Yr Athro Adrian Chappell
Reader in Climate Change Impacts
Ysgol Gwyddorau'r Ddaear a'r Amgylchedd
- ChappellA2@caerdydd.ac.uk
- +44 29208 70642
- Y Prif Adeilad, Ystafell Ystafell 1.16A, Plas y Parc, Caerdydd, CF10 3AT
- Ar gael fel goruchwyliwr ôl-raddedig
Trosolwyg
- Land surface processes
- Soil erosion
- Geomorphology
- Geostatistics
- Remote sensing
Cyhoeddiad
2024
- Dhital, S. et al. 2024. Synoptic analysis and WRF-Chem model simulation of dust events in the Southwestern United States. Journal of Geophysical Research: Atmospheres 129(13), article number: e2023JD040650. (10.1029/2023JD040650)
- Tyree, G. L. et al. 2024. Oil and gas development influences potential for dust emission from the Upper Colorado River Basin, USA. Earth Surface Processes and Landforms (10.1002/esp.5887)
- Sharmin, T., Chappell, A. and Lannon, S. 2024. Spatio-temporal analysis of LST, NDVI and SUHI in a coastal temperate city using local climate zone. Energy and Built Environment (10.1016/j.enbenv.2024.06.002)
- Prăvălie, R. et al. 2024. A unifying modelling of multiple land degradation pathways in Europe. Nature Communications 15(1), article number: 3862. (10.1038/s41467-024-48252-x)
- Lu, Z. et al. 2024. Land management policy shift influenced seasonal variation of erosion-induced nitrogen and phosphorus outputs from intensive agricultural catchment. Science of the Total Environment 918, article number: 170590. (10.1016/j.scitotenv.2024.170590)
- Chappell, A., Hennen, M., Schepanski, K., Dhital, S. and Tong, D. 2024. Reducing resolution dependency of dust emission modeling using Albedo‐Based wind friction. Geophysical Research Letters 51(5), article number: e2023GL106540. (10.1029/2023gl106540)
- Zhou, Z. et al. 2024. Using field measurements across land cover types to evaluate albedo-based wind friction velocity and estimate sediment transport. Journal of Geophysical Research: Atmospheres 129(4), article number: e2023JD040313. (10.1029/2023JD040313)
2023
- Steiner, J. L. et al. 2023. Chapter 3 - Distinctive Dryland Soil Carbon Transformations. In: Lal, R. ed. Soil and Drought - Basic Processes. Advances in Soil Sciences Boca Raton, FL: CRC Press, pp. 39-82., (10.1201/b22954)
- Hennen, M. et al. 2023. A new framework for evaluating dust emission model development using dichotomous satellite observations of dust emission. Science of the Total Environment, article number: 169237. (10.1016/j.scitotenv.2023.169237)
- Yu, H. et al. 2023. Novel sediment source fingerprinting quantifying erosion-induced total nitrogen and total phosphorus outputs from an intensive agricultural catchment, North China. International Soil and Water Conservation Research 11(3), pp. 494-506. (10.1016/j.iswcr.2022.10.006)
- Chappell, A. et al. 2023. Elucidating hidden and enduring weaknesses in dust emission modelling. Journal of Geophysical Research: Atmospheres 128(17), article number: e2023JD038584. (10.1029/2023JD038584)
- Chappell, A. et al. 2023. Satellites reveal Earth's seasonally shifting dust emission sources. Science of the Total Environment 883, article number: 163452. (10.1016/j.scitotenv.2023.163452)
- Hennen, M., Chappell, A. and Webb, N. P. 2023. Modelled direct causes of dust emission change (2001?2020) in southwestern USA and implications for management. Aeolian Research: An International Journal on Wind Erosion Research 60, article number: 100852. (10.1016/j.aeolia.2022.100852)
2022
- Zheng, G. et al. 2022. Rapid urbanization induced daily maximum wind speed decline in metropolitan areas: a case study in the Yangtze River Delta (China). Urban Climate 43, article number: 101147. (10.1016/j.uclim.2022.101147)
- Hennen, M. et al. 2022. A North American dust emission climatology (2001–2020) calibrated to dust point sources from satellite observations. Aeolian Research 54, article number: 100766. (10.1016/j.aeolia.2021.100766)
2021
- Fan, W. et al. 2021. Evaluation of global reanalysis land surface wind speed trends to support wind energy development using in situ observations. Journal of Applied Meteorology and Climatology 60(1), pp. 33-50. (10.1175/JAMC-D-20-0037.1)
2020
- Ziegler, N. P., Webb, N. P., Chappell, A. and LeGrand, S. L. 2020. Scale‐invariance of albedo‐based wind friction velocity. Journal of Geophysical Research: Atmospheres 125(16), article number: e2019JD031978. (10.1029/2019JD031978)
