Dr Andrea Folli
(e/fe)
Cymrawd Ymchwil Prifysgol mewn Electrocatalysis
- Ar gael fel goruchwyliwr ôl-raddedig
Trosolwyg
Mae Andrea Folli yn Gymrawd Ymchwil y Brifysgol ym maes Electrocatalysis ac yn aelod o dîm rheoli Sefydliad Arloesi Sero Net Prifysgol Caerdydd, h.y., Sefydliad Arloesi Prifysgol Caerdydd sy'n gyfrifol am ddarparu'r arloesedd, cydweithredu a'r datblygiadau technolegol hanfodol sydd eu hangen i gyflawni Net Zero, gweler yma.
Mae wedi cyhoeddi mwy na 50 o bapurau academaidd, un bennod o lyfr, ac un cais am batent. Mae ei waith presennol yn canolbwyntio ar ymchwilio i berthnasoedd strwythur-gweithgaredd mewn ffotoredox ac electrocatalysis. Mae'r grŵp yn defnyddio sbectrosgopeg Cyseiniant Paramagnetig Electron uwch (EPR) a thechnegau hyperffiniol cysylltiedig ar y cyd â dulliau electrocemegol a sbectrosgopau electrocemegol i wella ein dealltwriaeth o drosi ynni solar i gemegol a chynhyrchu tanwydd solar, catalyddion ar gyfer cemeg werdd, a chemeg radical ar gyfer diheintio a chymwysiadau biofeddygol.
Fel aelod o dîm rheoli Sefydliad Arloesi Sero Net Prifysgol Caerdydd (NZII), mae Andrea yn cydlynu materion sy'n ymwneud ag ECRs, gan gynrychioli eu safbwyntiau, ac eiriol dros eu hanghenion, eu safbwyntiau a'u hyfforddiant.
Cyhoeddiad
2024
- Karunakaran, A. et al. 2024. Molecularly rigid porous polyamine host enhances barium titanate catalysed H 2 O 2 generation †. New Journal of Chemistry 48(37), pp. 16261-16268. (10.1039/d4nj03460k)
- Sharp, G. et al. 2024. Benzyl alcohol valorization via the in situ production of reactive oxygen species. ACS Catalysis 14, pp. 15279–15293. (10.1021/acscatal.4c04698)
- Avella, E., Folli, A. and Cuesta, A. 2024. Inhibition of photocatalyst‐assisted electron transfer at ITIES under simulated solar irradiation‐the role of supporting electrolyte. ChemElectroChem 11(19), article number: e202400333. (10.1002/celc.202400333)
- Silva, A., Hurdley, F., de Oliveira, A. L. M., Slater, T., da Silva Maia, A., Folli, A. and dos Santos, I. M. G. 2024. An EPR investigation on reduced Sn centres in SrSnO3 perovskite. Materials Letters 368, article number: 136705. (10.1016/j.matlet.2024.136705)
- Thangavel, K., Folli, A., Fischer, M., Hartmann, M., Murphy, D. M. and Pöppl, A. 2024. Utilizing EPR spectroscopy to investigate the liquid adsorption properties of bimetallic MIL-53(Al/Cr) MOF †. RSC Advances 14(6), pp. 4244-4251. (10.1039/d3ra07952j)
- Fioco, D., Folli, A., Platts, J., Chiesa, M. and Murphy, D. M. 2024. A continuous-wave EPR investigation into the photochemical transformations of the chromium(I) carbonyl complex [Cr(CO)4bis(diphenylphosphino)]+ and reactivity with 1-hexene. Molecules 29(2), article number: 392. (10.3390/molecules29020392)
2023
- Maliutina, K. M., Omoriyekomwan, J. E., He, C., Fan, L. and Folli, A. 2023. Biomass-derived carbon nanostructures and their applications as electrocatalysts for hydrogen evolution and oxygen reduction/evolution. Frontiers in Environmental Engineering 2, article number: 1228992. (10.3389/fenve.2023.1228992)
- Wang, S. et al. 2023. H2-reduced phosphomolybdate promotes room-temperature aerobic oxidation of methane to methanol. Nature Catalysis 6, pp. 895-905. (10.1038/s41929-023-01011-5)
- Thangavel, K., Folli, A., Ziese, M., Hausdorf, S., Kaskel, S., Murphy, D. M. and Pöppl, A. 2023. EPR and SQUID interrogations of Cr(III) trimer complexes in the MIL-101(Cr) and bimetallic MIL-100(Al/Cr) MOFs. SciPost Physics Proceedings 11, article number: 16. (10.21468/SciPostPhysProc.11.016)
- Thangavel, K. et al. 2023. Unveiling the atomistic and electronic structure of Ni II –NO adduct in a MOF-based catalyst by EPR spectroscopy and quantum chemical modelling †. Physical Chemistry Chemical Physics (10.1039/d3cp01449e)
- Magri, G. et al. 2023. An in-situ study of the thermal decomposition of 2,2'-azobis(2-methylpropionitrile) radical chemistry using a dual-mode EPR resonator. Research on Chemical Intermediates 49, pp. 289-305. (10.1007/s11164-022-04861-z)
- Thangavel, K. et al. 2023. Magnetic coupling of divalent metal centers in postsynthetic metal exchanged bimetallic DUT-49 MOFs by EPR spectroscopy. AIP Advances 13(1), article number: 15019. (10.1063/9.0000532)
2022
- Taylor, R. L., Housley, D., Barter, M., Porch, A., Whiston, K., Folli, A. and Murphy, D. M. 2022. The influence of solvent composition on the coordination environment of the Co/Mn/Br based para-xylene oxidation catalyst as revealed by EPR and ESEEM spectroscopy. Catalysis Science & Technology 12, pp. 5274-5280. (10.1039/D2CY00496H)
- Barter, M. et al. 2022. Design considerations of a dual mode X-band EPR resonator for rapid in-situ microwave heating. Applied Magnetic Resonance 53, pp. 861-874. (10.1007/s00723-022-01463-1)
