393. (10.1111/pce.13838)
- Fontes, C. G. et al. 2020. Convergent evolution of tree hydraulic traits in Amazonian habitats: implications for community assemblage and vulnerability to drought. New Phytologist 228(1), pp. 106-120. (10.1111/nph.16675)
- Bittencourt, P. R. et al. 2020. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought. Global Change Biology 26(6), pp. 3569-3584. (10.1111/gcb.15040)
- Pereira, L. et al. 2020. The Pneumatron: an automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. Plant, Cell and Environment 43(1), pp. 131-142. (10.1111/pce.13647)
- Jucker, T. et al. 2020. A research agenda for microclimate ecology in human-modified tropical forests. Frontiers in Forests and Global Change 2, article number: 92. (10.3389/ffgc.2019.00092)
2019
- de V. Barros, F. et al. 2019. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño‐induced drought. New Phytologist 223(3), pp. 1253-1266. (10.1111/nph.15909)
- Binks, O. et al. 2019. Foliar water uptake in Amazonian trees: evidence and consequences. Global Change Biology 25(8), pp. 2678-2690. (10.1111/gcb.14666)
- Oliveira, R. S. et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytologist 221(3), pp. 1457-1465. (10.1111/nph.15463)
- Bittencourt, P. R., de V. Barros, F., Eller, C. B., Müller, C. S. and Oliveira, R. S. 2019. The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate. Agricultural and Forest Meteorology 265, pp. 359-369. (10.1016/j.agrformet.2018.11.030)
- Brum, M. et al. 2019. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology 107(1), pp. 318-333. (10.1111/1365-2745.13022)
2018
- Eller, C. B. et al. 2018. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences 373(1760) (10.1098/rstb.2017.0315)
- van Emmerik, T., Steele-Dunne, S., Gentine, P., Oliveira, R. S., Bittencourt, P., Barros, F. and van de Giesen, N. 2018. Ideas and perspectives: tree–atmosphere interaction responds to water-related stem variations. Biogeosciences 15(21), pp. 6439-6449. (10.5194/bg-15-6439-2018)
- Bittencourt, P. R., Pereira, L. and Oliveira, R. S. 2018. Pneumatic method to measure plant xylem embolism. Bio-protocol 8(20), article number: e3059. (10.21769/BioProtoc.3059)
- Lima, T. R. A. et al. 2018. Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate. New Phytologist 219(4), pp. 1252-1262. (10.1111/nph.15211)
- Pereira, L. et al. 2018. Infrared nanospectroscopy reveals the chemical nature of pit membranes in water-conducting cells of the plant xylem. Plant Physiology 177(4), pp. 1629-1638. (10.1104/pp.18.00138)
- Zhang, Y. et al. 2018. Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees. Tree Physiology 38(7), pp. 1016-1025. (10.1093/treephys/tpy015)
- Rowland, L. et al. 2018. Drought stress and tree size determine stem CO2 efflux in a tropical forest. New Phytologist 218(4), pp. 1393-1405. (10.1111/nph.15024)
- Eller, C. B., de V. Barros, F., Bittencourt, P. R., Rowland, L., Mencuccini, M. and Oliveira, R. S. 2018. Xylem hydraulic safety and construction costs determine tropical tree growth. Plant, Cell and Environment 41(3), pp. 548-562. (10.1111/pce.13106)
2017
- van Emmerik, T., Steele-Dunne, S., Paget, A., Oliveira, R. S., Bittencourt, P. R., de V. Barros, F. and van de Giesen, N. 2017. Water stress detection in the Amazon using radar. Geophysical Research Letters 44(13), pp. 6841-6849. (10.1002/2017GL073747)
2016
- Bittencourt, P. R., Pereira, L. and Oliveira, R. S. 2016. On xylem hydraulic efficiencies, wood space‐use and the safety–efficiency tradeoff. New Phytologist 211(4), pp. 1152-1155. (10.1111/nph.14044)
