Dr Jennifer Edwards
(hi/ei)
Darllenydd mewn Cemeg Gorfforol a Chyfarwyddwr ED&I
- Ar gael fel goruchwyliwr ôl-raddedig
Trosolwyg
Links
Research Group: Physical Chemistry
See Also: Cardiff Catalysis Institute
Research Interests
Developing new preparative methodologies to produce highly active heterogeneous nanoalloyed precious metal catalysts. Application of these catalysts for a number of catalytic transformations including:
- Selective hydrogenation
- Selective oxidation
- Fossil fuel free synthesis of platform chemicals
- CO2 utilisation
For more information, click on the 'Research' tab above.
Teaching
CH2306 Application of research methods
CHT225 Practical Catalytic Chemistry
Cyhoeddiad
2024
- Medina, J. C., Warren, E., Morgan, D., Gow, I. E. and Edwards, J. 2024. Influence of Pd, Pt and Au nanoparticles in the photocatalytic performance of N-TiO 2 support under visible light. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382(2282), article number: 20230271. (10.1098/rsta.2023.0271)
2023
- Kovačič, D. et al. 2023. A comparative study of palladium-gold and palladium-tin catalysts in the direct synthesis of H2O2. Green Chemistry 25(24), pp. 10436-10446. (10.1039/d3gc03706a)
- Lewis, R. J. et al. 2023. Selective Ammoximation of Ketones via In Situ H2O2 Synthesis. ACS Catalysis 13, pp. 1934-1945. (10.1021/acscatal.2c05799)
2022
- Lewis, R. J. et al. 2022. Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalysts. Green Chemistry 24, pp. 9496-9507. (10.1039/D2GC02689A)
- Lewis, R. J. et al. 2022. Highly efficient catalytic production of oximes from ketones using in situ–generated H2O2. Science 376(6593), pp. 615-620. (10.1126/science.abl4822)
- Miedziak, P. J., Pattisson, S., Edwards, J. K., Tarbit, B., Taylor, S. H. and Hutchings, G. J. 2022. The over-riding role of autocatalysis in alllylic oxidation. Catalysis Letters 152, pp. 1003-1008. (10.1007/s10562-021-03707-4)
- Paris, C. B., Howe, A. G., Lewis, R. J., Hewes, D., Morgan, D. J., He, Q. and Edwards, J. K. 2022. Impact of the experimental parameters on catalytic activity when preparing polymer protected bimetallic nanoparticle catalysts on activated carbon. ACS Catalysis 12, pp. 4440–4454. (10.1021/acscatal.1c05904)
2021
- Agarwal, N. et al. 2021. The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today 381, pp. 76-85. (10.1016/j.cattod.2020.09.001)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4, pp. 575-585. (10.1038/s41929-021-00642-w)
- Bartley, J. K., Dimitratos, N., Edwards, J. K., Kiely, C. J. and Taylor, S. H. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11(10), pp. 5916-5933. (10.1021/acscatal.1c00569)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11, pp. 2701–2714. (10.1021/acscatal.0c04586)
- Crombie, C. M. et al. 2021. The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catalysis Letters 151, pp. 164-171. (10.1007/s10562-020-03281-1)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47, pp. 303-324. (10.1007/s11164-020-04333-2)
- Crombie, C. M. et al. 2021. The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catalysis Letters 151, pp. 2762-2774. (10.1007/s10562-020-03511-6)
2020
- Akram, A. et al. 2020. The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology 10(24), pp. 8203-8212. (10.1039/D0CY01163K)
- Crole, D. A., Underhill, R., Edwards, J. K., Shaw, G., Freakley, S. J., Hutchings, G. J. and Lewis, R. J. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ni/TiO2 catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378(2176), article number: 20200062. (10.1098/rsta.2020.0062)
2019
- Howe, A. G. R., Maunder, R., Morgan, D. J. and Edwards, J. K. 2019. Rapid microwave-assisted polyol synthesis of TiO2-supported ruthenium catalysts for levulinic acid hydrogenation. Catalysts 9(9), article number: 748. (10.3390/catal9090748)
- Engel, R. V. et al. 2019. Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catalysis Today 333, pp. 154-160. (10.1016/j.cattod.2018.09.005)
- Hirayama, J. et al. 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123(13), pp. 7879-7888. (10.1021/acs.jpcc.8b07108)
- Lewis, R. et al. 2019. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11(6), pp. 1673-1680. (10.1002/cctc.201900100)
- Alotaibi, F., Al-Mayman, S., Alotaibi, M., Edwards, J. K., Lewis, R. J., Alotaibi, R. and Hutchings, G. J. 2019. Direct synthesis of hydrogen peroxide using Cs-containing heteropolyacid-supported palladium-copper catalysts. Catalysis Letters 149(4), pp. 998-1006. (10.1007/s10562-019-02680-3)
2018
- Underhill, R. et al. 2018. Oxidative degradation of phenol using in situ generated hydrogen peroxide combined with Fenton's process. Johnson Matthey Technology Review 62(4), pp. 417-425. (10.1595/205651318X15302623075041)
- Adishev, A. et al. 2018. Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions 208, pp. 471-495. (10.1039/C8FD90015A)
- Howe, A., Miedziak, P., Morgan, D., He, Q., Strasser, P. and Edwards, J. K. 2018. One pot microwave synthesis of highly stable AuPd@Pd supported core-shell nanoparticles. Faraday Discussions 208, pp. 409-425. (10.1039/C8FD00004B)
- Adamik, R. et al. 2018. Platinum nanoparticle inclusion into a carbonized polymer of intrinsic microporosity: electrochemical characteristics of a catalyst for electroless hydrogen peroxide production. Nanomaterials 8(7), article number: 542. (10.3390/nano8070542)
- Miedziak, P., Edwards, J., Taylor, S. H., Knight, D., Tarbit, B. and Hutchings, G. 2018. Gold as a catalyst for the ring opening of 2,5-Dimethylfuran. Catalysis Letters 148(7), pp. 2109-2116. (10.1007/s10562-018-2415-3)
- Hutchings, G., Iqbal, S., Miedziak, P., Morgan, D., Edwards, J. and He, Q. 2018. Selective hydrogenation of levulinic acid using Ru/C catalysts prepared by sol-immobilsation. Topics in Catalysis 61(9-11), pp. 833-843.