- Webb, N. P. et al. 2020. Indicators and benchmarks for wind erosion monitoring, assessment and management. Ecological Indicators 110, article number: 105881. (10.1016/j.ecolind.2019.105881)
- Webb, N. P., Chappell, A., LeGrand, S. L., Ziegler, N. P. and Edwards, B. L. 2020. A note on the use of drag partition in aeolian transport models. Aeolian Research 42, article number: 100560. (10.1016/j.aeolia.2019.100560)
2019
- Zeng, Z. et al. 2019. A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change 9(12), pp. 979-985. (10.1038/s41558-019-0622-6)
- Webb, N. P. et al. 2019. Reducing sampling uncertainty in aeolian research to improve change detection. Journal of Geophysical Research. Earth Surface 124(6), pp. 1366-1377. (10.1029/2019JF005042)
- Chappell, A., Webb, N. P., Leys, J. F., Waters, C., Orgill, S. and Eyres, M. 2019. Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environmental Science and Policy 93 (10.1016/j.envsci.2018.12.020)
2018
- Teng, H. et al. 2018. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Science of the Total Environment 635, pp. 673-686. (10.1016/j.scitotenv.2018.04.146)
- Chappell, A. et al. 2018. Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sensing of Environment 204, pp. 756-768. (10.1016/j.rse.2017.09.026)
2017
- Teng, H., Ma, Z., Chappell, A., Shi, Z., Liang, Z. and Yu, W. 2017. Improving rainfall erosivity estimates using merged TRMM and gauge data. Remote Sensing 9(11), article number: 1134. (10.3390/rs9111134)
- Geng, Y., Yu, H., Li, Y., Tarafder, M., Tian, G. and Chappell, A. 2017. Traditional manual tillage significantly affects soil redistribution and CO2 emission in agricultural plots on the Loess Plateau. Soil Research 56(2), pp. 171-181. (10.1071/SR16157)
- Webb, N. P., Marshall, N. A., Stringer, L. C., Reed, M. S., Chappell, A. and Herrick, J. E. 2017. Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment 15(8), pp. 450-459. (10.1002/fee.1530)
- Webb, N. P. et al. 2017. Enhancing wind erosion monitoring and assessment for U.S. rangelands. Rangelands 39(3-4), pp. 85-96. (10.1016/j.rala.2017.04.001)
- Van Pelt, R. S., Hushmurodov, S. X., Baumhardt, R. L., Chappell, A., Nearing, M. A., Polyakov, V. O. and Strack, J. E. 2017. The reduction of partitioned wind and water erosion by conservation agriculture. CATENA 148, pp. 160-167. (10.1016/j.catena.2016.07.004)
2016
- Chappell, A. and Webb, N. P. 2016. Using albedo to reform wind erosion modelling, mapping and monitoring. Aeolian Research 23, pp. 63-78. (10.1016/j.aeolia.2016.09.006)
- Chappell, A. and Baldock, J. A. 2016. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices. Aeolian Research 22, pp. 107-116. (10.1016/j.aeolia.2016.07.005)
- Yu, H., Li, Y., Zhou, N., Chappell, A., LI, X. and Poesen, J. 2016. Soil nutrient loss due to tuber crop harvesting and its environmental impact in the North China Plain. Journal of Integrative Agriculture 15(7), pp. 1612-1624. (10.1016/S2095-3119(15)61268-0)
- Yue, Y. et al. 2016. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China. Proceedings of the National Academy of Sciences 113(24), pp. 6617-6622. (10.1073/pnas.1523358113)
- Viscarra Rossel, R. A. et al. 2016. A global spectral library to characterize the world's soil. Earth-Science Reviews 155, pp. 198-230. (10.1016/j.earscirev.2016.01.012)
- Teng, H., Viscarra Rossel, R. A., Shi, Z., Behrens, T., Chappell, A. and Bui, E. 2016. Assimilating satellite imagery and visible–near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environmental Modelling and Software 77, pp. 156-167. (10.1016/j.envsoft.2015.11.024)
- Chappell, A., Baldock, J. and Sanderman, J. 2016. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nature Climate Change 6(2), pp. 187-191. (10.1038/nclimate2829)
- Luo, Y. et al. 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles 30(1), pp. 40-56. (10.1002/2015GB005239)
2015
- Shao, Y. et al. 2015. A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics. Aeolian Research 19, pp. 37-54. (10.1016/j.aeolia.2015.09.004)
- Wang, R. et al. 2015. Sources, transport and deposition of iron in the global atmosphere. Atmospheric Chemistry and Physics 15(11), pp. 6247-6270. (10.5194/acp-15-6247-2015)