- Pereira, L., Bittencourt, P. R., Oliveira, R. S., Junior, M. B. M., Barros, F. V., Ribeiro, R. V. and Mazzafera, P. 2016. Plant pneumatics: stem air flow is related to embolism – new perspectives on methods in plant hydraulics. New Phytologist 211(1), pp. 357-370. (10.1111/nph.13905)
2014
- Oliveira, R. S., Eller, C. B., Bittencourt, P. R. and Mulligan, M. 2014. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Annals of Botany 113(6), pp. 909-920. (10.1093/aob/mcu060)
- Oliveira, R. S., Christoffersen, B. O., Barros, F. d. V., Teodoro, G. S., Bittencourt, P., Brum-Jr, M. M. and Viani, R. A. G. 2014. Changing precipitation regimes and the water and carbon economies of trees. Theoretical and Experimental Plant Physiology 26, pp. 65-82. (10.1007/s40626-014-0007-1)
Erthyglau
- Zhang, B. et al. 2025. Soils and topography drive large and predictable shifts in canopy dynamics across tropical forest landscapes. New Phytologist 247(4), pp. 1666-1679. (10.1111/nph.70300)
- Negrão-Rodrigues, V. et al. 2025. Amazonian trees functional adjustments to long term experimental drought are limited and species dependent. Flora, article number: 152821. (10.1016/j.flora.2025.152821)
- Sanchez-Martinez, P. et al. 2025. Amazon rainforest adjusts to long-term experimental drought.. Nature Ecology & Evolution 9, pp. 970–979. (10.1038/s41559-025-02702-x)
- Metcalfe, D. B. et al. 2025. The Wayqecha Amazon Cloud Curtain Ecosystem Experiment: A new experimental method to manipulate fog water inputs in terrestrial systems. Methods in Ecology and Evolution 16(2), pp. 400-413. (10.1111/2041-210X.14483)
- Jackson, T. D. et al. 2024. Wind shapes the growth strategies of trees in a tropical forest. Ecology Letters 27(9), article number: e14527. (10.1111/ele.14527)
- Martius, L. R. et al. 2024. Towards accurate monitoring of water content in woody tissue across tropical forests and other biomes. Tree Physiology 44(8), article number: tpae076. (10.1093/treephys/tpae076)
- Bartholomew, D. C. et al. 2024. Bornean tropical forests recovering from logging at risk of regeneration failure. Global Change Biology 30(3), article number: e17209. (10.1111/gcb.17209)
- Paligi, S. S. et al. 2023. Assessing the agreement between the pneumatic and the flow‐centrifuge method for estimating xylem safety in temperate diffuse‐porous tree species. Plant Biology 25(7), pp. 1171-1185. (10.1111/plb.13573)
- Tavares, J. V. et al. 2023. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617, pp. 111-117. (10.1038/s41586-023-05971-3)
- Bittencourt, P., Rowland, L., Sitch, S., Poyatos, R., Miralles, D. G. and Mencuccini, M. 2023. Bridging scales: an approach to evaluate the temporal patterns of global transpiration products using tree‐scale sap flow data. Journal of Geophysical Research: Biogeosciences 128(3), article number: e2022JG007308. (10.1029/2022JG007308)
- Brum, M., Pereira, L., Ribeiro, R. V., Jansen, S., Bittencourt, P. R., Oliveira, R. S. and Saleska, S. R. 2023. Reconciling discrepancies in measurements of vulnerability to xylem embolism with the pneumatic method. New Phytologist 237(2), pp. 374-383. (10.1111/nph.18531)
- Bittencourt, P. R., Bartholomew, D. C., Banin, L. F., Suis, M. A. F. B., Nilus, R., Burslem, D. F. R. P. and Rowland, L. 2022. Divergence of hydraulic traits among tropical forest trees across topographic and vertical environment gradients in Borneo. New Phytologist 235(6), pp. 2183-2198. (10.1111/nph.18280)