- Magri, G., Folli, A. and Murphy, D. M. 2022. Monitoring the substrate-induced spin-state distribution in a Cobalt(II)-Salen complex by EPR and DFT. European Journal of Inorganic Chemistry 2022(9), article number: e202101071. (10.1002/ejic.202101071)
- Blackaby, W. J. M. et al. 2022. Extreme g-Tensor anisotropy and its insensitivity to structural distortions in a family of linear two-coordinate Ni(I) Bis-N-heterocyclic carbene complexes. Inorganic Chemistry 61(3), pp. 1308-1315. (10.1021/acs.inorgchem.1c02413)
2021
- Gorman, S., Rickaby, K., Lu, L., Kiely, C. J., Macphee, D. E. and Folli, A. 2021. A combination of EPR, microscopy, electrophoresis and theory to elucidate the chemistry of W- and N-Doped TiO2 nanoparticle/water interfaces. Catalysts 11(11), article number: 1305. (10.3390/catal11111305)
- Pezzetta, C., Folli, A., Matuszewska, O., Murphy, D., Davidson, R. W. M. and Bonifazi, D. 2021. peri‐xanthenoxanthene (PXX): a versatile organic photocatalyst in organic synthesis. Advanced Synthesis and Catalysis 363(20), pp. 4740-4753. (10.1002/adsc.202100030)
- Spencer, J. N., Folli, A., Ren, H. and Murphy, D. M. 2021. An EPR Investigation of defect structure and electron transfer mechanism in mixed-conductive LiBO2-V2O5 glasses. Journal of Materials Chemistry A: materials for energy and sustainability 9(31), pp. 16917-16927. (10.1039/D1TA02352G)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4, pp. 575-585. (10.1038/s41929-021-00642-w)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11, pp. 2701–2714. (10.1021/acscatal.0c04586)
- Folli, A., Ritterskamp, N., Richards, E., Platts, J. A. and Murphy, D. M. 2021. Probing the structure of copper(II)-casiopeina type coordination complexes [Cu(O-O)(N-N)]+ by EPR and ENDOR spectroscopy. Journal of Catalysis 394, pp. 220-227. (10.1016/j.jcat.2020.07.016)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47, pp. 303-324. (10.1007/s11164-020-04333-2)
2020
- Guadix-Montero, S., Santos-Hernandez, A., Folli, A. and Meenakshisundaram, S. 2020. Effect of support acidity during selective hydrogenolysis of glycerol over supported palladium-ruthenium catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378(2176), article number: 20200055. (10.1098/rsta.2020.0055)
- Dordevic, L. et al. 2020. O-doped nanographenes: a pyrano/pyrylium route towards semiconducting cationic mixed-valence complexes. Angewandte Chemie International Edition 59(10), pp. 4106-4114. (10.1002/anie.201914025)
- Folli, A. et al. 2020. A novel dual mode X-band EPR resonator for rapid in situ microwave heating. Journal of Magnetic Resonance 310, article number: 106644. (10.1016/j.jmr.2019.106644)
2019
- Luckham, S. L. J., Folli, A., Platts, J. A., Richards, E. and Murphy, D. M. 2019. Unravelling the photochemical transformations of chromium(I) 1,3 Bis(diphenylphosphino), [Cr(CO)4(dppp)]+, by EPR spectroscopy. Organometallics 38(12), pp. -. (10.1021/acs.organomet.9b00226)
2018
- Spencer, J., Folli, A., Richards, E. and Murphy, D. M. 2018. Applications of electron paramagnetic resonance spectroscopy for interrogating catalytic systems. In: Chechik, V. and Murphy, D. M. eds. Electron Paramagnetic Resonance., Vol. 26. Royal Society of Chemistry, pp. 130-170., (10.1039/9781788013888-00130)
- Liu, Z., Mariani, A., Wu, L., Ritson, D., Folli, A., Murphy, D. and Sutherland, J. 2018. Tuning the reactivity of nitriles using Cu(ii) catalysis - potentially prebiotic activation of nucleotides. Chemical Science 9(35), pp. 7053-7057. (10.1039/C8SC02513D)
- Patzsch, J., Spencer, J., Folli, A. and Bloh, J. Z. 2018. Grafted iron(iii) ions significantly enhance NO2 oxidation rate and selectivity of TiO2 for photocatalytic NOx abatement. RSC Advances 8(49), pp. 27674-27685. (10.1039/C8RA05017A)
- Buckingham, M. A., Cunningham, W., Bull, S. D., Buchard, A., Folli, A., Murphy, D. M. and Marken, F. 2018. Electrochemically driven C-H hydrogen abstraction processes with the tetrachloro-phthalimido-N-oxyl (Cl4PINO) catalyst. Electroanalysis 30(8), pp. 1698-1705. (10.1002/elan.201800147)
- Sciutto, A., Fermi, A., Folli, A., Battisti, T., Beames, J., Murphy, D. and Bonifazi, D. 2018. Customizing photoredox properties of PXX-based dyes through energy level rigid shifts of frontier molecular orbitals. Chemistry - a European Journal 24(17), pp. 4382-4389. (10.1002/chem.201705620)
- Folli, A. et al. 2018. Improving the selectivity of photocatalytic NOx abatement through improved O2 reduction pathways using Ti0.909W0.091O2Nx semiconductor nanoparticles: from characterisation to photocatalytic performance. ACS Catalysis 8(8), pp. 6927-6938. (10.1021/acscatal.8b00521)
2017
- Blackaby, W. J. M. et al. 2017. Mono- and dinuclear Ni(i) products formed upon bromide abstraction from the Ni(i) ring-expanded NHC complex [Ni(6-Mes)(PPh3)Br]. Dalton Transactions 47(3), pp. 769-782. (10.1039/C7DT04187J)