2017
- Khan, Z., Dummer, N. F. and Edwards, J. K. 2017. Silver palladium catalysts for the direct synthesis of hydrogen peroxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376(2110) (10.1098/rsta.2017.0058)
- Douthwaite, M. et al. 2017. The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. Catalysis Science & Technology 7(22), pp. 5284-5293. (10.1039/C7CY01025G)
- Lewis, R., Edwards, J., Freakley, S. and Hutchings, G. 2017. Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide. Industrial & Engineering Chemistry Research 56(45), pp. 13287-13293. (10.1021/acs.iecr.7b01800)
- Morad, M. et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science & Technology 7(9), pp. 1928-1936. (10.1039/C7CY00184C)
- Alsaiari, R. et al. 2017. The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science & Technology 2017(6), pp. 1433-1439. (10.1039/C6CY02448C)
- Giorgi, P. D., Miedziak, P. J., Edwards, J. K., Hutchings, G. J. and Antoniotti, S. 2017. Bicatalytic multistep reactions en route to the one-pot total synthesis of complex molecules: easy access to chromene and 1,2-dihydroquinoline derivatives from simple substrates. ChemCatChem 9(1), pp. 70-75. (10.1002/cctc.201600925)
- Ishikawa, S. et al. 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19(1), pp. 225-236. (10.1039/C6GC02598F)
2016
- He, Q. et al. 2016. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications 7, article number: 12905. (10.1038/ncomms12905)
- Akram, A. et al. 2016. Gas phase stabiliser-free production of hydrogen peroxide using supported gold-palladium catalysts. Chemical Science 7(9), pp. 5833-5837. (10.1039/C6SC01332E)
- Crole, D. A., Freakley, S. J., Edwards, J. K. and Hutchings, G. J. 2016. Direct synthesis of hydrogen peroxide in water at ambient temperature. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472(2190), article number: 20160156. (10.1098/rspa.2016.0156)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6(15), pp. 6022-6030. (10.1039/C6CY00382F)
- Freakley, S. J. et al. 2016. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351(6276), pp. 965-968. (10.1126/science.aad5705)
- Aldosari, D. O. et al. 2016. Pd-Ru/TiO2 catalyst - an active and selective catalyst for furfural hydrogenation. Catalysis Science & Technology 6, pp. 234-242. (10.1039/C5CY01650A)
- Villa, A. et al. 2016. Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting gold-palladium nanoparticles on oxygen functionalized carbon nanofibers. Catalysis Science & Technology 6, pp. 694-697. (10.1039/C5CY01880C)
2015
- Marin, R. P. et al. 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504, pp. 62-73. (10.1016/j.apcata.2015.02.023)
- Iqbal, S. et al. 2015. Ruthenium nanoparticles supported on carbon: an active catalyst for the hydrogenation of lactic acid to 1,2-propanediol. ACS Catalysis 5(9), pp. 5047-5059. (10.1021/acscatal.5b00625)
- He, Y., Feng, J., Brett, G. L., Edwards, J. K. and Hutchings, G. J. 2015. Oxidation of aliphatic alcohols by using precious metals supported on hydrotalcite under solvent- and base-free conditions. ChemSusChem 8(19), pp. 3314-3322. (10.1002/cssc.201500503)
- Cao, Y. et al. 2015. Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catalysis Science & Technology 6, pp. 107-117. (10.1039/C5CY00732A)
- Weerachawanasak, P., Hutchings, G. J., Edwards, J. K., Kondrat, S. A., Miedziak, P. J. and Panpranot, J. 2015. Surface functionalized TiO
2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today 250, pp. 218-225. (10.1016/j.cattod.2014.06.005) - King, G. M. et al. 2015. An investigation of the effect of the addition of tin to %Pd/TiO2 for the hydrogenation of furfuryl alcohol. ChemCatChem 7(14), pp. 2122-2129. (10.1002/cctc.201500242)
- Freakley, S. J., Lewis, R. J., Morgan, D. J., Edwards, J. K. and Hutchings, G. J. 2015. Direct synthesis of hydrogen peroxide using Au-Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions. Catalysis Today 248, pp. 10-17. (10.1016/j.cattod.2014.01.012)
- Edwards, J. K., Freakley, S. J., Lewis, R. J., Pritchard, J. C. and Hutchings, G. J. 2015. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today 248, pp. 3-9. (10.1016/j.cattod.2014.03.011)
2014
- Notar Francesco, I., Giauffret, J., Fontaine-Vive, F., Edwards, J., Kiely, C. J., Hutchings, G. J. and Antoniotti, S. 2014. Novel radical tandem 1,6-enynes thioacylation/cyclization: Au-Pd nanoparticles catalysis versus thermal activation as a function of the substrate specificity. Tetrahedron 70(51), pp. 9635-9643. (10.1016/j.tet.2014.10.077)
- Santonastaso, M., Freakley, S. J., Miedziak, P. J., Brett, G. L., Edwards, J. K. and Hutchings, G. J. 2014. Oxidation of benzyl alcohol using in situ generated hydrogen peroxide. Organic Process Research and Development 18(11), pp. 1455-1460. (10.1021/op500195e)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum promoted gold-palladium catalysts. Catalysis Science and Technology -Cambridge- 4(9), pp. 3244-3250. (10.1039/c4cy00496e)
- Kondrat, S. A. et al. 2014. Base-free oxidation of glycerol using titania-supported trimetallic Au-Pd-Pt nanoparticles. Chemsuschem 7(5), pp. 1326-1334. (10.1002/cssc.201300834)
- Iqbal, S. et al. 2014. Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catalysis Science & Technology 4(8), pp. 2280-2286. (10.1039/c4cy00184b)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. Angewandte Chemie International Edition 53(9), pp. 2381-2384. (10.1002/anie.201308067)
- Edwards, J. K., Freakley, S. J., Carley, A. F., Kiely, C. J. and Hutchings, G. J. 2014. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Accounts of Chemical Research 47(3), pp. 845-854. (10.1021/ar400177c)
2013