- Bartholomew, D. C. et al. 2022. Differential nutrient limitation and tree height control leaf physiology, supporting niche partitioning in tropical dipterocarp forests. Functional Ecology 36(8), pp. 2084-2103. (10.1111/1365-2435.14094)
- Guillemot, J. et al. 2022. Small and slow is safe: on the drought tolerance of tropical tree species. Global Change Biology 28(8), pp. 2622-2638. (10.1111/gcb.16082)
- Giles, A. et al. 2022. Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged experimental drought in a tropical forest. Tree Physiology 42(3), pp. 537-556. (10.1093/treephys/tpab121)
- de V. Barros, F., Bittencourt, P. L., Eller, C. B., Signori-Müller, C., Meireles, L. D. and Oliveira, R. S. 2022. Phytogeographical origin determines tropical montane cloud forest hydraulic trait composition. Functional Ecology 36(3), pp. 607-621. (10.1111/1365-2435.14008)
- Jansen, S., Bittencourt, P., Pereira, L., Schenk, H. J. and Kunert, N. 2022. A crucial phase in plants – it's a gas, gas, gas!. New Phytologist 233(4), pp. 1556-1559. (10.1111/nph.17875)
- Trabi, C. L. et al. 2021. A user manual to measure gas diffusion kinetics in plants: pneumatron construction, operation, and data analysis. Frontiers in Plant Science 12, article number: 633595. (10.3389/fpls.2021.633595)
- Oliveira, R. S., Eller, C. B., de V. Barros, F., Hirota, M., Brum, M. and Bittencourt, P. 2021. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist 230(3), pp. 904-923. (10.1111/nph.17266)
- Signori-Müller, C. et al. 2021. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications 12, article number: 2310. (10.1038/s41467-021-22378-8)
- Rowland, L. et al. 2021. Plant traits controlling growth change in response to a drier climate. New Phytologist 229(3), pp. 1363-1374. (10.1111/nph.16972)
- Rowland, L. et al. 2021. The response of carbon assimilation and storage to long‐term drought in tropical trees is dependent on light availability. Functional Ecology 35(1), pp. 43-53. (10.1111/1365-2435.13689)
- Pereira, L. et al. 2021. Using the Pneumatic method to estimate embolism resistance in species with long vessels: a commentary on the article “a comparison of five methods to assess embolism resistance in trees”. Forest Ecology and Management 479, article number: 118547. (10.1016/j.foreco.2020.118547)
- Bartholomew, D. C. et al. 2020. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long‐term drought than large canopy trees. Plant, Cell and Environment 43(10), pp. 2380-2393. (10.1111/pce.13838)
- Fontes, C. G. et al. 2020. Convergent evolution of tree hydraulic traits in Amazonian habitats: implications for community assemblage and vulnerability to drought. New Phytologist 228(1), pp. 106-120. (10.1111/nph.16675)
- Bittencourt, P. R. et al. 2020. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long‐term drought. Global Change Biology 26(6), pp. 3569-3584. (10.1111/gcb.15040)
- Pereira, L. et al. 2020. The Pneumatron: an automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. Plant, Cell and Environment 43(1), pp. 131-142. (10.1111/pce.13647)
- Jucker, T. et al. 2020. A research agenda for microclimate ecology in human-modified tropical forests. Frontiers in Forests and Global Change 2, article number: 92. (10.3389/ffgc.2019.00092)
- de V. Barros, F. et al. 2019. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño‐induced drought. New Phytologist 223(3), pp. 1253-1266. (10.1111/nph.15909)
- Binks, O. et al. 2019. Foliar water uptake in Amazonian trees: evidence and consequences. Global Change Biology 25(8), pp. 2678-2690. (10.1111/gcb.14666)