- Chappell, A., Li, Y., Yu, H., Zhang, Y. and Li, X. 2015. Cost-effective sampling of 137 Cs-derived net soil redistribution: part 2 – estimating the spatial mean change over time. Journal of Environmental Radioactivity 144, pp. 168-174. (10.1016/j.jenvrad.2015.02.015)
- Bui, E., Chappell, A., Kelly, T. and McTainsh, G. 2015. Linked fluvial and aeolian processes fertilize Australian bioregions. Aeolian Research 17, pp. 255-262. (10.1016/j.aeolia.2014.12.001)
- Koch, A., Chappell, A., Eyres, M. and Scott, E. 2015. Monitor soil degradation or triage for soil security? An Australian challenge. Sustainability 7(5), pp. 4870-4892. (10.3390/su7054870)
- Li, Y., Chappell, A., Nyamdavaa, B., Yu, H., Davaasuren, D. and Zoljargal, K. 2015. Cost-effective sampling of 137Cs-derived net soil redistribution: part 1- estimating the spatial mean across scales of variation. Journal of Environmental Radioactivity 141, pp. 97-105. (10.1016/j.jenvrad.2014.12.007)
2014
- Chappell, A., Webb, N. P., Viscarra Rossel, R. A. and Bui, E. 2014. Australian net (1950s–1990) soil organic carbon erosion: implications for CO2 emission and land–atmosphere modelling. Biogeosciences 11(18), pp. 5235-5244. (10.5194/bg-11-5235-2014)
- Li, Y., Yu, H., Chappell, A., Zhou, N. and Funk, R. 2014. How much soil organic carbon sequestration is due to conservation agriculture reducing soil erosion?. Soil Research 52(7), pp. 717-726. (10.1071/SR14078)
2013
- Chappell, A., Webb, N. P., Butler, H. J., Strong, C. L., McTainsh, G. H., Leys, J. F. and Viscarra Rossel, R. A. 2013. Soil organic carbon dust emission: an omitted global source of atmospheric CO2. Global Change Biology 19(10), pp. 3238-3244. (10.1111/gcb.12305)
- Chappell, A., Renzullo, L. J., Raupach, T. H. and Haylock, M. 2013. Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. Journal of Hydrology 493, pp. 105-114. (10.1016/j.jhydrol.2013.04.024)
- Webb, N. P., Strong, C. L., Chappell, A., Marx, S. K. and McTainsh, G. H. 2013. Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for the carbon cycle. Earth Surface Processes and Landforms 38(14), pp. 1662-1671. (10.1002/esp.3404)
- Chappell, A. and Viscarra Rossel, R. A. 2013. The importance of sampling support for explaining change in soil organic carbon. Geoderma 193-19, pp. 323-325. (10.1016/j.geoderma.2012.09.011)
- Sanderman, J. and Chappell, A. 2013. Uncertainty in soil carbon accounting due to unrecognized soil erosion. Global Change Biology 19(1), pp. 264-272. (10.1111/gcb.12030)
2012
- Favet, J. et al. 2012. Microbial hitchhikers on intercontinental dust: catching a lift in Chad. ISME Journal 7(4), pp. 850-867. (10.1038/ismej.2012.152)
2011
- Shao, Y. et al. 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Research 2(4), pp. 181-204. (10.1016/j.aeolia.2011.02.001)
2007
- Ekstrom, M., Kyriakidis, P. C., Chappell, A. and Jones, P. D. 2007. Spatiotemporal stochastic simulation of monthly rainfall patterns in the United Kingdom (1980-87). Journal of Climate 20(16), pp. 4194-4210. (10.1175/JCLI4233.1)
- Chappell, A. 2007. Using teaching observations and reflective practice to challenge conventions and conceptions of teaching in geography. Journal of Geography in Higher Education 31(2), pp. 257-268. (10.1080/03098260601063651)
2006
- Chappell, A., Zobeck, T. M. and Brunner, G. 2006. Using bi-directional soil spectral reflectance to model soil surface changes induced by rainfall and wind-tunnel abrasion. Remote Sensing of Environment 102(3-4), pp. 328-343. (10.1016/j.rse.2006.02.020)
- Chappell, A. 2006. Using the 'grieving' process and learning journals to evaluate students' responses to problem-based learning in an undergraduate geography curriculum. Journal of Geography in Higher Education 30(1), pp. 15-31. (10.1080/03098260500499584)
2001
- Chappell, A. 2001. Challenging the teaching convention in geography using problem-based learning: The role of reflective practice in supporting change. Planet 4(1), pp. 18-22. (10.11120/plan.2001.00040018)
1999
- Chappell, A. 1999. The limitations of using 137Cs for estimating soil redistribution in semi-arid environments. Geomorphology 29(1-2), pp. 135-152. (10.1016/S0169-555X(99)00011-2)