- Brett, G. L. et al. 2013. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate. Chemsuschem 6(10), pp. 1952-1958. (10.1002/cssc.201300420)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3(9), pp. 2425-2434. (10.1039/c3cy00493g)
- Pritchard, J. C. et al. 2013. Effect of heat treatment on Au-Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. Catalysis Science & Technology 3(2), pp. 308-317. (10.1039/C2CY20234D)
- Freakley, S. J., Piccinini, M., Edwards, J. K., Ntainjua, E. N., Moulijn, J. and Hutchings, G. J. 2013. Effect of reaction conditions on the direct synthesis of hydrogen peroxide with a AuPd/TiO2Catalyst in a flow reactor. ACS Catalysis 3(4), pp. 487-501. (10.1021/cs400004y)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162, pp. 365-378. (10.1039/c2fd20153d)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3(9), pp. 2425-2434. (10.1039/c3cy00493g)
- Edwards, J. K. et al. 2013. Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. Catalysis Science & Technology 3(3), pp. 812-818. (10.1039/c2cy20767b)
- Feng, J. et al. 2013. Au–Pd nanoalloys supported on Mg–Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. Dalton Transactions 42(40), pp. 14498-14508. (10.1039/c3dt51855h)
- Miedziak, P. et al. 2013. Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. Catalysis Science & Technology 3(11), pp. 2910-2917. (10.1039/c3cy00263b)
2012
- Dimitratos, N., Edwards, J. K., Kiely, C. J. and Hutchings, G. J. 2012. Gold catalysis: helping create a sustainable future. Applied Petrochemical Research 2(1-2), pp. 7-14. (10.1007/s13203-012-0011-9)
- Kondrat, S. A. et al. 2012. Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science 3(10), pp. 2965-2971. (10.1039/c2sc20450a)
- Ntainjua, E., Piccinini, M., Freakley, S. J., Pritchard, J. C., Edwards, J. K., Carley, A. F. and Hutchings, G. J. 2012. Direct synthesis of hydrogen peroxide using Au-Pd-exchanged and supported heteropolyacid catalysts at ambient temperature using water as solvent. Green Chemistry 14(1), pp. 170-181. (10.1039/c1gc15863e)
- Edwards, J. K. et al. 2012. The effect of heat treatment on the performance and structure of carbon-supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis 292, pp. 227-238. (10.1016/j.jcat.2012.05.018)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6(8), pp. 6600-6613. (10.1021/nn302299e)
- Tiruvalam, R. et al. 2012. Some recent advances in gold-based catalysis facilitated by aberration corrected analytical electron microscopy. Journal of Physics: Conference Series 371(1), article number: 12028. (10.1088/1742-6596/371/1/012028)
2011
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 163(1), pp. 47-54. (10.1016/j.cattod.2010.02.051)
- Mantle, M. D. et al. 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115(4), pp. 1073-1079. (10.1021/jp105946q)
- Lopez-Sanchez, J. A. et al. 2011. Reactivity studies of Au-Pd supported nanoparticles for catalytic applications. Applied Catalysis A: General 391(1-2), pp. 400-406. (10.1016/j.apcata.2010.05.010)
- Tiruvalam, R. C. et al. 2011. Aberration corrected analytical electron microscopy studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. Faraday Discussions 152, pp. 63-86. (10.1039/c1fd00020a)
- Bracey, C., Carley, A. F., Edwards, J. K., Ellis, P. R. and Hutchings, G. J. 2011. Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catalysis Science & Technology 1(1), pp. 76-85. (10.1039/c0cy00003e)
- Ntainjua Ndifor, E., Piccinini, M., Pritchard, J. C., Edwards, J. K., Carley, A. F., Kiely, C. J. and Hutchings, G. J. 2011. Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. Catalysis Today 178(1), pp. 47-50. (10.1016/j.cattod.2011.06.024)
- Thomas, A., He, Q. and Edwards, J. K. 2011. Preparation of ultra low loaded Au catalysts for oxidation reactions. Faraday Discussions 152, pp. 381-392. (10.1039/c1fd00021g)
2010
- Pritchard, J. C. et al. 2010. Selective oxidation using supported gold and gold palladium nanoparticles prepared by sol-immobilisation. Zeitschrift für anorganische und allgemeine Chemie 636(11), pp. 2034. (10.1002/zaac.201007002)
- Pritchard, J. C. et al. 2010. Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Au−Pd Catalysts Prepared by Sol Immobilization. Langmuir 26(21), pp. 16568-16577. (10.1021/la101597q)
- He, Q., Thomas, A., Edwards, J. K., Carley, A. F., Hutchings, G. J. and Kiely, C. J. 2010. Identifying Potential Active Species in Au/ZnO CO Oxidation Catalysts [Abstract]. Microscopy and Microanalysis 16(S2), pp. 1188-1189. (10.1017/S1431927610060186)
- Piccinini, M., Ntainjua Ndifor, E., Edwards, J. K., Carley, A. F., Moulijn, J. and Hutchings, G. J. 2010. Effect of the reaction conditions on the performance of Au-Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Physical Chemistry Chemical Physics 12(10), pp. 2488-2492. (10.1039/b921815g)
- Pritchard, J. C. et al. 2010. The effect of catalyst preparation method on the performance of supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry 12(5), pp. 915-921. (10.1039/b924472g)
2009
- Edwards, J. K., Solsona, B., Ntainjua Ndifor, E., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J. 2009. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323(5917), pp. 1037-1041. (10.1126/science.1168980)
- Ntainjua Ndifor, E. et al. 2009. The Effect of Bromide Pretreatment on the Performance of Supported Au–Pd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem 1(4), pp. 479-484. (10.1002/cctc.200900171)
- Ntainjua Ndifor, E., Piccinini, M., Pritchard, J. C., Edwards, J. K., Carley, A. F., Moulijn, J. A. and Hutchings, G. J. 2009. Effect of Halide and Acid Additives on the Direct Synthesis of Hydrogen Peroxide using Supported Gold-Palladium Catalysts. Chemsuschem 2(6), pp. 575-580. (10.1002/cssc.200800257)