- Patzsch, J., Folli, A., Macphee, D. E. and Bloh, J. Z. 2017. On the underlying mechanisms of the low observed nitrate selectivity in photocatalytic NOx abatement and the importance of the oxygen reduction reaction. Physical Chemistry Chemical Physics 19, article number: 32678. (10.1039/C7CP05960D)
- Ritterskamp, N., Sharples, K., Richards, E., Folli, A., Chiesa, M., Platts, J. A. and Murphy, D. M. 2017. Understanding the coordination modes of [Cu(acac)2(imidazole)n=1,2] adducts by EPR, ENDOR, HYSCORE, and DFT analysis. Inorganic Chemistry 56(19), pp. 11862-11875. (10.1021/acs.inorgchem.7b01874)
2016
- Pelties, S., Carter, E., Folli, A., Mahon, M. F., Murphy, D. M., Whittlesey, M. K. and Wolf, R. 2016. Influence of ring-expanded N-heterocyclic carbenes on the structures of half-sandwich Ni(I) complexes: an x-ray, electron paramagnetic resonance (EPR), and electron nuclear double resonance (ENDOR) study. Inorganic Chemistry 55(21), pp. 11006-11017. (10.1021/acs.inorgchem.6b01540)
- Folli, A., Bloh, J. and Macphee, D. 2016. Band structure and charge carrier dynamics in (W,N)-codoped TiO 2 resolved by electrochemical impedance spectroscopy combined with UV–vis and EPR spectroscopies. Journal of Electroanalytical Chemistry 780, pp. 367-372. (10.1016/j.jelechem.2015.10.033)
- Macphee, D. E. and Folli, A. 2016. Photocatalytic concretes - the interface between photocatalysis and cement chemistry. Cement and Concrete Research 85, pp. 48-54. (10.1016/j.cemconres.2016.03.007)
- Hopper, H. et al. 2016. An investigation of the optical properties and water splitting potential of the coloured metallic perovskites Sr1−xBaxMoO3. Journal of Solid State Chemistry 234, pp. 87-92. (10.1016/j.jssc.2015.12.002)
2015
- Folli, A. et al. 2015. Field study of air purifying paving elements containing TiO2. Atmospheric Environment 107, pp. 44-51. (10.1016/j.atmosenv.2015.02.025)
- Folli, A., Bloh, J. Z., Lecaplain, A., Walker, R. and Macphee, D. E. 2015. Properties and photochemistry of valence-induced-Ti3+ enriched (Nb,N)-codoped anatase TiO2 semiconductors. Physical Chemistry Chemical Physics 17(7), pp. 4849-4853. (10.1039/C4CP05521G)
2014
- Bloh, J. Z., Folli, A. and Macphee, D. E. 2014. Photocatalytic NOx abatement: Why the selectivity matters. RSC Advances 4(86), pp. 45726-45734. (10.1039/C4RA07916G)
- Bloh, J. Z., Folli, A. and Macphee, D. E. 2014. Adjusting nitrogen doping level in titanium dioxide by codoping with tungsten: Properties and band structure of the resulting materials. Journal of Physical Chemistry C 118(36), pp. 21281-21292. (10.1021/jp507264g)
- Folli, A., Bloh, J. Z., Strøm, M., Pilegaard Madsen, T., Henriksen, T. and Macphee, D. E. 2014. Efficiency of solar-light-driven TiO2 photocatalysis at different latitudes and seasons. Where and when does TiO2 really work?. Journal of Physical Chemistry Letters 5(5), pp. 830-832. (10.1021/jz402704n)
2013
- Folli, A., Bloh, J. Z., Beukes, E., Howe, R. F. and Macphee, D. E. 2013. Photogenerated charge carriers and paramagnetic species in (W,N)-codoped TiO2 photocatalysts under visible-light irradiation: An EPR study. Journal of Physical Chemistry C 117(42), pp. 22149. (10.1021/jp408181r)
2012
- Folli, A., Pade, C., Hansen, T. B., De Marco, T. and Macphee, D. E. 2012. TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cement and Concrete Research 42(3), pp. 539-548. (10.1016/j.cemconres.2011.12.001)
2011
- Folli, A., Campbell, S. B., Anderson, J. A. and Macphee, D. E. 2011. Role of TiO2 surface hydration on NO oxidation photo-activity. Journal of Photochemistry and Photobiology A: Chemistry 220(2-3), pp. 85-93. (10.1016/j.jphotochem.2011.03.017)
2010
- Folli, A., Pochard, I., Nonat, A., Jakobsen, U. H., Shepherd, A. M. and Macphee, D. E. 2010. Engineering photocatalytic cements: Understanding TiO2 surface chemistry to control and modulate photocatalytic performances. Journal of the American Ceramic Society 93(10), pp. 3360-3369. (10.1111/j.1551-2916.2010.03838.x)
2009
- Folli, A., Jakobsen, U. H., Guerrini, G. L. and Macphee, D. E. 2009. Rhodamine B discolouration on TiO2 in the cement environment: A look at fundamental aspects of the self-cleaning effect in concretes. Journal of Advanced Oxidation Technologies 12(1), pp. 126-133. (10.1515/jaots-2009-0116)
Articles
- Karunakaran, A. et al. 2024. Molecularly rigid porous polyamine host enhances barium titanate catalysed H 2 O 2 generation †. New Journal of Chemistry 48(37), pp. 16261-16268. (10.1039/d4nj03460k)
- Sharp, G. et al. 2024. Benzyl alcohol valorization via the in situ production of reactive oxygen species. ACS Catalysis 14, pp. 15279–15293. (10.1021/acscatal.4c04698)
- Avella, E., Folli, A. and Cuesta, A. 2024. Inhibition of photocatalyst‐assisted electron transfer at ITIES under simulated solar irradiation‐the role of supporting electrolyte. ChemElectroChem 11(19), article number: e202400333. (10.1002/celc.202400333)