Adrannau llyfrau
- Steiner, J. L. et al. 2023. Chapter 3 - Distinctive Dryland Soil Carbon Transformations. In: Lal, R. ed. Soil and Drought - Basic Processes. Advances in Soil Sciences Boca Raton, FL: CRC Press, pp. 39-82., (10.1201/b22954)
Erthyglau
- Dhital, S. et al. 2024. Synoptic analysis and WRF-Chem model simulation of dust events in the Southwestern United States. Journal of Geophysical Research: Atmospheres 129(13), article number: e2023JD040650. (10.1029/2023JD040650)
- Tyree, G. L. et al. 2024. Oil and gas development influences potential for dust emission from the Upper Colorado River Basin, USA. Earth Surface Processes and Landforms (10.1002/esp.5887)
- Sharmin, T., Chappell, A. and Lannon, S. 2024. Spatio-temporal analysis of LST, NDVI and SUHI in a coastal temperate city using local climate zone. Energy and Built Environment (10.1016/j.enbenv.2024.06.002)
- Prăvălie, R. et al. 2024. A unifying modelling of multiple land degradation pathways in Europe. Nature Communications 15(1), article number: 3862. (10.1038/s41467-024-48252-x)
- Lu, Z. et al. 2024. Land management policy shift influenced seasonal variation of erosion-induced nitrogen and phosphorus outputs from intensive agricultural catchment. Science of the Total Environment 918, article number: 170590. (10.1016/j.scitotenv.2024.170590)
- Chappell, A., Hennen, M., Schepanski, K., Dhital, S. and Tong, D. 2024. Reducing resolution dependency of dust emission modeling using Albedo‐Based wind friction. Geophysical Research Letters 51(5), article number: e2023GL106540. (10.1029/2023gl106540)
- Zhou, Z. et al. 2024. Using field measurements across land cover types to evaluate albedo-based wind friction velocity and estimate sediment transport. Journal of Geophysical Research: Atmospheres 129(4), article number: e2023JD040313. (10.1029/2023JD040313)
- Hennen, M. et al. 2023. A new framework for evaluating dust emission model development using dichotomous satellite observations of dust emission. Science of the Total Environment, article number: 169237. (10.1016/j.scitotenv.2023.169237)
- Yu, H. et al. 2023. Novel sediment source fingerprinting quantifying erosion-induced total nitrogen and total phosphorus outputs from an intensive agricultural catchment, North China. International Soil and Water Conservation Research 11(3), pp. 494-506. (10.1016/j.iswcr.2022.10.006)
- Chappell, A. et al. 2023. Elucidating hidden and enduring weaknesses in dust emission modelling. Journal of Geophysical Research: Atmospheres 128(17), article number: e2023JD038584. (10.1029/2023JD038584)
- Chappell, A. et al. 2023. Satellites reveal Earth's seasonally shifting dust emission sources. Science of the Total Environment 883, article number: 163452. (10.1016/j.scitotenv.2023.163452)
- Hennen, M., Chappell, A. and Webb, N. P. 2023. Modelled direct causes of dust emission change (2001?2020) in southwestern USA and implications for management. Aeolian Research: An International Journal on Wind Erosion Research 60, article number: 100852. (10.1016/j.aeolia.2022.100852)
- Zheng, G. et al. 2022. Rapid urbanization induced daily maximum wind speed decline in metropolitan areas: a case study in the Yangtze River Delta (China). Urban Climate 43, article number: 101147. (10.1016/j.uclim.2022.101147)
- Hennen, M. et al. 2022. A North American dust emission climatology (2001–2020) calibrated to dust point sources from satellite observations. Aeolian Research 54, article number: 100766. (10.1016/j.aeolia.2021.100766)
- Fan, W. et al. 2021. Evaluation of global reanalysis land surface wind speed trends to support wind energy development using in situ observations. Journal of Applied Meteorology and Climatology 60(1), pp. 33-50. (10.1175/JAMC-D-20-0037.1)
- Ziegler, N. P., Webb, N. P., Chappell, A. and LeGrand, S. L. 2020. Scale‐invariance of albedo‐based wind friction velocity. Journal of Geophysical Research: Atmospheres 125(16), article number: e2019JD031978. (10.1029/2019JD031978)
- Webb, N. P. et al. 2020. Indicators and benchmarks for wind erosion monitoring, assessment and management. Ecological Indicators 110, article number: 105881. (10.1016/j.ecolind.2019.105881)
