Trosolwyg
CHEMOKINES (CHEMOtactic cytoKINES) are master regulators of cell migration. Together with adhesion molecules, chemokines orchestrate the localisation and relocation of the highly sophisticated immune cell network throughout our body. Our own review articles listed in the side panel give a flavour about the complexity of this migration system, which in humans is composed of 48 individual chemokines encoded by separate genes and 18 separate chemokine receptors that bind either a single chemokine or a large number of individual chemokines.
The above picture represents the structure of human CXCL14, the last chemokine whose receptor is not yet known.
Hallmark features of chemokines include
- Ø Activity in health (homeostasis/immune surveillance) and disease (inflammation)
- Ø Inappropriate production may cause chronic disease (excess chemokines) or immune suppression (insufficient chemokines)
- Ø Functional redundancy (most notably among inflammatory chemokines)
- Ø Structural similarity and cross-species sequence conservation
- Ø Dual functional motives: extracellular anchorage and receptor binding domains (except for membrane-bound forms)
The complex system of chemokines and their receptors expressed on immune cells is thought to reflect the exquisite complexity of immune cells that include a variety of precursor cells that undergo differentiation in primary lymphoid tissues, mature immune cells that inspect all tissues in our body and effector cells of both the innate and adaptive immune system that are mobilised in response to acute infections. The combination of chemokine receptors on immune cells represents an address code that guides individual immune cells to the tissue location where the corresponding chemokines are produced.
The unquestionable importance of chemokines in all aspects of immunity (haematopoiesis, immune surveillance, infection/disease) prompted an intensive, worldwide search for drugs that inhibit their function. At this point two chemokine receptor-specific drugs are approved for clinical use (Maraviroc for the treatment of HIV-1 patients, and AMD3100 for bone marrow stem cell mobilisation) but many more are in the pipeline.
Professor Bernhard Moser holds the Chair of Infection and Immunity at Cardiff University. He studied at the Federal Institute of Technology, Zürich (Diploma in Biochemistry, 1981) and at the University of British Columbia, Vancouver (PhD in Microbiology and Immunology, 1988). He was promoted to Privatdozent (PD in Medicine and Natural Sciences, 1995) and to Professor (2006) at the University of Bern. He spent his sabbatical leave in the laboratory of Prof. M. Brenner (Havard University, 1997-98). Distinctions include the Pfizer Research Award (1997, jointly with Dr. P. Lötscher), the Prof. Dr. Max. Clöetta Price (2003) and the Royal Society-Wolfson Research Merit Award (2007). He is a member of many academic societies, including the Henry Kunkel Society. Research of Prof. Moser’s group centers on human chemokines and their receptors expressed by immune cells. Initial work focused on the identification of chemokine receptors (starting with the IL-8 receptors, CXCR1 and CXCR2), followed by their biochemical and functional characterization. His group was first in identifying the human chemokine receptors CXCR3, CXCR4, CXCR5, CXCR6, CCR3 and CCR8. These findings enabled them to investigate (i) the role of CXCR4 in HIV infection, (ii), chemokine receptor antagonists, (iii) control of T cell migration (discovery of follicular B helper T (TFH) cells), and (iv) role of homeostatic chemokines in tissue homeostasis and immune defence. Finally, his group identified gdT-APCs, human gdT cells with professional antigen presentation functions, and this discovery is now being translated into the clinics (cellular immunotherapy of cancer patients). Long-standing collaborators included Prof. C. Mackay (Monash University, Melbourne). Prof. F. Arenzana-Seisdedos (Pasteur Institute, Paris) and Prof. I. Clark-Lewis (UBC, Vancouver). Several of these findings led to patents, and Prof. Moser is frequently asked for advice by major pharmaceutical companies.