- Edwards, J. K., Ntainjua Ndifor, E., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J. 2009. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold–palladium catalysts supported on acid-pretreated TiO2. Angewandte Chemie 48(45), pp. 8512-8515. (10.1002/anie.200904115)
2008
- Edwards, J. K., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J. 2008. Direct synthesis of hydrogen peroxide from H-2 and O-2 using supported Au-Pd catalysts. Faraday Discussions 138, pp. 225-239. (10.1039/b705915a)
- Edwards, J. K. and Hutchings, G. J. 2008. Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition 47(48), pp. 9192-9198. (10.1002/anie.200802818)
- Edwards, J. K., Thomas, A., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J. 2008. Au-Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chemistry 10(4), pp. 388-394. (10.1039/b714553p)
- Herzing, A. et al. 2008. Elemental mapping of nanoscale structures in the aberration-corrected analytical electron microscope. Microscopy and Microanalysis 14(S), pp. 1368-1369. (10.1017/S1431927608086674)
- Herzing, A. A., Carley, A. F., Edwards, J. K., Hutchings, G. J. and Kiely, C. J. 2008. Microstructural development and catalytic performance of Au-Pd nanoparticles on Al2O3 supports: The effect of heat treatment temperature and atmosphere. Chemistry of Materials 20(4), pp. 1492-1501. (10.1021/cm702762d)
- Herzing, A. A., Watanabe, M., Edwards, J. K., Conte, M., Tang, Z., Hutchings, G. J. and Kiely, C. J. 2008. Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discussions 138, pp. 337-351. (10.1039/b706293c)
- Lopez-Sanchez, J. A. et al. 2008. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics 10(14), pp. 1921-1930. (10.1039/b719345a)
- Ntainjua Ndifor, E. et al. 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10(11), pp. 1162-1169. (10.1039/b809881f)
- Edwin, N. N. et al. 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10(11), pp. 1162-1169. (10.1039/b809881f)
2007
- Enache, D. I., Barker, D., Edwards, J. K., Taylor, S. H., Knight, D. W., Carley, A. F. and Hutchings, G. J. 2007. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance. Catalysis Today 122(3-4), pp. 407-411. (10.1016/j.cattod.2007.01.003)
- Tang, Z. et al. 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249(2), pp. 208-219. (10.1016/j.jcat.2007.04.016)
- Herzing, A. A. et al. 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13, pp. 102-103. (10.1017/S143192760707660X)
2006
- Enache, D. I. et al. 2006. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science 311(5759), pp. 362-365. (10.1126/science.1120560)
- Edwards, J. K. 2006. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over catalysts containing gold. PhD Thesis, Cardiff University.
2005
- Edwards, J. K., Solsona, B. E., Landon, P., Carley, A. F., Herzing, A., Kiely, C. J. and Hutchings, G. J. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. Journal of Catalysis 236(1), pp. 69-79. (10.1016/j.jcat.2005.09.015)
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3catalysts. Journal of Materials Chemistry 15(43), pp. 4595-4600. (10.1039/b509542e)
Erthyglau
- Medina, J. C., Warren, E., Morgan, D., Gow, I. E. and Edwards, J. 2024. Influence of Pd, Pt and Au nanoparticles in the photocatalytic performance of N-TiO 2 support under visible light. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382(2282), article number: 20230271. (10.1098/rsta.2023.0271)
- Kovačič, D. et al. 2023. A comparative study of palladium-gold and palladium-tin catalysts in the direct synthesis of H2O2. Green Chemistry 25(24), pp. 10436-10446. (10.1039/d3gc03706a)
- Lewis, R. J. et al. 2023. Selective Ammoximation of Ketones via In Situ H2O2 Synthesis. ACS Catalysis 13, pp. 1934-1945. (10.1021/acscatal.2c05799)
- Lewis, R. J. et al. 2022. Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalysts. Green Chemistry 24, pp. 9496-9507. (10.1039/D2GC02689A)
- Lewis, R. J. et al. 2022. Highly efficient catalytic production of oximes from ketones using in situ–generated H2O2. Science 376(6593), pp. 615-620. (10.1126/science.abl4822)
- Miedziak, P. J., Pattisson, S., Edwards, J. K., Tarbit, B., Taylor, S. H. and Hutchings, G. J. 2022. The over-riding role of autocatalysis in alllylic oxidation. Catalysis Letters 152, pp. 1003-1008. (10.1007/s10562-021-03707-4)
- Paris, C. B., Howe, A. G., Lewis, R. J., Hewes, D., Morgan, D. J., He, Q. and Edwards, J. K. 2022. Impact of the experimental parameters on catalytic activity when preparing polymer protected bimetallic nanoparticle catalysts on activated carbon. ACS Catalysis 12, pp. 4440–4454. (10.1021/acscatal.1c05904)
- Agarwal, N. et al. 2021. The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today 381, pp. 76-85. (10.1016/j.cattod.2020.09.001)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4, pp. 575-585. (10.1038/s41929-021-00642-w)
- Bartley, J. K., Dimitratos, N., Edwards, J. K., Kiely, C. J. and Taylor, S. H. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11(10), pp. 5916-5933. (10.1021/acscatal.1c00569)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11, pp. 2701–2714. (10.1021/acscatal.0c04586)
- Crombie, C. M. et al. 2021. The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catalysis Letters 151, pp. 164-171. (10.1007/s10562-020-03281-1)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47, pp. 303-324. (10.1007/s11164-020-04333-2)
- Crombie, C. M. et al. 2021. The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catalysis Letters 151, pp. 2762-2774. (10.1007/s10562-020-03511-6)
- Akram, A. et al. 2020. The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology 10(24), pp. 8203-8212. (10.1039/D0CY01163K)