- Silva, A., Hurdley, F., de Oliveira, A. L. M., Slater, T., da Silva Maia, A., Folli, A. and dos Santos, I. M. G. 2024. An EPR investigation on reduced Sn centres in SrSnO3 perovskite. Materials Letters 368, article number: 136705. (10.1016/j.matlet.2024.136705)
- Thangavel, K., Folli, A., Fischer, M., Hartmann, M., Murphy, D. M. and Pöppl, A. 2024. Utilizing EPR spectroscopy to investigate the liquid adsorption properties of bimetallic MIL-53(Al/Cr) MOF †. RSC Advances 14(6), pp. 4244-4251. (10.1039/d3ra07952j)
- Fioco, D., Folli, A., Platts, J., Chiesa, M. and Murphy, D. M. 2024. A continuous-wave EPR investigation into the photochemical transformations of the chromium(I) carbonyl complex [Cr(CO)4bis(diphenylphosphino)]+ and reactivity with 1-hexene. Molecules 29(2), article number: 392. (10.3390/molecules29020392)
- Maliutina, K. M., Omoriyekomwan, J. E., He, C., Fan, L. and Folli, A. 2023. Biomass-derived carbon nanostructures and their applications as electrocatalysts for hydrogen evolution and oxygen reduction/evolution. Frontiers in Environmental Engineering 2, article number: 1228992. (10.3389/fenve.2023.1228992)
- Wang, S. et al. 2023. H2-reduced phosphomolybdate promotes room-temperature aerobic oxidation of methane to methanol. Nature Catalysis 6, pp. 895-905. (10.1038/s41929-023-01011-5)
- Thangavel, K., Folli, A., Ziese, M., Hausdorf, S., Kaskel, S., Murphy, D. M. and Pöppl, A. 2023. EPR and SQUID interrogations of Cr(III) trimer complexes in the MIL-101(Cr) and bimetallic MIL-100(Al/Cr) MOFs. SciPost Physics Proceedings 11, article number: 16. (10.21468/SciPostPhysProc.11.016)
- Thangavel, K. et al. 2023. Unveiling the atomistic and electronic structure of Ni II –NO adduct in a MOF-based catalyst by EPR spectroscopy and quantum chemical modelling †. Physical Chemistry Chemical Physics (10.1039/d3cp01449e)
- Magri, G. et al. 2023. An in-situ study of the thermal decomposition of 2,2'-azobis(2-methylpropionitrile) radical chemistry using a dual-mode EPR resonator. Research on Chemical Intermediates 49, pp. 289-305. (10.1007/s11164-022-04861-z)
- Thangavel, K. et al. 2023. Magnetic coupling of divalent metal centers in postsynthetic metal exchanged bimetallic DUT-49 MOFs by EPR spectroscopy. AIP Advances 13(1), article number: 15019. (10.1063/9.0000532)
- Taylor, R. L., Housley, D., Barter, M., Porch, A., Whiston, K., Folli, A. and Murphy, D. M. 2022. The influence of solvent composition on the coordination environment of the Co/Mn/Br based para-xylene oxidation catalyst as revealed by EPR and ESEEM spectroscopy. Catalysis Science & Technology 12, pp. 5274-5280. (10.1039/D2CY00496H)
- Barter, M. et al. 2022. Design considerations of a dual mode X-band EPR resonator for rapid in-situ microwave heating. Applied Magnetic Resonance 53, pp. 861-874. (10.1007/s00723-022-01463-1)
- Magri, G., Folli, A. and Murphy, D. M. 2022. Monitoring the substrate-induced spin-state distribution in a Cobalt(II)-Salen complex by EPR and DFT. European Journal of Inorganic Chemistry 2022(9), article number: e202101071. (10.1002/ejic.202101071)
- Blackaby, W. J. M. et al. 2022. Extreme g-Tensor anisotropy and its insensitivity to structural distortions in a family of linear two-coordinate Ni(I) Bis-N-heterocyclic carbene complexes. Inorganic Chemistry 61(3), pp. 1308-1315. (10.1021/acs.inorgchem.1c02413)
- Gorman, S., Rickaby, K., Lu, L., Kiely, C. J., Macphee, D. E. and Folli, A. 2021. A combination of EPR, microscopy, electrophoresis and theory to elucidate the chemistry of W- and N-Doped TiO2 nanoparticle/water interfaces. Catalysts 11(11), article number: 1305. (10.3390/catal11111305)
- Pezzetta, C., Folli, A., Matuszewska, O., Murphy, D., Davidson, R. W. M. and Bonifazi, D. 2021. peri‐xanthenoxanthene (PXX): a versatile organic photocatalyst in organic synthesis. Advanced Synthesis and Catalysis 363(20), pp. 4740-4753. (10.1002/adsc.202100030)
- Spencer, J. N., Folli, A., Ren, H. and Murphy, D. M. 2021. An EPR Investigation of defect structure and electron transfer mechanism in mixed-conductive LiBO2-V2O5 glasses. Journal of Materials Chemistry A: materials for energy and sustainability 9(31), pp. 16917-16927. (10.1039/D1TA02352G)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4, pp. 575-585. (10.1038/s41929-021-00642-w)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11, pp. 2701–2714. (10.1021/acscatal.0c04586)
- Folli, A., Ritterskamp, N., Richards, E., Platts, J. A. and Murphy, D. M. 2021. Probing the structure of copper(II)-casiopeina type coordination complexes [Cu(O-O)(N-N)]+ by EPR and ENDOR spectroscopy. Journal of Catalysis 394, pp. 220-227. (10.1016/j.jcat.2020.07.016)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47, pp. 303-324. (10.1007/s11164-020-04333-2)