Cyhoeddiad
2024
- Burton, R. J. et al. 2024. Conventional and unconventional T cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients. Clinical & Experimental Immunology 216(3), pp. 293-306. (10.1093/cei/uxae019)
- Tyler, C. J. et al. 2024. IL-21 conditions antigen-presenting human γδ T-cells to promote IL-10 expression in naïve and memory CD4+ T-cells. Discovery Immunology (10.1093/discim/kyae008)
2023
- Muri, J. et al. 2023. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nature Immunology 24(4), pp. 604-611. (10.1038/s41590-023-01445-w)
2022
- Moser, B. 2022. Emerging roles of chemokines in cancer immunotherapy. Cancers 14(15), article number: e3593. (10.3390/cancers14153593)
2021
- Adams, R., Moser, B., Karagiannis, S. N. and Lacy, K. E. 2021. Chemokine pathways in cutaneous melanoma: their modulation by cancer and exploitation by the clinician. Cancers 13(22), article number: 5625. (10.3390/cancers13225625)
- Holmen Olofsson, G. et al. 2021. Vγ9Vδ2 T cells concurrently kill cancer cells and cross-present tumor antigens. Frontiers in Immunology 12, article number: 645131. (10.3389/fimmu.2021.645131)
2020
- Kouzeli, A. et al. 2020. CXCL14 preferentially synergizes with homeostatic chemokine receptor systems. Frontiers in Immunology 11, article number: 561404. (10.3389/fimmu.2020.561404)
2018
- McCully, M. L., Kouzeli, A. and Moser, B. 2018. Peripheral tissue chemokines: homeostatic control of immune surveillance T cells. Trends in Immunology 39(9), pp. 734-747. (10.1016/j.it.2018.06.003)
- McCully, M. L. et al. 2018. CCR8 expression defines tissue-resident memory T cells in human skin. Journal of Immunology 200(5), pp. 1639-1650. (10.4049/jimmunol.1701377)
2017
- Chen, H. et al. 2017. Synergistic targeting of breast cancer stem-like cells by human γδ T cells and CD8+ T cells. Immunology and Cell Biology 95(7), pp. 620-629. (10.1038/icb.2017.21)
- Collins, P. J. et al. 2017. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB Journal 31(7), pp. 3084-3097. (10.1096/fj.201700013R)
- Howard, J. et al. 2017. The antigen presenting potential of Vγ9Vδ2 T-cells during Plasmodium falciparum blood-stage infection.. Journal of Infectious Diseases 215(10), pp. 1569-1579. (10.1093/infdis/jix149)
- Tyler, C. J., McCarthy, N. E., Lindsay, J. O., Stagg, A. J., Moser, B. and Eberl, M. 2017. Antigen-presenting human γδ T-cells promote intestinal CD4+ T-cell expression of IL-22 and mucosal release of calprotectin. The Journal of Immunology 198(9), article number: 1700003. (10.4049/jimmunol.1700003)
2016
- Liuzzi, A. R. et al. 2016. Unconventional human T cells accumulate at the site of infection in response to microbial ligands and induce local tissue remodeling. Journal of Immunology 197(6), pp. 2195-2207. (10.4049/jimmunol.1600990)
2015
- Moser, B. 2015. Editorial: history of chemoattractant research. Frontiers in Immunology 6, article number: 548. (10.3389/fimmu.2015.00548)
- McCully, M. L., Collins, P. J., Hughes, T. R., Thomas, C. P., Billen, J., O'Donnell, V. B. and Moser, B. 2015. Skin metabolites define a new paradigm in the localization of skin tropic memory T cells. Journal of Immunology 195(1), pp. 96-104. (10.4049/jimmunol.1402961)
- Tyler, C. J., Doherty, D. G., Moser, B. and Eberl, M. 2015. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Cellular Immunology 296(1), pp. 10-21. (10.1016/j.cellimm.2015.01.008)
- Dai, C., Basilico, P., Cremona, T. P., Collins, P., Moser, B., Benarafa, C. and Wolf, M. 2015. CXCL14 displays antimicrobial activity against respiratory tract bacteria and contributes to clearance of Streptococcus pneumoniae pulmonary infection. Journal of Immunology 194(12), pp. 5980-5989. (10.4049/jimmunol.1402634)
- Moser, B. 2015. CXCR5, the defining marker for follicular B helper T (TFH) cells. Frontiers in Immunology 6, pp. 1-3., article number: 296. (10.3389/fimmu.2015.00296)
- Ondondo, B. et al. 2015. A distinct chemokine axis does not account for enrichment of Foxp3+ CD4+T cells in carcinogen-induced fibrosarcomas. Immunology 145(1), pp. 94-104. (10.1111/imm.12430)
2014
- Collins, P. J., Liao, C., Price, D. and Moser, B. 2014. Improving our understanding of CXCL14, one of the few remaining unknowns in chemokine biology [Abstract]. Immunology 143(S2), pp. 85-85. (10.1111/imm.12406)
- Tyler, C. J., Moser, B. and Eberl, M. 2014. γδT-APCs promote IL-22 responses in naive and memory CD4+ T-cells. Immunology 143(s2), pp. 116-117., article number: 232. (10.1111/imm.12406)
- Khan, M. W. A., Eberl, M. and Moser, B. 2014. Potential use of γδ T cell-based vaccines in cancer immunotherapy. Frontiers in Immunology 5, article number: 512. (10.3389/fimmu.2014.00512)
- Davey, M. S. et al. 2014. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. Journal of Immunology 193(7), pp. 3704-3716. (10.4049/jimmunol.1401018)
- Khan, M. W. A. et al. 2014. Expanded human blood-derived gamma delta T cells display potent antigen-presentation functions. Frontiers in Immunology 5, article number: 344. (10.3389/fimmu.2014.00344)
- Khan, M. W. A., Chen, H., Eberl, M. and Moser, B. 2014. In vitro expanded γδ T-APC: revelance for cancer immunotherapy [Abstract]. Human Gene Therapy 25(5), pp. A15-A15., article number: P027. (10.1089/hum.2014.2509.abstracts)
2013
- Lin, C., Kift-Morgan, A. P., Moser, B., Topley, N. and Eberl, M. 2013. Suppression of pro-inflammatory T-cell responses by human mesothelial cells. Nephrology Dialysis Transplantation 28(7), pp. 1743-1750. (10.1093/ndt/gfs612)
- Davey, M. S., Moser, B. and Eberl, M. 2013. Crosstalk of human gamma delta T cells and neutrophils in response to bacterial infections. European Journal of Clinical Investigation 43, pp. 30-31.