- Crole, D. A., Underhill, R., Edwards, J. K., Shaw, G., Freakley, S. J., Hutchings, G. J. and Lewis, R. J. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ni/TiO2 catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378(2176), article number: 20200062. (10.1098/rsta.2020.0062)
- Howe, A. G. R., Maunder, R., Morgan, D. J. and Edwards, J. K. 2019. Rapid microwave-assisted polyol synthesis of TiO2-supported ruthenium catalysts for levulinic acid hydrogenation. Catalysts 9(9), article number: 748. (10.3390/catal9090748)
- Engel, R. V. et al. 2019. Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catalysis Today 333, pp. 154-160. (10.1016/j.cattod.2018.09.005)
- Hirayama, J. et al. 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123(13), pp. 7879-7888. (10.1021/acs.jpcc.8b07108)
- Lewis, R. et al. 2019. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11(6), pp. 1673-1680. (10.1002/cctc.201900100)
- Alotaibi, F., Al-Mayman, S., Alotaibi, M., Edwards, J. K., Lewis, R. J., Alotaibi, R. and Hutchings, G. J. 2019. Direct synthesis of hydrogen peroxide using Cs-containing heteropolyacid-supported palladium-copper catalysts. Catalysis Letters 149(4), pp. 998-1006. (10.1007/s10562-019-02680-3)
- Underhill, R. et al. 2018. Oxidative degradation of phenol using in situ generated hydrogen peroxide combined with Fenton's process. Johnson Matthey Technology Review 62(4), pp. 417-425. (10.1595/205651318X15302623075041)
- Adishev, A. et al. 2018. Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions 208, pp. 471-495. (10.1039/C8FD90015A)
- Howe, A., Miedziak, P., Morgan, D., He, Q., Strasser, P. and Edwards, J. K. 2018. One pot microwave synthesis of highly stable AuPd@Pd supported core-shell nanoparticles. Faraday Discussions 208, pp. 409-425. (10.1039/C8FD00004B)
- Adamik, R. et al. 2018. Platinum nanoparticle inclusion into a carbonized polymer of intrinsic microporosity: electrochemical characteristics of a catalyst for electroless hydrogen peroxide production. Nanomaterials 8(7), article number: 542. (10.3390/nano8070542)
- Miedziak, P., Edwards, J., Taylor, S. H., Knight, D., Tarbit, B. and Hutchings, G. 2018. Gold as a catalyst for the ring opening of 2,5-Dimethylfuran. Catalysis Letters 148(7), pp. 2109-2116. (10.1007/s10562-018-2415-3)
- Hutchings, G., Iqbal, S., Miedziak, P., Morgan, D., Edwards, J. and He, Q. 2018. Selective hydrogenation of levulinic acid using Ru/C catalysts prepared by sol-immobilsation. Topics in Catalysis 61(9-11), pp. 833-843.
- Khan, Z., Dummer, N. F. and Edwards, J. K. 2017. Silver palladium catalysts for the direct synthesis of hydrogen peroxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376(2110) (10.1098/rsta.2017.0058)
- Douthwaite, M. et al. 2017. The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. Catalysis Science & Technology 7(22), pp. 5284-5293. (10.1039/C7CY01025G)
- Lewis, R., Edwards, J., Freakley, S. and Hutchings, G. 2017. Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide. Industrial & Engineering Chemistry Research 56(45), pp. 13287-13293. (10.1021/acs.iecr.7b01800)
- Morad, M. et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science & Technology 7(9), pp. 1928-1936. (10.1039/C7CY00184C)
- Alsaiari, R. et al. 2017. The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science & Technology 2017(6), pp. 1433-1439. (10.1039/C6CY02448C)
- Giorgi, P. D., Miedziak, P. J., Edwards, J. K., Hutchings, G. J. and Antoniotti, S. 2017. Bicatalytic multistep reactions en route to the one-pot total synthesis of complex molecules: easy access to chromene and 1,2-dihydroquinoline derivatives from simple substrates. ChemCatChem 9(1), pp. 70-75. (10.1002/cctc.201600925)
- Ishikawa, S. et al. 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19(1), pp. 225-236. (10.1039/C6GC02598F)
- He, Q. et al. 2016. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications 7, article number: 12905. (10.1038/ncomms12905)
- Akram, A. et al. 2016. Gas phase stabiliser-free production of hydrogen peroxide using supported gold-palladium catalysts. Chemical Science 7(9), pp. 5833-5837. (10.1039/C6SC01332E)
- Crole, D. A., Freakley, S. J., Edwards, J. K. and Hutchings, G. J. 2016. Direct synthesis of hydrogen peroxide in water at ambient temperature. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472(2190), article number: 20160156. (10.1098/rspa.2016.0156)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6(15), pp. 6022-6030. (10.1039/C6CY00382F)
- Freakley, S. J. et al. 2016. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351(6276), pp. 965-968. (10.1126/science.aad5705)
- Aldosari, D. O. et al. 2016. Pd-Ru/TiO2 catalyst - an active and selective catalyst for furfural hydrogenation. Catalysis Science & Technology 6, pp. 234-242. (10.1039/C5CY01650A)
- Villa, A. et al. 2016. Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting gold-palladium nanoparticles on oxygen functionalized carbon nanofibers. Catalysis Science & Technology 6, pp. 694-697. (10.1039/C5CY01880C)
- Marin, R. P. et al. 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504, pp. 62-73. (10.1016/j.apcata.2015.02.023)
- Iqbal, S. et al. 2015. Ruthenium nanoparticles supported on carbon: an active catalyst for the hydrogenation of lactic acid to 1,2-propanediol. ACS Catalysis 5(9), pp. 5047-5059. (10.1021/acscatal.5b00625)
- He, Y., Feng, J., Brett, G. L., Edwards, J. K. and Hutchings, G. J. 2015. Oxidation of aliphatic alcohols by using precious metals supported on hydrotalcite under solvent- and base-free conditions. ChemSusChem 8(19), pp. 3314-3322. (10.1002/cssc.201500503)