- Guadix-Montero, S., Santos-Hernandez, A., Folli, A. and Meenakshisundaram, S. 2020. Effect of support acidity during selective hydrogenolysis of glycerol over supported palladium-ruthenium catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378(2176), article number: 20200055. (10.1098/rsta.2020.0055)
- Dordevic, L. et al. 2020. O-doped nanographenes: a pyrano/pyrylium route towards semiconducting cationic mixed-valence complexes. Angewandte Chemie International Edition 59(10), pp. 4106-4114. (10.1002/anie.201914025)
- Folli, A. et al. 2020. A novel dual mode X-band EPR resonator for rapid in situ microwave heating. Journal of Magnetic Resonance 310, article number: 106644. (10.1016/j.jmr.2019.106644)
- Luckham, S. L. J., Folli, A., Platts, J. A., Richards, E. and Murphy, D. M. 2019. Unravelling the photochemical transformations of chromium(I) 1,3 Bis(diphenylphosphino), [Cr(CO)4(dppp)]+, by EPR spectroscopy. Organometallics 38(12), pp. -. (10.1021/acs.organomet.9b00226)
- Liu, Z., Mariani, A., Wu, L., Ritson, D., Folli, A., Murphy, D. and Sutherland, J. 2018. Tuning the reactivity of nitriles using Cu(ii) catalysis - potentially prebiotic activation of nucleotides. Chemical Science 9(35), pp. 7053-7057. (10.1039/C8SC02513D)
- Patzsch, J., Spencer, J., Folli, A. and Bloh, J. Z. 2018. Grafted iron(iii) ions significantly enhance NO2 oxidation rate and selectivity of TiO2 for photocatalytic NOx abatement. RSC Advances 8(49), pp. 27674-27685. (10.1039/C8RA05017A)
- Buckingham, M. A., Cunningham, W., Bull, S. D., Buchard, A., Folli, A., Murphy, D. M. and Marken, F. 2018. Electrochemically driven C-H hydrogen abstraction processes with the tetrachloro-phthalimido-N-oxyl (Cl4PINO) catalyst. Electroanalysis 30(8), pp. 1698-1705. (10.1002/elan.201800147)
- Sciutto, A., Fermi, A., Folli, A., Battisti, T., Beames, J., Murphy, D. and Bonifazi, D. 2018. Customizing photoredox properties of PXX-based dyes through energy level rigid shifts of frontier molecular orbitals. Chemistry - a European Journal 24(17), pp. 4382-4389. (10.1002/chem.201705620)
- Folli, A. et al. 2018. Improving the selectivity of photocatalytic NOx abatement through improved O2 reduction pathways using Ti0.909W0.091O2Nx semiconductor nanoparticles: from characterisation to photocatalytic performance. ACS Catalysis 8(8), pp. 6927-6938. (10.1021/acscatal.8b00521)
- Blackaby, W. J. M. et al. 2017. Mono- and dinuclear Ni(i) products formed upon bromide abstraction from the Ni(i) ring-expanded NHC complex [Ni(6-Mes)(PPh3)Br]. Dalton Transactions 47(3), pp. 769-782. (10.1039/C7DT04187J)
- Patzsch, J., Folli, A., Macphee, D. E. and Bloh, J. Z. 2017. On the underlying mechanisms of the low observed nitrate selectivity in photocatalytic NOx abatement and the importance of the oxygen reduction reaction. Physical Chemistry Chemical Physics 19, article number: 32678. (10.1039/C7CP05960D)
- Ritterskamp, N., Sharples, K., Richards, E., Folli, A., Chiesa, M., Platts, J. A. and Murphy, D. M. 2017. Understanding the coordination modes of [Cu(acac)2(imidazole)n=1,2] adducts by EPR, ENDOR, HYSCORE, and DFT analysis. Inorganic Chemistry 56(19), pp. 11862-11875. (10.1021/acs.inorgchem.7b01874)
- Pelties, S., Carter, E., Folli, A., Mahon, M. F., Murphy, D. M., Whittlesey, M. K. and Wolf, R. 2016. Influence of ring-expanded N-heterocyclic carbenes on the structures of half-sandwich Ni(I) complexes: an x-ray, electron paramagnetic resonance (EPR), and electron nuclear double resonance (ENDOR) study. Inorganic Chemistry 55(21), pp. 11006-11017. (10.1021/acs.inorgchem.6b01540)
- Folli, A., Bloh, J. and Macphee, D. 2016. Band structure and charge carrier dynamics in (W,N)-codoped TiO 2 resolved by electrochemical impedance spectroscopy combined with UV–vis and EPR spectroscopies. Journal of Electroanalytical Chemistry 780, pp. 367-372. (10.1016/j.jelechem.2015.10.033)
- Macphee, D. E. and Folli, A. 2016. Photocatalytic concretes - the interface between photocatalysis and cement chemistry. Cement and Concrete Research 85, pp. 48-54. (10.1016/j.cemconres.2016.03.007)
- Hopper, H. et al. 2016. An investigation of the optical properties and water splitting potential of the coloured metallic perovskites Sr1−xBaxMoO3. Journal of Solid State Chemistry 234, pp. 87-92. (10.1016/j.jssc.2015.12.002)
- Folli, A. et al. 2015. Field study of air purifying paving elements containing TiO2. Atmospheric Environment 107, pp. 44-51. (10.1016/j.atmosenv.2015.02.025)
- Folli, A., Bloh, J. Z., Lecaplain, A., Walker, R. and Macphee, D. E. 2015. Properties and photochemistry of valence-induced-Ti3+ enriched (Nb,N)-codoped anatase TiO2 semiconductors. Physical Chemistry Chemical Physics 17(7), pp. 4849-4853. (10.1039/C4CP05521G)
- Bloh, J. Z., Folli, A. and Macphee, D. E. 2014. Photocatalytic NOx abatement: Why the selectivity matters. RSC Advances 4(86), pp. 45726-45734. (10.1039/C4RA07916G)