- Welton, J. et al. 2013. Monocytes and γδ T cells control the acute phase response to intravenous zoledronate: insights from a phase IV safety trial. Journal of Bone and Mineral Research (JBMR) 28(3), pp. 464-471. (10.1002/jbmr.1797)
2012
- McCully, M. L., Ladell, K. I., Hakobyan, S., Mansel, R. E., Price, D. and Moser, B. 2012. Epidermis instructs skin homing receptor expression in human T cells. Blood 120(23), pp. 4591-4598. (10.1182/blood-2012-05-433037)
- Davey, M. S., Moser, B. and Eberl, M. 2012. Co-ordinated crosstalk of human gamma delta T cells, neutrophils and monocytes in response to bacterial infections. European Journal of Clinical Investigation 42(1), pp. 15-15.
- Bansal, R. R., Mackay, C. R., Moser, B. and Eberl, M. 2012. IL-21 enhances the potential of human gamma delta T cells to provide B-cell help. European Journal of Immunology 42(1), pp. 110-119. (10.1002/eji.201142017)
2011
- Davey, M. S., Moser, B. and Eberl, M. 2011. Co-ordinated crosstalk of human gamma delta T cells, neutrophils and monocytes in response to bacterial infections [Abstract]. Immunology 135(s1), pp. 85-85.
- Davey, M. S., Tyrrell, J. M., Howe, R. A., Walsh, T. R., Moser, B., Toleman, M. A. H. and Eberl, M. 2011. A promising target for treatment of multidrug-resistant bacterial infections [Letter]. Antimicrobial Agents and Chemotherapy 55(7), pp. 3635-3636. (10.1128/AAC.00382-11)
- Davey, M. S. et al. 2011. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. Plos Pathogens 7(5), article number: e1002040. (10.1371/journal.ppat.1002040)
- Davey, M. S. et al. 2011. Failure to detect production of IL-10 by activated human neutrophils [Letter]. Nature Immunology 12(11), pp. 1017-1018. (10.1038/ni.2111)
- Moser, B. and Eberl, M. 2011. γδ T-APCs: a novel tool for immunotherapy? [Book Review]. Cellular and Molecular Life Sciences 68(14), pp. 2443-2452. (10.1007/s00018-011-0706-6)
- Islam, S. A. et al. 2011. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ TH2 cells. Nature Immunology 12(2), pp. 167-177. (10.1038/ni.1984)
2010
- Bansal, R. R., Mackay, C. R., Moser, B. and Eberl, M. 2010. IL-21 induces the expression of markers associated with follicular B cell help by human gamma delta T cells [Abstract]. Immunology 131(s1), pp. 38-38. (10.1111/j.1365-2567.2010.03389.x)
- Davey, M. S. et al. 2010. Innate crosstalk of gamma delta T cells, neutrophils and monocytes in response to HMB-PP producing bacteria [Abstract]. Immunology 131, pp. 63-63. (10.1111/j.1365-2567.2010.03390.x)
- Lin, C. et al. 2010. The HMB-PP producing capacity of the causative pathogen and local gamma delta T cell numbers predict clinical outcome from bacterial peritonitis. Immunology 131, pp. 81-82.