- Cao, Y. et al. 2015. Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catalysis Science & Technology 6, pp. 107-117. (10.1039/C5CY00732A)
- Weerachawanasak, P., Hutchings, G. J., Edwards, J. K., Kondrat, S. A., Miedziak, P. J. and Panpranot, J. 2015. Surface functionalized TiO
2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today 250, pp. 218-225. (10.1016/j.cattod.2014.06.005) - King, G. M. et al. 2015. An investigation of the effect of the addition of tin to %Pd/TiO2 for the hydrogenation of furfuryl alcohol. ChemCatChem 7(14), pp. 2122-2129. (10.1002/cctc.201500242)
- Freakley, S. J., Lewis, R. J., Morgan, D. J., Edwards, J. K. and Hutchings, G. J. 2015. Direct synthesis of hydrogen peroxide using Au-Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions. Catalysis Today 248, pp. 10-17. (10.1016/j.cattod.2014.01.012)
- Edwards, J. K., Freakley, S. J., Lewis, R. J., Pritchard, J. C. and Hutchings, G. J. 2015. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today 248, pp. 3-9. (10.1016/j.cattod.2014.03.011)
- Notar Francesco, I., Giauffret, J., Fontaine-Vive, F., Edwards, J., Kiely, C. J., Hutchings, G. J. and Antoniotti, S. 2014. Novel radical tandem 1,6-enynes thioacylation/cyclization: Au-Pd nanoparticles catalysis versus thermal activation as a function of the substrate specificity. Tetrahedron 70(51), pp. 9635-9643. (10.1016/j.tet.2014.10.077)
- Santonastaso, M., Freakley, S. J., Miedziak, P. J., Brett, G. L., Edwards, J. K. and Hutchings, G. J. 2014. Oxidation of benzyl alcohol using in situ generated hydrogen peroxide. Organic Process Research and Development 18(11), pp. 1455-1460. (10.1021/op500195e)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum promoted gold-palladium catalysts. Catalysis Science and Technology -Cambridge- 4(9), pp. 3244-3250. (10.1039/c4cy00496e)
- Kondrat, S. A. et al. 2014. Base-free oxidation of glycerol using titania-supported trimetallic Au-Pd-Pt nanoparticles. Chemsuschem 7(5), pp. 1326-1334. (10.1002/cssc.201300834)
- Iqbal, S. et al. 2014. Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catalysis Science & Technology 4(8), pp. 2280-2286. (10.1039/c4cy00184b)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. Angewandte Chemie International Edition 53(9), pp. 2381-2384. (10.1002/anie.201308067)
- Edwards, J. K., Freakley, S. J., Carley, A. F., Kiely, C. J. and Hutchings, G. J. 2014. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Accounts of Chemical Research 47(3), pp. 845-854. (10.1021/ar400177c)
- Brett, G. L. et al. 2013. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate. Chemsuschem 6(10), pp. 1952-1958. (10.1002/cssc.201300420)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3(9), pp. 2425-2434. (10.1039/c3cy00493g)
- Pritchard, J. C. et al. 2013. Effect of heat treatment on Au-Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. Catalysis Science & Technology 3(2), pp. 308-317. (10.1039/C2CY20234D)
- Freakley, S. J., Piccinini, M., Edwards, J. K., Ntainjua, E. N., Moulijn, J. and Hutchings, G. J. 2013. Effect of reaction conditions on the direct synthesis of hydrogen peroxide with a AuPd/TiO2Catalyst in a flow reactor. ACS Catalysis 3(4), pp. 487-501. (10.1021/cs400004y)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162, pp. 365-378. (10.1039/c2fd20153d)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3(9), pp. 2425-2434. (10.1039/c3cy00493g)
- Edwards, J. K. et al. 2013. Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. Catalysis Science & Technology 3(3), pp. 812-818. (10.1039/c2cy20767b)
- Feng, J. et al. 2013. Au–Pd nanoalloys supported on Mg–Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. Dalton Transactions 42(40), pp. 14498-14508. (10.1039/c3dt51855h)
- Miedziak, P. et al. 2013. Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. Catalysis Science & Technology 3(11), pp. 2910-2917. (10.1039/c3cy00263b)
- Dimitratos, N., Edwards, J. K., Kiely, C. J. and Hutchings, G. J. 2012. Gold catalysis: helping create a sustainable future. Applied Petrochemical Research 2(1-2), pp. 7-14. (10.1007/s13203-012-0011-9)
- Kondrat, S. A. et al. 2012. Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science 3(10), pp. 2965-2971. (10.1039/c2sc20450a)
- Ntainjua, E., Piccinini, M., Freakley, S. J., Pritchard, J. C., Edwards, J. K., Carley, A. F. and Hutchings, G. J. 2012. Direct synthesis of hydrogen peroxide using Au-Pd-exchanged and supported heteropolyacid catalysts at ambient temperature using water as solvent. Green Chemistry 14(1), pp. 170-181. (10.1039/c1gc15863e)
- Edwards, J. K. et al. 2012. The effect of heat treatment on the performance and structure of carbon-supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis 292, pp. 227-238. (10.1016/j.jcat.2012.05.018)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6(8), pp. 6600-6613. (10.1021/nn302299e)
- Tiruvalam, R. et al. 2012. Some recent advances in gold-based catalysis facilitated by aberration corrected analytical electron microscopy. Journal of Physics: Conference Series 371(1), article number: 12028. (10.1088/1742-6596/371/1/012028)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 163(1), pp. 47-54. (10.1016/j.cattod.2010.02.051)
- Mantle, M. D. et al. 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115(4), pp. 1073-1079. (10.1021/jp105946q)
- Lopez-Sanchez, J. A. et al. 2011. Reactivity studies of Au-Pd supported nanoparticles for catalytic applications. Applied Catalysis A: General 391(1-2), pp. 400-406. (10.1016/j.apcata.2010.05.010)
- Tiruvalam, R. C. et al. 2011. Aberration corrected analytical electron microscopy studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. Faraday Discussions 152, pp. 63-86. (10.1039/c1fd00020a)