- Bloh, J. Z., Folli, A. and Macphee, D. E. 2014. Adjusting nitrogen doping level in titanium dioxide by codoping with tungsten: Properties and band structure of the resulting materials. Journal of Physical Chemistry C 118(36), pp. 21281-21292. (10.1021/jp507264g)
- Folli, A., Bloh, J. Z., Strøm, M., Pilegaard Madsen, T., Henriksen, T. and Macphee, D. E. 2014. Efficiency of solar-light-driven TiO2 photocatalysis at different latitudes and seasons. Where and when does TiO2 really work?. Journal of Physical Chemistry Letters 5(5), pp. 830-832. (10.1021/jz402704n)
- Folli, A., Bloh, J. Z., Beukes, E., Howe, R. F. and Macphee, D. E. 2013. Photogenerated charge carriers and paramagnetic species in (W,N)-codoped TiO2 photocatalysts under visible-light irradiation: An EPR study. Journal of Physical Chemistry C 117(42), pp. 22149. (10.1021/jp408181r)
- Folli, A., Pade, C., Hansen, T. B., De Marco, T. and Macphee, D. E. 2012. TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cement and Concrete Research 42(3), pp. 539-548. (10.1016/j.cemconres.2011.12.001)
- Folli, A., Campbell, S. B., Anderson, J. A. and Macphee, D. E. 2011. Role of TiO2 surface hydration on NO oxidation photo-activity. Journal of Photochemistry and Photobiology A: Chemistry 220(2-3), pp. 85-93. (10.1016/j.jphotochem.2011.03.017)
- Folli, A., Pochard, I., Nonat, A., Jakobsen, U. H., Shepherd, A. M. and Macphee, D. E. 2010. Engineering photocatalytic cements: Understanding TiO2 surface chemistry to control and modulate photocatalytic performances. Journal of the American Ceramic Society 93(10), pp. 3360-3369. (10.1111/j.1551-2916.2010.03838.x)
- Folli, A., Jakobsen, U. H., Guerrini, G. L. and Macphee, D. E. 2009. Rhodamine B discolouration on TiO2 in the cement environment: A look at fundamental aspects of the self-cleaning effect in concretes. Journal of Advanced Oxidation Technologies 12(1), pp. 126-133. (10.1515/jaots-2009-0116)
Book sections
- Spencer, J., Folli, A., Richards, E. and Murphy, D. M. 2018. Applications of electron paramagnetic resonance spectroscopy for interrogating catalytic systems. In: Chechik, V. and Murphy, D. M. eds. Electron Paramagnetic Resonance., Vol. 26. Royal Society of Chemistry, pp. 130-170., (10.1039/9781788013888-00130)
Ymchwil
Diddordebau ymchwil
Mae fy niddordebau ymchwil yn canolbwyntio ar ymchwilio i berthnasoedd strwythur-gweithgaredd mewn catalysis ar gyfer cemeg werdd a chynaliadwy.
Rydym yn arbenigo mewn defnyddio sbectrosgopeg Cyseiniant Paramagnetig Electron uwch (EPR) a thechnegau hyperffiniol cysylltiedig ar y cyd â dulliau electrocemegol a sbectrosgopau electrocemegol.
Mae ein grŵp yn gwneud cyfraniadau yn y meysydd ymchwil canlynol.
Llun, electro- a ffoto-electrocatalysis
Yn ein labordy, mae gennym ddiddordeb mewn ffotocatalysis anorganig a ffoto-electrocatalysis ar gyfer trosi a lleihau llygryddion aer a dŵr, cynhyrchu hydrogen gwyrdd o ddŵr, lleihau CO2 i ocsigen CO a C1+, a throsi biomas a gwastraff yn gemegau a chynhyrchion gwerth ychwanegol.
Mae ein harchwiliad o nanostructures carbon biomas fel electrocatalysts yn tynnu sylw at ein hymrwymiad i ddeunyddiau a dulliau cynaliadwy wrth drosi ynni. Mae'r ymchwil hon nid yn unig yn datblygu ein dealltwriaeth wyddonol o ddefnydd ynni solar ond hefyd yn paratoi'r ffordd ar gyfer cymwysiadau ymarferol mewn ynni adnewyddadwy a chemeg werdd.
Mae ein grŵp hefyd yn cyfrannu at ddatblygu ffotocatalyddion organig cost-effeithiol. Ein nod yw harneisio ynni solar ar gyfer gyrru synthesis moleciwlau organig cymhleth, ehangu cwmpas adweithiau ffotoredox, lleihau'r defnydd o ynni, a lleihau gwastraff peryglus mewn synthesis cemegol.
Yn y meysydd ymchwil hyn, rydym yn mabwysiadu amrywiaeth o ddulliau EPR ac electrocemegol i ganfod natur gwladwriaethau paramagnetic mewn ffoto-a-electro- catalyddion, gan gynnwys cynhyrchu cludwyr gwefr, dalpio, ailgyfuno a throsglwyddo, sy'n pennu'r cemeg rhydocs sy'n gyfrifol am weithgaredd ffoto-electrocatalytig macrosgopig a detholedd.
Cynhyrchu radical adweithiol ar gyfer diheintio a catalysis
Yn fyd-eang, mae diheintio dŵr yn dibynnu ar glorianiad, ond mae angen llwybr sy'n osgoi ffurfio gweddillion cemegol. Gall hydrogen perocsid, bio-laddiad sbectrwm eang, gynnig dewis arall o'r fath ond fel arfer mae'n llai effeithiol na dulliau traddodiadol o adfer dŵr. Gan ddefnyddio sbectrosgopeg EPR ar y cyd â phrotocolau trapio sbin a gynlluniwyd yn ofalus, mae ein hymchwil yn galluogi dulliau newid gemau i ddiheintio'r dŵr yn seiliedig ar gemeg radical catalytig a allai fod yn sail i ddulliau newydd a mwy cynaliadwy ar gyfer diheintio dŵr.
Mae'r un dull hefyd yn cael ei ddefnyddio i hyrwyddo maes cemeg ocsidiad dethol gyda'r nod o ddangos a datblygu systemau catalytig newydd sy'n gallu disodli ocsidyddion stoichiometrig costus fel dichromate, asid cromomig, a permanganate, ar gyfer prosesau ocsideiddio dethol a gynhelir ar raddfa ddiwydiannol.