- Meuter, S., Eberl, M. and Moser, B. 2010. Prolonged antigen survival and cytosolic export in cross-presenting human γδ T cells. Proceedings of the National Academy of Sciences of the United States of America 107(19), pp. 8730-8735. (10.1073/pnas.1002769107)
2009
- Eberl, M. and Moser, B. 2009. Monocytes and γδ T cells: close encounters in microbial infection. Trends in Immunology 30(12), pp. 562-568. (10.1016/j.it.2009.09.001)
- Eberl, M., Roberts, G. W., Meuter, S., Williams, J. D., Topley, N. and Moser, B. 2009. A rapid crosstalk of human gamma delta T cells and monocytes drives the acute inflammation in bacterial infections. Plos Pathogens 5(2), pp. 6-6., article number: e1000308. (10.1371/journal.ppat.1000308)
- Brandes, M. et al. 2009. Cross-presenting human gamma delta T cells induce robust CD8(+) alpha beta T cell responses. Proceedings of the National Academy of Sciences of the United States of America 106(7), pp. 2307-2312. (10.1073/pnas.0810059106)
- Maerki, C. et al. 2009. Potent and broad-spectrum antimicrobial activity of CXCL14 suggests an immediate role in skin infections. Journal of Immunology 182(1), pp. 507-514.
2008
- Eberl, M., Roberts, G. W., Meuter, S., Williams, J. D., Topley, N. and Moser, B. 2008. Rapid differentiation of monocytes into inflammatory DCs through crosstalk with activated human T cells. Immunology 125, pp. 6-6.
- Bansal, R. R., Meuter, S., Moser, B. and Eberl, M. 2008. IL-21 induces the B cell attracting chemokine CXCL13 in human gd T cells. Immunology 125, pp. 101-101.
- Märki, C., Liebi, M., Ackermann, U., Mühlemann, K., Frederick, M., Moser, B. and Wolf, M. 2008. The chemokine CXCL14/BRAK has antimicrobial activity [Abstract]. Swiss Medical Weekly(S163), pp. 44S.
- Meuter, S. and Moser, B. 2008. Constitutive expression of CXCL14 in healthy human and murine epithelial tissues. Cytokine 44(2), pp. 248-255. (10.1016/j.cyto.2008.08.009)
2007
- Meuter, S., Schaerli, P., Roos, R. S., Brandau, O., Bosl, M. R., von Andrian, U. H. and Moser, B. 2007. Murine CXCL14 is dispensable for dendritic cell function and localization within peripheral tissues. Molecular and Cellular Biology 27(3), pp. 983-992. (10.1128/MCB.01648-06)
- Moser, B. and Eberl, M. 2007. gammadelta T cells: novel initiators of adaptive immunity [review]. Immunological Reviews 215(1), pp. 89-102. (10.1111/j.1600-065x.2006.00472.x)
2006
- Schaerli, P., Ebert, L. M. and Moser, B. 2006. Comment on "the vast majority of CLA+T cells are resident in normal skin". The Journal of Immunology 177(3), pp. 1375-1376. (10.4049/jimmunol.177.3.1375)
- Ebert, L. M., Meuter, S. and Moser, B. 2006. Homing and function of human skin γδ T cells and NK Cells: relevance for tumor surveillance. The Journal of Immunology 176(7), pp. 4331-4336. (10.4049/jimmunol.176.7.4331)
2005
- Moser, B., Walz, A., Willimann, K. and Ebert, L. M. 2005. Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity 23(3), pp. 331-42. (10.1016/j.immuni.2005.08.012)
- Moser, B., Brandes, M. and Willimann, K. 2005. Professional antigen-presentation function by human gammadelta T Cells. Science 309(5732), pp. 264-8. (10.1126/science.1110267)
2004
- Schaerli, P., Ebert, L., Willimann, K., Blaser, A., Roos, R. S., Loetscher, P. and Moser, B. 2004. A skin-selective homing mechanism for human immune surveillance T cells. Journal of Experimental Medicine 199(9), pp. 1265-1275. (10.1084/jem.20032177)
2003
- Ferrero, E. et al. 2003. Macrophages exposed to Mycobacterium tuberculosis release chemokines able to recruit selected leucocyte subpopulations: focus on γδ cells. Immunology 108(3), pp. 365-374. (10.1046/j.1365-2567.2003.01600.x)
2001
- Moser, B., Willimann, K., Schaerli, P. and Hunziker, T. 2001. Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. Journal of Experimental Medicine 194(6), pp. 855-61. (10.1084/jem.194.6.855)
2000
- Dumont, R. A., Car, B. D., Voitenok, N. N., Junker, U., Moser, B., Zak, O. and O'Reilly, T. 2000. Systemic neutralization of interleukin-8 markedly reduces neutrophilic pleocytosis during experimental lipopolysaccharide-induced meningitis in rabbits. Infection and Immunity 68(10), pp. 5756-5763. (10.1128/IAI.68.10.5756-5763.2000)
Articles