- Webb, N. P., Chappell, A., LeGrand, S. L., Ziegler, N. P. and Edwards, B. L. 2020. A note on the use of drag partition in aeolian transport models. Aeolian Research 42, article number: 100560. (10.1016/j.aeolia.2019.100560)
- Zeng, Z. et al. 2019. A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change 9(12), pp. 979-985. (10.1038/s41558-019-0622-6)
- Webb, N. P. et al. 2019. Reducing sampling uncertainty in aeolian research to improve change detection. Journal of Geophysical Research. Earth Surface 124(6), pp. 1366-1377. (10.1029/2019JF005042)
- Chappell, A., Webb, N. P., Leys, J. F., Waters, C., Orgill, S. and Eyres, M. 2019. Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environmental Science and Policy 93 (10.1016/j.envsci.2018.12.020)
- Teng, H. et al. 2018. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models. Science of the Total Environment 635, pp. 673-686. (10.1016/j.scitotenv.2018.04.146)
- Chappell, A. et al. 2018. Improving ground cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sensing of Environment 204, pp. 756-768. (10.1016/j.rse.2017.09.026)
- Teng, H., Ma, Z., Chappell, A., Shi, Z., Liang, Z. and Yu, W. 2017. Improving rainfall erosivity estimates using merged TRMM and gauge data. Remote Sensing 9(11), article number: 1134. (10.3390/rs9111134)
- Geng, Y., Yu, H., Li, Y., Tarafder, M., Tian, G. and Chappell, A. 2017. Traditional manual tillage significantly affects soil redistribution and CO2 emission in agricultural plots on the Loess Plateau. Soil Research 56(2), pp. 171-181. (10.1071/SR16157)
- Webb, N. P., Marshall, N. A., Stringer, L. C., Reed, M. S., Chappell, A. and Herrick, J. E. 2017. Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment 15(8), pp. 450-459. (10.1002/fee.1530)
- Webb, N. P. et al. 2017. Enhancing wind erosion monitoring and assessment for U.S. rangelands. Rangelands 39(3-4), pp. 85-96. (10.1016/j.rala.2017.04.001)
- Van Pelt, R. S., Hushmurodov, S. X., Baumhardt, R. L., Chappell, A., Nearing, M. A., Polyakov, V. O. and Strack, J. E. 2017. The reduction of partitioned wind and water erosion by conservation agriculture. CATENA 148, pp. 160-167. (10.1016/j.catena.2016.07.004)
- Chappell, A. and Webb, N. P. 2016. Using albedo to reform wind erosion modelling, mapping and monitoring. Aeolian Research 23, pp. 63-78. (10.1016/j.aeolia.2016.09.006)
- Chappell, A. and Baldock, J. A. 2016. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices. Aeolian Research 22, pp. 107-116. (10.1016/j.aeolia.2016.07.005)
- Yu, H., Li, Y., Zhou, N., Chappell, A., LI, X. and Poesen, J. 2016. Soil nutrient loss due to tuber crop harvesting and its environmental impact in the North China Plain. Journal of Integrative Agriculture 15(7), pp. 1612-1624. (10.1016/S2095-3119(15)61268-0)
- Yue, Y. et al. 2016. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China. Proceedings of the National Academy of Sciences 113(24), pp. 6617-6622. (10.1073/pnas.1523358113)
- Viscarra Rossel, R. A. et al. 2016. A global spectral library to characterize the world's soil. Earth-Science Reviews 155, pp. 198-230. (10.1016/j.earscirev.2016.01.012)
- Teng, H., Viscarra Rossel, R. A., Shi, Z., Behrens, T., Chappell, A. and Bui, E. 2016. Assimilating satellite imagery and visible–near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environmental Modelling and Software 77, pp. 156-167. (10.1016/j.envsoft.2015.11.024)
- Chappell, A., Baldock, J. and Sanderman, J. 2016. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nature Climate Change 6(2), pp. 187-191. (10.1038/nclimate2829)
- Luo, Y. et al. 2016. Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles 30(1), pp. 40-56. (10.1002/2015GB005239)
- Shao, Y. et al. 2015. A tribute to Michael R. Raupach for contributions to aeolian fluid dynamics. Aeolian Research 19, pp. 37-54. (10.1016/j.aeolia.2015.09.004)
- Wang, R. et al. 2015. Sources, transport and deposition of iron in the global atmosphere. Atmospheric Chemistry and Physics 15(11), pp. 6247-6270. (10.5194/acp-15-6247-2015)
- Chappell, A., Li, Y., Yu, H., Zhang, Y. and Li, X. 2015. Cost-effective sampling of 137 Cs-derived net soil redistribution: part 2 – estimating the spatial mean change over time. Journal of Environmental Radioactivity 144, pp. 168-174. (10.1016/j.jenvrad.2015.02.015)