- Bracey, C., Carley, A. F., Edwards, J. K., Ellis, P. R. and Hutchings, G. J. 2011. Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catalysis Science & Technology 1(1), pp. 76-85. (10.1039/c0cy00003e)
- Ntainjua Ndifor, E., Piccinini, M., Pritchard, J. C., Edwards, J. K., Carley, A. F., Kiely, C. J. and Hutchings, G. J. 2011. Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. Catalysis Today 178(1), pp. 47-50. (10.1016/j.cattod.2011.06.024)
- Thomas, A., He, Q. and Edwards, J. K. 2011. Preparation of ultra low loaded Au catalysts for oxidation reactions. Faraday Discussions 152, pp. 381-392. (10.1039/c1fd00021g)
- Pritchard, J. C. et al. 2010. Selective oxidation using supported gold and gold palladium nanoparticles prepared by sol-immobilisation. Zeitschrift für anorganische und allgemeine Chemie 636(11), pp. 2034. (10.1002/zaac.201007002)
- Pritchard, J. C. et al. 2010. Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Au−Pd Catalysts Prepared by Sol Immobilization. Langmuir 26(21), pp. 16568-16577. (10.1021/la101597q)
- He, Q., Thomas, A., Edwards, J. K., Carley, A. F., Hutchings, G. J. and Kiely, C. J. 2010. Identifying Potential Active Species in Au/ZnO CO Oxidation Catalysts [Abstract]. Microscopy and Microanalysis 16(S2), pp. 1188-1189. (10.1017/S1431927610060186)
- Piccinini, M., Ntainjua Ndifor, E., Edwards, J. K., Carley, A. F., Moulijn, J. and Hutchings, G. J. 2010. Effect of the reaction conditions on the performance of Au-Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Physical Chemistry Chemical Physics 12(10), pp. 2488-2492. (10.1039/b921815g)
- Pritchard, J. C. et al. 2010. The effect of catalyst preparation method on the performance of supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry 12(5), pp. 915-921. (10.1039/b924472g)
- Edwards, J. K., Solsona, B., Ntainjua Ndifor, E., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J. 2009. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323(5917), pp. 1037-1041. (10.1126/science.1168980)
- Ntainjua Ndifor, E. et al. 2009. The Effect of Bromide Pretreatment on the Performance of Supported Au–Pd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem 1(4), pp. 479-484. (10.1002/cctc.200900171)
- Ntainjua Ndifor, E., Piccinini, M., Pritchard, J. C., Edwards, J. K., Carley, A. F., Moulijn, J. A. and Hutchings, G. J. 2009. Effect of Halide and Acid Additives on the Direct Synthesis of Hydrogen Peroxide using Supported Gold-Palladium Catalysts. Chemsuschem 2(6), pp. 575-580. (10.1002/cssc.200800257)
- Edwards, J. K., Ntainjua Ndifor, E., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J. 2009. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold–palladium catalysts supported on acid-pretreated TiO2. Angewandte Chemie 48(45), pp. 8512-8515. (10.1002/anie.200904115)
- Edwards, J. K., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J. 2008. Direct synthesis of hydrogen peroxide from H-2 and O-2 using supported Au-Pd catalysts. Faraday Discussions 138, pp. 225-239. (10.1039/b705915a)
- Edwards, J. K. and Hutchings, G. J. 2008. Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition 47(48), pp. 9192-9198. (10.1002/anie.200802818)
- Edwards, J. K., Thomas, A., Carley, A. F., Herzing, A. A., Kiely, C. J. and Hutchings, G. J. 2008. Au-Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chemistry 10(4), pp. 388-394. (10.1039/b714553p)
- Herzing, A. et al. 2008. Elemental mapping of nanoscale structures in the aberration-corrected analytical electron microscope. Microscopy and Microanalysis 14(S), pp. 1368-1369. (10.1017/S1431927608086674)
- Herzing, A. A., Carley, A. F., Edwards, J. K., Hutchings, G. J. and Kiely, C. J. 2008. Microstructural development and catalytic performance of Au-Pd nanoparticles on Al2O3 supports: The effect of heat treatment temperature and atmosphere. Chemistry of Materials 20(4), pp. 1492-1501. (10.1021/cm702762d)
- Herzing, A. A., Watanabe, M., Edwards, J. K., Conte, M., Tang, Z., Hutchings, G. J. and Kiely, C. J. 2008. Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discussions 138, pp. 337-351. (10.1039/b706293c)
- Lopez-Sanchez, J. A. et al. 2008. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics 10(14), pp. 1921-1930. (10.1039/b719345a)
- Ntainjua Ndifor, E. et al. 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10(11), pp. 1162-1169. (10.1039/b809881f)
- Edwin, N. N. et al. 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10(11), pp. 1162-1169. (10.1039/b809881f)
- Enache, D. I., Barker, D., Edwards, J. K., Taylor, S. H., Knight, D. W., Carley, A. F. and Hutchings, G. J. 2007. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance. Catalysis Today 122(3-4), pp. 407-411. (10.1016/j.cattod.2007.01.003)
- Tang, Z. et al. 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249(2), pp. 208-219. (10.1016/j.jcat.2007.04.016)
- Herzing, A. A. et al. 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13, pp. 102-103. (10.1017/S143192760707660X)
- Enache, D. I. et al. 2006. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science 311(5759), pp. 362-365. (10.1126/science.1120560)
- Edwards, J. K., Solsona, B. E., Landon, P., Carley, A. F., Herzing, A., Kiely, C. J. and Hutchings, G. J. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. Journal of Catalysis 236(1), pp. 69-79. (10.1016/j.jcat.2005.09.015)
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3catalysts. Journal of Materials Chemistry 15(43), pp. 4595-4600. (10.1039/b509542e)
Gosodiad
- Edwards, J. K. 2006. Direct synthesis of hydrogen peroxide from hydrogen and oxygen over catalysts containing gold. PhD Thesis, Cardiff University.