- Burton, R. J. et al. 2024. Conventional and unconventional T cell responses contribute to the prediction of clinical outcome and causative bacterial pathogen in sepsis patients. Clinical & Experimental Immunology 216(3), pp. 293-306. (10.1093/cei/uxae019)
- Tyler, C. J. et al. 2024. IL-21 conditions antigen-presenting human γδ T-cells to promote IL-10 expression in naïve and memory CD4+ T-cells. Discovery Immunology (10.1093/discim/kyae008)
- Muri, J. et al. 2023. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nature Immunology 24(4), pp. 604-611. (10.1038/s41590-023-01445-w)
- Moser, B. 2022. Emerging roles of chemokines in cancer immunotherapy. Cancers 14(15), article number: e3593. (10.3390/cancers14153593)
- Adams, R., Moser, B., Karagiannis, S. N. and Lacy, K. E. 2021. Chemokine pathways in cutaneous melanoma: their modulation by cancer and exploitation by the clinician. Cancers 13(22), article number: 5625. (10.3390/cancers13225625)
- Holmen Olofsson, G. et al. 2021. Vγ9Vδ2 T cells concurrently kill cancer cells and cross-present tumor antigens. Frontiers in Immunology 12, article number: 645131. (10.3389/fimmu.2021.645131)
- Kouzeli, A. et al. 2020. CXCL14 preferentially synergizes with homeostatic chemokine receptor systems. Frontiers in Immunology 11, article number: 561404. (10.3389/fimmu.2020.561404)
- McCully, M. L., Kouzeli, A. and Moser, B. 2018. Peripheral tissue chemokines: homeostatic control of immune surveillance T cells. Trends in Immunology 39(9), pp. 734-747. (10.1016/j.it.2018.06.003)
- McCully, M. L. et al. 2018. CCR8 expression defines tissue-resident memory T cells in human skin. Journal of Immunology 200(5), pp. 1639-1650. (10.4049/jimmunol.1701377)
- Chen, H. et al. 2017. Synergistic targeting of breast cancer stem-like cells by human γδ T cells and CD8+ T cells. Immunology and Cell Biology 95(7), pp. 620-629. (10.1038/icb.2017.21)
- Collins, P. J. et al. 2017. Epithelial chemokine CXCL14 synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB Journal 31(7), pp. 3084-3097. (10.1096/fj.201700013R)
- Howard, J. et al. 2017. The antigen presenting potential of Vγ9Vδ2 T-cells during Plasmodium falciparum blood-stage infection.. Journal of Infectious Diseases 215(10), pp. 1569-1579. (10.1093/infdis/jix149)
- Tyler, C. J., McCarthy, N. E., Lindsay, J. O., Stagg, A. J., Moser, B. and Eberl, M. 2017. Antigen-presenting human γδ T-cells promote intestinal CD4+ T-cell expression of IL-22 and mucosal release of calprotectin. The Journal of Immunology 198(9), article number: 1700003. (10.4049/jimmunol.1700003)
- Liuzzi, A. R. et al. 2016. Unconventional human T cells accumulate at the site of infection in response to microbial ligands and induce local tissue remodeling. Journal of Immunology 197(6), pp. 2195-2207. (10.4049/jimmunol.1600990)
- Moser, B. 2015. Editorial: history of chemoattractant research. Frontiers in Immunology 6, article number: 548. (10.3389/fimmu.2015.00548)
- McCully, M. L., Collins, P. J., Hughes, T. R., Thomas, C. P., Billen, J., O'Donnell, V. B. and Moser, B. 2015. Skin metabolites define a new paradigm in the localization of skin tropic memory T cells. Journal of Immunology 195(1), pp. 96-104. (10.4049/jimmunol.1402961)
- Tyler, C. J., Doherty, D. G., Moser, B. and Eberl, M. 2015. Human Vγ9/Vδ2 T cells: Innate adaptors of the immune system. Cellular Immunology 296(1), pp. 10-21. (10.1016/j.cellimm.2015.01.008)
- Dai, C., Basilico, P., Cremona, T. P., Collins, P., Moser, B., Benarafa, C. and Wolf, M. 2015. CXCL14 displays antimicrobial activity against respiratory tract bacteria and contributes to clearance of Streptococcus pneumoniae pulmonary infection. Journal of Immunology 194(12), pp. 5980-5989. (10.4049/jimmunol.1402634)
- Moser, B. 2015. CXCR5, the defining marker for follicular B helper T (TFH) cells. Frontiers in Immunology 6, pp. 1-3., article number: 296. (10.3389/fimmu.2015.00296)
- Ondondo, B. et al. 2015. A distinct chemokine axis does not account for enrichment of Foxp3+ CD4+T cells in carcinogen-induced fibrosarcomas. Immunology 145(1), pp. 94-104. (10.1111/imm.12430)