- Oliveira, R. S. et al. 2019. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytologist 221(3), pp. 1457-1465. (10.1111/nph.15463)
- Bittencourt, P. R., de V. Barros, F., Eller, C. B., Müller, C. S. and Oliveira, R. S. 2019. The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate. Agricultural and Forest Meteorology 265, pp. 359-369. (10.1016/j.agrformet.2018.11.030)
- Brum, M. et al. 2019. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology 107(1), pp. 318-333. (10.1111/1365-2745.13022)
- Eller, C. B. et al. 2018. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences 373(1760) (10.1098/rstb.2017.0315)
- van Emmerik, T., Steele-Dunne, S., Gentine, P., Oliveira, R. S., Bittencourt, P., Barros, F. and van de Giesen, N. 2018. Ideas and perspectives: tree–atmosphere interaction responds to water-related stem variations. Biogeosciences 15(21), pp. 6439-6449. (10.5194/bg-15-6439-2018)
- Bittencourt, P. R., Pereira, L. and Oliveira, R. S. 2018. Pneumatic method to measure plant xylem embolism. Bio-protocol 8(20), article number: e3059. (10.21769/BioProtoc.3059)
- Lima, T. R. A. et al. 2018. Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate. New Phytologist 219(4), pp. 1252-1262. (10.1111/nph.15211)
- Pereira, L. et al. 2018. Infrared nanospectroscopy reveals the chemical nature of pit membranes in water-conducting cells of the plant xylem. Plant Physiology 177(4), pp. 1629-1638. (10.1104/pp.18.00138)
- Zhang, Y. et al. 2018. Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees. Tree Physiology 38(7), pp. 1016-1025. (10.1093/treephys/tpy015)
- Rowland, L. et al. 2018. Drought stress and tree size determine stem CO2 efflux in a tropical forest. New Phytologist 218(4), pp. 1393-1405. (10.1111/nph.15024)
- Eller, C. B., de V. Barros, F., Bittencourt, P. R., Rowland, L., Mencuccini, M. and Oliveira, R. S. 2018. Xylem hydraulic safety and construction costs determine tropical tree growth. Plant, Cell and Environment 41(3), pp. 548-562. (10.1111/pce.13106)
- van Emmerik, T., Steele-Dunne, S., Paget, A., Oliveira, R. S., Bittencourt, P. R., de V. Barros, F. and van de Giesen, N. 2017. Water stress detection in the Amazon using radar. Geophysical Research Letters 44(13), pp. 6841-6849. (10.1002/2017GL073747)
- Bittencourt, P. R., Pereira, L. and Oliveira, R. S. 2016. On xylem hydraulic efficiencies, wood space‐use and the safety–efficiency tradeoff. New Phytologist 211(4), pp. 1152-1155. (10.1111/nph.14044)
- Pereira, L., Bittencourt, P. R., Oliveira, R. S., Junior, M. B. M., Barros, F. V., Ribeiro, R. V. and Mazzafera, P. 2016. Plant pneumatics: stem air flow is related to embolism – new perspectives on methods in plant hydraulics. New Phytologist 211(1), pp. 357-370. (10.1111/nph.13905)
- Oliveira, R. S., Eller, C. B., Bittencourt, P. R. and Mulligan, M. 2014. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Annals of Botany 113(6), pp. 909-920. (10.1093/aob/mcu060)
- Oliveira, R. S., Christoffersen, B. O., Barros, F. d. V., Teodoro, G. S., Bittencourt, P., Brum-Jr, M. M. and Viani, R. A. G. 2014. Changing precipitation regimes and the water and carbon economies of trees. Theoretical and Experimental Plant Physiology 26, pp. 65-82. (10.1007/s40626-014-0007-1)
Contact Details
Y Prif Adeilad, Llawr 2, Ystafell 2.36c, Plas y Parc, Caerdydd, CF10 3AT
Themâu ymchwil
Arbenigeddau
- Ecoleg ecosystemau
- Coedwigoedd Trofannol
- Ecoffisioleg planhigion
- Ecohydroleg
- Electroneg, synwyryddion a chaledwedd digidol