- Bui, E., Chappell, A., Kelly, T. and McTainsh, G. 2015. Linked fluvial and aeolian processes fertilize Australian bioregions. Aeolian Research 17, pp. 255-262. (10.1016/j.aeolia.2014.12.001)
- Koch, A., Chappell, A., Eyres, M. and Scott, E. 2015. Monitor soil degradation or triage for soil security? An Australian challenge. Sustainability 7(5), pp. 4870-4892. (10.3390/su7054870)
- Li, Y., Chappell, A., Nyamdavaa, B., Yu, H., Davaasuren, D. and Zoljargal, K. 2015. Cost-effective sampling of 137Cs-derived net soil redistribution: part 1- estimating the spatial mean across scales of variation. Journal of Environmental Radioactivity 141, pp. 97-105. (10.1016/j.jenvrad.2014.12.007)
- Chappell, A., Webb, N. P., Viscarra Rossel, R. A. and Bui, E. 2014. Australian net (1950s–1990) soil organic carbon erosion: implications for CO2 emission and land–atmosphere modelling. Biogeosciences 11(18), pp. 5235-5244. (10.5194/bg-11-5235-2014)
- Li, Y., Yu, H., Chappell, A., Zhou, N. and Funk, R. 2014. How much soil organic carbon sequestration is due to conservation agriculture reducing soil erosion?. Soil Research 52(7), pp. 717-726. (10.1071/SR14078)
- Chappell, A., Webb, N. P., Butler, H. J., Strong, C. L., McTainsh, G. H., Leys, J. F. and Viscarra Rossel, R. A. 2013. Soil organic carbon dust emission: an omitted global source of atmospheric CO2. Global Change Biology 19(10), pp. 3238-3244. (10.1111/gcb.12305)
- Chappell, A., Renzullo, L. J., Raupach, T. H. and Haylock, M. 2013. Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. Journal of Hydrology 493, pp. 105-114. (10.1016/j.jhydrol.2013.04.024)
- Webb, N. P., Strong, C. L., Chappell, A., Marx, S. K. and McTainsh, G. H. 2013. Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for the carbon cycle. Earth Surface Processes and Landforms 38(14), pp. 1662-1671. (10.1002/esp.3404)
- Chappell, A. and Viscarra Rossel, R. A. 2013. The importance of sampling support for explaining change in soil organic carbon. Geoderma 193-19, pp. 323-325. (10.1016/j.geoderma.2012.09.011)
- Sanderman, J. and Chappell, A. 2013. Uncertainty in soil carbon accounting due to unrecognized soil erosion. Global Change Biology 19(1), pp. 264-272. (10.1111/gcb.12030)
- Favet, J. et al. 2012. Microbial hitchhikers on intercontinental dust: catching a lift in Chad. ISME Journal 7(4), pp. 850-867. (10.1038/ismej.2012.152)
- Shao, Y. et al. 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Research 2(4), pp. 181-204. (10.1016/j.aeolia.2011.02.001)
- Ekstrom, M., Kyriakidis, P. C., Chappell, A. and Jones, P. D. 2007. Spatiotemporal stochastic simulation of monthly rainfall patterns in the United Kingdom (1980-87). Journal of Climate 20(16), pp. 4194-4210. (10.1175/JCLI4233.1)
- Chappell, A. 2007. Using teaching observations and reflective practice to challenge conventions and conceptions of teaching in geography. Journal of Geography in Higher Education 31(2), pp. 257-268. (10.1080/03098260601063651)
- Chappell, A., Zobeck, T. M. and Brunner, G. 2006. Using bi-directional soil spectral reflectance to model soil surface changes induced by rainfall and wind-tunnel abrasion. Remote Sensing of Environment 102(3-4), pp. 328-343. (10.1016/j.rse.2006.02.020)
- Chappell, A. 2006. Using the 'grieving' process and learning journals to evaluate students' responses to problem-based learning in an undergraduate geography curriculum. Journal of Geography in Higher Education 30(1), pp. 15-31. (10.1080/03098260500499584)
- Chappell, A. 2001. Challenging the teaching convention in geography using problem-based learning: The role of reflective practice in supporting change. Planet 4(1), pp. 18-22. (10.11120/plan.2001.00040018)
- Chappell, A. 1999. The limitations of using 137Cs for estimating soil redistribution in semi-arid environments. Geomorphology 29(1-2), pp. 135-152. (10.1016/S0169-555X(99)00011-2)
Ymchwil
My current research is on wind erosion and dust emission and particularly representing these processes in land surface models (LSMs) to improve regional and global carbon (C), dust (D), energy (E) and water (W) cycles for CO2 emission and human impact on global climate change
Addysgu
I am a geographer specialising in geomorphology and particularly drylands.