- Collins, P. J., Liao, C., Price, D. and Moser, B. 2014. Improving our understanding of CXCL14, one of the few remaining unknowns in chemokine biology [Abstract]. Immunology 143(S2), pp. 85-85. (10.1111/imm.12406)
- Tyler, C. J., Moser, B. and Eberl, M. 2014. γδT-APCs promote IL-22 responses in naive and memory CD4+ T-cells. Immunology 143(s2), pp. 116-117., article number: 232. (10.1111/imm.12406)
- Khan, M. W. A., Eberl, M. and Moser, B. 2014. Potential use of γδ T cell-based vaccines in cancer immunotherapy. Frontiers in Immunology 5, article number: 512. (10.3389/fimmu.2014.00512)
- Davey, M. S. et al. 2014. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. Journal of Immunology 193(7), pp. 3704-3716. (10.4049/jimmunol.1401018)
- Khan, M. W. A. et al. 2014. Expanded human blood-derived gamma delta T cells display potent antigen-presentation functions. Frontiers in Immunology 5, article number: 344. (10.3389/fimmu.2014.00344)
- Khan, M. W. A., Chen, H., Eberl, M. and Moser, B. 2014. In vitro expanded γδ T-APC: revelance for cancer immunotherapy [Abstract]. Human Gene Therapy 25(5), pp. A15-A15., article number: P027. (10.1089/hum.2014.2509.abstracts)
- Lin, C., Kift-Morgan, A. P., Moser, B., Topley, N. and Eberl, M. 2013. Suppression of pro-inflammatory T-cell responses by human mesothelial cells. Nephrology Dialysis Transplantation 28(7), pp. 1743-1750. (10.1093/ndt/gfs612)
- Davey, M. S., Moser, B. and Eberl, M. 2013. Crosstalk of human gamma delta T cells and neutrophils in response to bacterial infections. European Journal of Clinical Investigation 43, pp. 30-31.
- Welton, J. et al. 2013. Monocytes and γδ T cells control the acute phase response to intravenous zoledronate: insights from a phase IV safety trial. Journal of Bone and Mineral Research (JBMR) 28(3), pp. 464-471. (10.1002/jbmr.1797)
- McCully, M. L., Ladell, K. I., Hakobyan, S., Mansel, R. E., Price, D. and Moser, B. 2012. Epidermis instructs skin homing receptor expression in human T cells. Blood 120(23), pp. 4591-4598. (10.1182/blood-2012-05-433037)
- Davey, M. S., Moser, B. and Eberl, M. 2012. Co-ordinated crosstalk of human gamma delta T cells, neutrophils and monocytes in response to bacterial infections. European Journal of Clinical Investigation 42(1), pp. 15-15.
- Bansal, R. R., Mackay, C. R., Moser, B. and Eberl, M. 2012. IL-21 enhances the potential of human gamma delta T cells to provide B-cell help. European Journal of Immunology 42(1), pp. 110-119. (10.1002/eji.201142017)
- Davey, M. S., Moser, B. and Eberl, M. 2011. Co-ordinated crosstalk of human gamma delta T cells, neutrophils and monocytes in response to bacterial infections [Abstract]. Immunology 135(s1), pp. 85-85.
- Davey, M. S., Tyrrell, J. M., Howe, R. A., Walsh, T. R., Moser, B., Toleman, M. A. H. and Eberl, M. 2011. A promising target for treatment of multidrug-resistant bacterial infections [Letter]. Antimicrobial Agents and Chemotherapy 55(7), pp. 3635-3636. (10.1128/AAC.00382-11)
- Davey, M. S. et al. 2011. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. Plos Pathogens 7(5), article number: e1002040. (10.1371/journal.ppat.1002040)
- Davey, M. S. et al. 2011. Failure to detect production of IL-10 by activated human neutrophils [Letter]. Nature Immunology 12(11), pp. 1017-1018. (10.1038/ni.2111)
- Moser, B. and Eberl, M. 2011. γδ T-APCs: a novel tool for immunotherapy? [Book Review]. Cellular and Molecular Life Sciences 68(14), pp. 2443-2452. (10.1007/s00018-011-0706-6)
- Islam, S. A. et al. 2011. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ TH2 cells. Nature Immunology 12(2), pp. 167-177. (10.1038/ni.1984)
- Bansal, R. R., Mackay, C. R., Moser, B. and Eberl, M. 2010. IL-21 induces the expression of markers associated with follicular B cell help by human gamma delta T cells [Abstract]. Immunology 131(s1), pp. 38-38. (10.1111/j.1365-2567.2010.03389.x)
- Davey, M. S. et al. 2010. Innate crosstalk of gamma delta T cells, neutrophils and monocytes in response to HMB-PP producing bacteria [Abstract]. Immunology 131, pp. 63-63. (10.1111/j.1365-2567.2010.03390.x)
- Lin, C. et al. 2010. The HMB-PP producing capacity of the causative pathogen and local gamma delta T cell numbers predict clinical outcome from bacterial peritonitis. Immunology 131, pp. 81-82.