Ymchwil
Roedd fy ngwaith PhD ac ôl-ddoethurol yn canolbwyntio ar ddylunio a datblygu catalyddion metel gwerthfawr, a'u defnyddio mewn amrywiaeth o brosesau diwydiannol gwerthfawr, gan sylwi ar synthesis uniongyrchol hydrogen perocsid. Mae ein hymchwil helaeth i'r maes hwn wedi dangos bod gronynnau bach, wedi'u rhannu'n fân o Au a Pd aloi yn hwyluso detholusrwydd uchel yn yr adwaith, lle mae bron i 100% o'r H2 wedi'i ymgorffori yn y H2O2 ac ni ffurfir dŵr. Mae hwn yn ofyniad allweddol ar gyfer proses ddiwydiannol, ac rydym wedi cyhoeddi nifer o batentau ar y broses hon.
Roedd fy ngwaith ym Mhrifysgol Metropolitan Tokyo gyda'r Athro Haruta yn caniatáu i mi ddatblygu a gwella methodoleg paratoi catalyddion, a lleihau faint o fetel sydd wedi'i gynnwys yn y catalydd terfynol, naill ai trwy baratoi'n uniongyrchol neu drwy drwytho ar ôl metel. Yn yr achos hwn, mae gan ddeunyddiau sy'n cynnwys 0.05% metel yr un gweithgaredd â deunyddiau sy'n cario 100x mwy o fetel.
Mae gwobr Clara Immerwhar a'r cydweithio dilynol gyda'r Athro Strasser yn TU Berlin wedi ein galluogi i gael mynediad at nifer o ddeunyddiau sefydlog hynod weithgar mewn modd sy'n defnyddio technoleg microdon, y deunyddiau cystadleuol hynny sy'n tueddu i ofyn am amseroedd paratoi llawer hirach (>24h).
Yn dilyn fy nghymrodoriaeth ymchwil canghellor, rwyf wedi ehangu'r themâu hyn ac mae gen i brosiectau ymchwil gweithredol sy'n ymchwilio i fecanwaith ffurfio nanoronynnau, effaith grwpiau wyneb ar gyfansoddiad siâp aloi, gan ychwanegu gwerth at ffrydiau gwastraff seliwlosig a diheintio dŵr / wyneb ymhlith eraill, gyda ffocws cryf ar gemeg werdd. Rydym wedi'n gwreiddio o fewn amgylchedd ymchwil CCI cydweithredol, ac yn gweithio'n agos ein cydweithwyr cyfrifiannu a microsgopeg sy'n canolbwyntio, a grwpiau ymchwil allanol yn Japan, UDA ac yn yr UE.
Rydym yn agored i gefnogi ceisiadau cymrodoriaeth, myfyrwyr ymchwil PhD hunan-ariannu a chydweithrediadau!
I gael rhagor o wybodaeth am brosiectau penodol sydd ar gael gyda Dr Jennifer Edwards, adolygwch adran Catalysis a gwyddoniaeth ryngwyneb ein themâu prosiect ymchwil.
Addysgu
- CH2306 Application of research methods
- CHT225 Practical Catalytic Chemistry
Bywgraffiad
BSc in Chemistry with Biological Science in 2003. PhD in heterogeneous catalysis (2006) with Professor Graham Hutchings, FRS (Direct Synthesis of Hydrogen Peroxide using Catalysts containing Gold) post doctoral research associate in Cardiff Catalysis Institute 2007-2012. JSPS fellowship at Tokyo Metropolitan University with Professor Haruta, 2010. Chancellor$acirc; s research fellowship awarded 2013 (Cardiff Catalysis Institute, Cardiff University School of Chemistry).
Awards
Carol Tyler Award, International Precious Metal Institute, 2011
Clara Immerwahr award, UniCat (Germany), 2013
Anrhydeddau a dyfarniadau
Gwobr Carol Tyler, Sefydliad Metel Gwerthfawr Rhyngwladol, 2011
Gwobr Clara Immerwahr, UniCat (Yr Almaen), 2013
Contact Details
Themâu ymchwil
Arbenigeddau
- Ffotocatalysis
- Catalysis Cymhwysol