Bywgraffiad
- Reader in Climate Change Impacts – School of Earth and Ocean Sciences, Cardiff University (2017-present)
- Principal Research Scientist in Land Surface Processes – Land & Water, CSIRO, Canberra Australia (2009-2017)
- Senior Lecturer in Physical Geography – School of Environment and Life Sciences, University of Salford (1998-2007)
- Wind Erosion on European Light Soils (WEELS) Postdoctoral Fellow – Department of Geography, University College London (1996-1998)
- West African Sahelian fluxes Postdoctoral Fellow – Department of Physical Geography, University of Lund, Sweden (1995-1996)
- PhD – Department of Geography, University College London (1995)
BSc Geography – University of Coventry (1991)
Anrhydeddau a dyfarniadau
- Cymrodoriaeth, Ymddiriedolaeth Leverhulme, amrywiad gofod-amser modelu mewn erydiad gwynt
Aelodaethau proffesiynol
- Prif olygydd Elsevier Journal Aeolian Research
- Llywydd Cymdeithas Ryngwladol Aeolian Research
Safleoedd academaidd blaenorol
- Prif Wyddonydd CSIRO, Canberra Awstralia
- Uwch Ddarlithydd, Prifysgol Salford, Manceinion, UK
Pwyllgorau ac adolygu
Medi 2019 - presennol: Aelod Rhwydwaith Cynghori Cyngor Ymchwil yr Amgylchedd Naturiol y DU (NERC) yn cyfrannu at ganllawiau ar strategaeth a pholisi ymchwil ryngddisgyblaethol a thraws-sector.
Medi 2019 - presennol: Adolygiad Fframwaith Rhagoriaeth Ymchwil y DU (REF) o allbynnau ymchwil ar gyfer Ysgol Gwyddorau'r Ddaear a'r Môr, Prifysgol Caerdydd
Meysydd goruchwyliaeth
Mae allyriadau llwch mwynol daearol yn cael effaith ddwys a threiddiol ar systemau'r Ddaear a thafluniadau hinsawdd yn y dyfodol. Fodd bynnag, mae ei effaith fyd-eang net (oeri neu gynhesu) yn dal i gael ei drafod ac mae llwyth llwch yn amrywio o 10-60% o allyriadau llwch. Mae'r ansicrwydd mewn effaith fyd-eang net yn cael ei achosi gan sensitifrwydd cynlluniau allyriadau llwch byd-eang (GDESs) i ddeinameg arwyneb tir amrywiad naturiol ac aflonyddwch anthropogenig. Mae'r GDESs yn tybio yn afrealistig: i) bod wyneb y tir yn unffurf dros fathau o orchudd a statig dros amser; ii) Mae gan arwynebau pridd gyflenwad anfeidrol o ddeunydd erydol rhydd. Y gwir amdani yw bod defnydd tir, gorchudd tir a rheoli tir wedi newid yn sylweddol ers e.e. dechrau amaethyddiaeth a bod cyflenwi deunydd erydol ar wyneb y pridd wedi'i gyfyngu gan gramenni a morloi corfforol, cemegol neu fiolegol. Mae'r GDE presennol wedi'u cyplysu â modelau hinsawdd byd-eang ond mae allyriadau llwch paradocsaidd a'r adborth a'r rhyngweithio yn yr ecosystem ddaearol yn cael eu hepgor o Fodelau System Ddaear (ESM). O ganlyniad, mae canlyniadau ESM yn debygol iawn o fod yn fwy ansicr nag a gydnabyddir ar hyn o bryd, yn enwedig mewn tiroedd sych sy'n agored iawn i erydiad gwynt a gollwng llwch.