Catalysis ar gyfer cemeg werdd
Rydym yn canolbwyntio ar ddefnyddio sbectrosgopeg EPR datblygedig i wthio ffiniau catalysis ar gyfer cemeg werdd.
Rydym yn archwilio fframweithiau metel-ocsid newydd a nanoronynnau metel â chymorth sy'n hwyluso trosi methan i methanol ar dymheredd amgylchynol. Mae'r ymchwil hon yn ganolog wrth fynd i'r afael â her effaith amgylcheddol methan, a thrwy wella effeithlonrwydd a detholedd y broses drosi hon, rydym yn gweithio tuag at ddatblygu dull graddadwy a llesol i'r amgylchedd ar gyfer defnyddio methan.
Rydym hefyd yn canolbwyntio ar ddeall cemeg catalytig nanoronynnau metel mono a dwy-fetelaidd yn ogystal ag ocsidau metel ar gyfer prosesau cemegol gwyrdd fel glycerol hydrogenolysis, trawsgyfeirio asidau brasterog, ac yn gyffredinol, trosi porthiant biomas i danwydd a chemegau gwerth ychwanegol.
I gael rhagor o wybodaeth am brosiectau penodol sydd ar gael gyda Dr Andrea Folli, adolygwch adrannau Catalysis a gwyddoniaeth ryngwynebol a Sbectrosgopeg a dynameg ein themâu prosiect ymchwil.
Addysgu
CH2117: Cemeg Amgylcheddol
Mae'r modiwl hwn yn rhoi cipolwg i fyfyrwyr ar gemeg yr amgylchedd naturiol a bydd yn eich galluogi i ddysgu priodweddau ffisegol a chemegol atmosffer y Ddaear, priddoedd (lithosffer), a dyfroedd naturiol (hydrosffer). Mae'n elfen sylfaenol ar gyfer deall achosion ffenomenau naturiol, gan gynnwys ein tywydd, newidiadau tymhorol, a ffactorau ffisegol-gemegol sy'n gyfrifol am gynnal bywyd ar y Ddaear. Byddwch hefyd yn archwilio sut y gall cemeg naturiol a ffiseg wedi'i diwnio'n gain gael ei anghytbwys gan anthropogenig (o'r Groeg ànthrōpos , genesis + dynol, tarddiad, h.y., a wnaed gan bobl), gan y byddwn yn rhoi sylw arbennig i achosion ac effeithiau'r Argyfwng Hinsawdd presennol. Mae'r rhain yn cynnwys allyriadau nwyon tŷ gwydr a chynhesu byd-eang, cynnydd yn lefelau'r môr, llygredd, dirywiad osôn, a'r ymchwil ddiweddaraf i fynd i'r afael â'r effeithiau niweidiol hyn.
Drwy archwilio'r holl agweddau gwahanol hyn, byddwch yn gweld sut mae hanfodion cemeg anorganig, organig a ffisegol rydych chi wedi'u dysgu mewn cyrsiau Blwyddyn 1 eraill yn cael eu chwarae yn yr amgylchedd naturiol. Bydd y cwrs hefyd yn eich arfogi â sgiliau a fydd yn hwyluso eich cynnydd trwy Flwyddyn 2 ac uwch.
Mae gwaith cymhleth ffenomenau naturiol cymhleth yn cynnwys cydadwaith cain rhwng cemeg anorganig, organig a ffisegol. Mae pob un o'r meysydd cemegol hyn yn cyfrannu at ymddygiad a nodweddion cyffredinol y system yn ei ffordd unigryw. Mae astudio'r cydadwaith hwn yn hanfodol i'n dealltwriaeth o fyd natur ac yn rhoi cipolwg ar yr egwyddorion sylfaenol sy'n llywodraethu ymddygiad mater ac egni.
Meysydd goruchwyliaeth
Goruchwylio gwyddonol
Yn fy labordy, rydym yn cofleidio dull amlddisgyblaethol, gan gyfuno technegau arbrofol â modelu damcaniaethol i wthio ffiniau'r hyn sy'n bosibl mewn ymchwil ynni cynaliadwy a catalysis. Rwyf bob amser yn chwilio am fyfyrwyr chwilfrydig a brwdfrydig sy'n awyddus i gyfrannu at ddatblygiadau gwyddonol ystyrlon ac archwilio'r meysydd arloesol hyn:
- Ffotocatalysis: Archwilio dulliau arloesol ar gyfer harneisio ynni solar i yrru adweithiau cemegol. Nod prosiectau yma yw datblygu deunyddiau ffotocatalytig newydd a all drosi ynni'r haul yn ynni cemegol yn effeithiol, gan gynnig atebion cynaliadwy ar gyfer adfer amgylcheddol a throsi ynni.
- Electrocemeg ac electrocatalysis:
- Ffoto-electrocatalysis: Ymchwilio i gymhlethdodau prosesau electrocemegol a achosir gan ffoto. Bydd prosiectau yma yn uno egwyddorion ffotocatalysis gydag electrocemeg. Bydd myfyrwyr yn dylunio ac yn cyfosod systemau ffoto-electrocatalytig newydd a all hwyluso adweithiau fel hollti dŵr a lleihau carbon deuocsid yn effeithlon, gan gyfrannu at astudio dulliau yn y dyfodol ar gyfer cynhyrchu ynni glân.
- Cemeg radical ar gyfer diheintio a catalysis:
- Theori a dulliau mewn sbectrosgopeg EPR: Mae prosiectau yma yn ymroddedig i wthio ffiniau sbectrosgopeg EPR trwy ddatblygu dulliau damcaniaethol ac ymarferol newydd, a hwylusir gan gydweithrediadau â theoreticiaid a fferyllwyr cyfrifiadurol, yn ogystal â pheirianwyr microdon.