- Meuter, S., Eberl, M. and Moser, B. 2010. Prolonged antigen survival and cytosolic export in cross-presenting human γδ T cells. Proceedings of the National Academy of Sciences of the United States of America 107(19), pp. 8730-8735. (10.1073/pnas.1002769107)
- Eberl, M. and Moser, B. 2009. Monocytes and γδ T cells: close encounters in microbial infection. Trends in Immunology 30(12), pp. 562-568. (10.1016/j.it.2009.09.001)
- Eberl, M., Roberts, G. W., Meuter, S., Williams, J. D., Topley, N. and Moser, B. 2009. A rapid crosstalk of human gamma delta T cells and monocytes drives the acute inflammation in bacterial infections. Plos Pathogens 5(2), pp. 6-6., article number: e1000308. (10.1371/journal.ppat.1000308)
- Brandes, M. et al. 2009. Cross-presenting human gamma delta T cells induce robust CD8(+) alpha beta T cell responses. Proceedings of the National Academy of Sciences of the United States of America 106(7), pp. 2307-2312. (10.1073/pnas.0810059106)
- Maerki, C. et al. 2009. Potent and broad-spectrum antimicrobial activity of CXCL14 suggests an immediate role in skin infections. Journal of Immunology 182(1), pp. 507-514.
- Eberl, M., Roberts, G. W., Meuter, S., Williams, J. D., Topley, N. and Moser, B. 2008. Rapid differentiation of monocytes into inflammatory DCs through crosstalk with activated human T cells. Immunology 125, pp. 6-6.
- Bansal, R. R., Meuter, S., Moser, B. and Eberl, M. 2008. IL-21 induces the B cell attracting chemokine CXCL13 in human gd T cells. Immunology 125, pp. 101-101.
- Märki, C., Liebi, M., Ackermann, U., Mühlemann, K., Frederick, M., Moser, B. and Wolf, M. 2008. The chemokine CXCL14/BRAK has antimicrobial activity [Abstract]. Swiss Medical Weekly(S163), pp. 44S.
- Meuter, S. and Moser, B. 2008. Constitutive expression of CXCL14 in healthy human and murine epithelial tissues. Cytokine 44(2), pp. 248-255. (10.1016/j.cyto.2008.08.009)
- Meuter, S., Schaerli, P., Roos, R. S., Brandau, O., Bosl, M. R., von Andrian, U. H. and Moser, B. 2007. Murine CXCL14 is dispensable for dendritic cell function and localization within peripheral tissues. Molecular and Cellular Biology 27(3), pp. 983-992. (10.1128/MCB.01648-06)
- Moser, B. and Eberl, M. 2007. gammadelta T cells: novel initiators of adaptive immunity [review]. Immunological Reviews 215(1), pp. 89-102. (10.1111/j.1600-065x.2006.00472.x)
- Schaerli, P., Ebert, L. M. and Moser, B. 2006. Comment on "the vast majority of CLA+T cells are resident in normal skin". The Journal of Immunology 177(3), pp. 1375-1376. (10.4049/jimmunol.177.3.1375)
- Ebert, L. M., Meuter, S. and Moser, B. 2006. Homing and function of human skin γδ T cells and NK Cells: relevance for tumor surveillance. The Journal of Immunology 176(7), pp. 4331-4336. (10.4049/jimmunol.176.7.4331)
- Moser, B., Walz, A., Willimann, K. and Ebert, L. M. 2005. Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity 23(3), pp. 331-42. (10.1016/j.immuni.2005.08.012)
- Moser, B., Brandes, M. and Willimann, K. 2005. Professional antigen-presentation function by human gammadelta T Cells. Science 309(5732), pp. 264-8. (10.1126/science.1110267)
- Schaerli, P., Ebert, L., Willimann, K., Blaser, A., Roos, R. S., Loetscher, P. and Moser, B. 2004. A skin-selective homing mechanism for human immune surveillance T cells. Journal of Experimental Medicine 199(9), pp. 1265-1275. (10.1084/jem.20032177)
- Ferrero, E. et al. 2003. Macrophages exposed to Mycobacterium tuberculosis release chemokines able to recruit selected leucocyte subpopulations: focus on γδ cells. Immunology 108(3), pp. 365-374. (10.1046/j.1365-2567.2003.01600.x)