Amcanion a Dulliau Prosiect
Mae cynllun allyriadau llwch byd-eang (GDEs) a ddatblygwyd yn ddiweddar wedi cyflwyno deinameg arwyneb y tir ac mae'r dull newydd yn cynnig cryn botensial i ddatblygu brasamcan cyntaf ar gyfer cyfyngu ar gyflenwad allyriadau llwch. Cam cyntaf y prosiect yw datblygu'r paramedr cyfyngedig hwnnw ar y cyflenwad a dangos yr effaith y mae'r dull newydd hwn yn ei chael ar GDEs. Ail gam y prosiect fydd cyflwyno'r GDEs i mewn i Fodel System Ddaear a datblygu adborth a rhyngweithiadau erydiad gwynt a gollwng llwch yn raddol ar yr ecosystem ddaearol. Er enghraifft, disgwyliwn y bydd colli pridd trwy erydiad gwynt ac allyriadau llwch yn cael gwared ar faetholion pridd ffafriol a charbon organig pridd, yn newid ffrwythlondeb y pridd, yn gostwng wyneb y pridd ac yn newid proffil y pridd, yn newid albedo wyneb y pridd, y gyfradd ymdreiddiad a gallu dal lleithder ac yn dylanwadu ar lystyfiant a chynhyrchiant cnwd. Gyda gweithrediad yr adborth a'r rhyngweithiadau hyn yn ESM rydym wedyn yn bwriadu ymchwilio i effaith newid mewn gorchudd tir / defnydd / rheoli ac yna deall arwyddocâd adborth a rhyngweithio mewn rhagamcanion newid hinsawdd cypledig llawn.
Gofynion Ymgeiswyr
Rydym yn chwilio am rywun sydd â diddordeb mewn torri ar draws ffiniau disgyblaeth draddodiadol synhwyro o bell, geomorffoleg pridd a newid yn yr hinsawdd ac sydd â gallu amlwg i ddatblygu cod cyfrifiadurol.
Hyfforddiant
Bydd y myfyriwr yn gweithio'n agos gyda'r goruchwyliwr arweiniol i ddatblygu'r paramedr cyfyngedig o gyflenwad. Bydd y cam hwn yn cael ei ddefnyddio i hyfforddi mewn cod cyfrifiadurol a datblygu algorithm ac i gydbwyso ffyddlondeb cynrychiolaeth prosesau gyda'r parsimony angenrheidiol ar gyfer y modelu ar raddfa fawr. Rydym yn rhagweld y bydd y myfyriwr yn gweithio gyda'n cydweithwyr tramor presennol ar gyfer datblygu modelau a dilysu gan ddefnyddio mesuriadau maes a gwirio ffynhonnell lwch o synhwyro o bell lloeren.
Chappell, A. et al. (2017) Gwella monitro gorchudd daear ar gyfer asesiad erydiad gwynt gan ddefnyddio gorchudd ochrol sy'n deillio o baramedrau BRDF MODIS. Rem. Sens. Amgylchedd, 204: 756-768.
Chappell, A. and Webb, N (2016) Defnyddio albedo i ddiwygio modelu erydiad gwynt, mapio a monitro. Ymchwil Aeolian 23, 63–78.
Darmenova, K. et al. (2009) Datblygu modiwl allyriadau llwch yn gorfforol o fewn y model Ymchwil a Rhagweld Tywydd (WRF): Asesu paramedriadau allyriadau llwch a pharamedrau mewnbwn ar gyfer rhanbarthau ffynhonnell yng Nghanolbarth a Dwyrain Asia. J. Geoph. Res. 114 (D14201).
Webb NP et al. (2017) Gwella Monitro ac Asesu Erydiad Gwynt ar gyfer Rangelands yr Unol Daleithiau. Rangelands, 39: 85-96.
Ardrawiad
Cefnogi lleihau damweiniau traffig ffyrdd oherwydd storm lwch llai o welededd wrth weithredu model allyriadau llwch newydd
Cefnogi ansawdd aer (deunydd gronynnol < 10 micron; PM10) modelu ar draws UDA a De Cymru Newydd, Awstralia gyda gweithredu model allyriadau llwch newydd.