Cydraddoldeb, Amrywiaeth a Chynhwysiant
Bydd myfyrwyr yn fy ngrŵp yn agored i fframwaith REGARDS
Mae REGARDS yn rhaglen a gychwynnais ar gyfer y grŵp ac sy'n anelu at hyrwyddo perthyn a grymuso yn y gweithle ar draws R ace, Ethynicity, Gender, Age, Religion, Disability, a chyfeiriadedd Exual S. Yr elfennau allweddol o REGARDS yw:
- Datganiad Cydraddoldeb y Lab (ES) sy'n diffinio gweithgareddau ac ymrwymiad y grŵp i gydraddoldeb yn ogystal â lles corfforol a meddyliol (rwy'n rheolwr achrededig i-ACT).
- Cynllun Gweithredu yn y labordy (AP) sy'n amlinellu'r camau y mae'r tîm yn eu cymryd i hyrwyddo hunanymwybyddiaeth, gwrthweithio rhagfarn anymwybodol, nodi dulliau cyfathrebu hygyrch i bawb a threfniadau gweithio hyblyg i weddu i anghenion ac ymrwymiad pawb y tu allan i'r amgylchedd gwaith.
- Y Rhwydwaith Cymorth yn y labordy (SN) lle mae codi ymwybyddiaeth o raglenni mentora (CU a thu hwnt), cyfleoedd cymorth cymheiriaid, a hyfforddiant cynhwysol i feithrin amgylchedd croesawgar i'r holl fyfyrwyr.
Mae ES-AP-SN yn cael ei adolygu a'i ddiweddaru'n rheolaidd pryd bynnag y bydd aelod newydd yn ymuno â'r grŵp, gan sicrhau bod pawb yn teimlo eu bod yn cael eu gwerthfawrogi a'u hystyried, gan greu'r amgylchedd gorau posibl i wneud y mwyaf o'u potensial. Bydd hyn hefyd yn gyfle hyfforddi hanfodol i ledaenu moeseg ymchwil gadarnhaol a chynhwysol yn ymdrechion ymchwil aelodau'r grŵp yn y dyfodol.
Mae fy myfyrwyr hefyd yn agored i raglenni a rhwydweithiau ("yr elfennau coll" gan RSC, BBSTEM, STEMWomen, DiSTEM, Stemmetes) i hyrwyddo a gwella gwelededd ymchwilwyr o grwpiau heb gynrychiolaeth ddigonol; a chyfleoedd hyfforddi gan CU, GW4 ac RSC i hyrwyddo diwylliant EDI.
Adeilad arweinyddiaeth
Credwn fod taith rhaglen PhD nid yn unig yn ymwneud â chael gradd ac, os yn bosibl, cyhoeddi papurau. Rydym yn gweld rhaglen PhD fel proses o ddod yn wyddonydd hynod gyflogadwy sy'n gallu rhagweld, myfyrio ac ymgysylltu ag effeithiau gwyddonol, moesegol a chymdeithasol ehangach ein gwaith, gan ychwanegu llawer o werth at briodoleddau graddedigion.
Yn y grŵp, mae gennym gyfrifoldeb cyffredin a rennir i ddeall ein rolau o fewn y gymuned addysg uwch a pharatoi ein hunain i fod yn ddinasyddion addysgedig. Rydym yn myfyrio'n barhaus ar brofiad myfyrwyr, gan gyfrannu at ddatblygu cymwyseddau arweinyddiaeth.
Mae datblygu arweinyddiaeth yn cynnwys hunanymwybyddiaeth, dealltwriaeth o eraill, gwerthoedd, safbwyntiau amrywiol, sefydliadau, a newid. Rydym yn chwilio am raglenni arweinyddiaeth ar gyfer holl aelodau'r grŵp sy'n ceisio ein grymuso a gwella ein hunaneffeithiolrwydd fel arweinwyr a deall sut y gallwn wneud gwahaniaeth. Mae ein cysyniad o arweinyddiaeth "yn deillio o'n perthynas ag eraill, ac mae'n cael ei feithrin trwy hunanymwybyddiaeth a dealltwriaeth o gyd-destun" (Journal of Leadership Education).
Yn y grŵp rydym yn ymarfer sgiliau arwain yn rheolaidd trwy:
- Bod yn gyfathrebol: rydym yn mynegi nodau agored ac yn glir, rydym yn agored i adborth, ac rydym yn rheoli dynameg y tîm yn y ffordd fwyaf parchus i'r holl aelodau;
- Adeiladu perthnasoedd: rydym yn gwerthfawrogi pwysigrwydd rhwydwaith sy'n seiliedig ar ymddiriedaeth ar gyfer cefnogaeth a chyfnewid gwybodaeth.
- Meddwl yn strategol: Mae ein hymchwil a'n gweithgareddau yn cael eu cefnogi gan gynlluniau clir gyda nodau, dulliau, amcanion ac offer diffiniedig.
- Dysgu rheoli amser effeithiol a disgyblaeth ariannol: o ddysgu beth allwn ei ddirprwyo a'r hyn na allwn ei wneud, i ddatblygu sgiliau rheoli prosiectau sy'n hanfodol ar gyfer effeithlonrwydd ac effeithiolrwydd mewn unrhyw weithle. Anogir myfyrwyr hefyd i reoli eu cyllid eu hunain o fewn y gyllideb ymchwil a ddyrennir i'w prosiectau, gan eu helpu i ddatblygu sgiliau pwysig sy'n hanfodol ar gyfer eu gyrfaoedd yn y dyfodol.
Goruchwyliaeth gyfredol
Nathan Harrison
Arddangoswr Graddedig
Callum Morris
Myfyriwr ymchwil
Dom Conway
Myfyriwr ymchwil
Contact Details
+44 29225 12471
Y Ganolfan Ymchwil Drosiadol, Llawr 3, Ystafell 3.22, Heol Maindy, Cathays, Caerdydd, CF24 4HQ