- Moser, B., Willimann, K., Schaerli, P. and Hunziker, T. 2001. Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. Journal of Experimental Medicine 194(6), pp. 855-61. (10.1084/jem.194.6.855)
- Dumont, R. A., Car, B. D., Voitenok, N. N., Junker, U., Moser, B., Zak, O. and O'Reilly, T. 2000. Systemic neutralization of interleukin-8 markedly reduces neutrophilic pleocytosis during experimental lipopolysaccharide-induced meningitis in rabbits. Infection and Immunity 68(10), pp. 5756-5763. (10.1128/IAI.68.10.5756-5763.2000)
Ymchwil
Below is are samples of past and current research activites (in chronological order) of the Moser lab:
1 Moser, B., I. Clark-Lewis, R. Zwahlen, and M. Baggiolini. 1990. Neutrophil-activating properties of the melanoma growth-stimulatory activity. J. Exp. Med. 171:1797-1802. (PMID: 2185333)
Functional rebranding of the tumour growth cytokine MGSA as a potent neutrophil chemoattractant (today known as CXCL1).
2 Moser, B., C. Schumacher, V. von Tscharner, I. Clark-Lewis, and M. Baggiolini. 1991. Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide 1/interleukin 8 receptors on human neutrophils. J. Biol. Chem. 266:10666-10671. (PMID:2037605)
First biochemical demonstration that human neutrophils express two types of IL-8 receptors, CXCR1 and CXCR2; the corresponding cDNAs were reported subsequently in the same year by the groups of P.M. Murphy (NIH) and W.I. Wood (Genentech).
3 Moser, B., B. Dewald, L. Barella, C. Schumacher, M. Baggiolini, and I. Clark-Lewis. 1993. Interleukin-8 antagonists generated by N-terminal modification. J. Biol. Chem. 268:7125-7128. (PMID: 8463247)
Demonstration that potent inhibitors of IL-8 receptors can be generated by IL-8 structure variation.
4 Loetscher, M., B. Gerber, P. Loetscher, S. A. Jones, L. Piali, I. Clark-Lewis, M. Baggiolini, and B. Moser. 1996. Chemokine receptor specific for IP10 and Mig: Structure, function and expression in activated T lymphocytes. J. Exp. Med. 184:963-969. (PMID: 9064356)
Discovery of first T cell-specific chemokine receptor (CXCR3), shifting research interests from innate to adaptive immune cells. (>790 citations)
5 Oberlin E., Amara A., Bachelerie F., Bessia C., Virelizier J.L., Arenzana-Seisdedos F., Schwartz O., Heard J.M., Clark-Lewis I., Legler D.F., Loetscher M., Baggiolini M., Moser B. 1996. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature., 382: 833-835. (PMID: 8752281)
Discovery of SDF-1 (now termed CXCL12) as the specific chemokine ligand for LESTR (now termed CXCR4) and its potent suppressive activity for X4-HIV-11 (back-to-back publication with T.A. Springer's group, Harvard Medical School). (>1,200 citations)
6 Arenzana-Seisdedos, F., Virelizier, J.-L., Rousset, D., Clark-Lewis, I., Loetscher, P., Moser, B. and Baggiolini, M. 1996. HIV blocked by chemokine antagonist. Nature 383: 400. (PMID: 8837769)
This report demonstrates the potent inhibition of R5-HIV-1 infection by a novel class of RANTES/CCL5-based CCR5 antagonist.
7 Stuber Roos, R., M. Loetscher, D.F. Legler, I. Clark-Lewis, M. Baggiolini, and B. Moser. 1997. Identification of CCR8, the receptor for the human CC chemokine I‑309. J. Biol. Chem., 272:17251-17254. (PMID: 9211859)
Discovery of CCR8 as the specific receptor for the chemokine I-309 (now termed CCL1); this finding formed the basis of our current investigations into human skin-specific memory T cells (see also refs 13 and 20)
8 Legler, D.F., M. Loetscher, R.S. Roos, I. Clark-Lewis, M. Baggiolini, and B. Moser. 1998. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med., 187:655-660. (PMID: 9463416)
Discovery of BCA-1 (now termed CXCL13) as a potent B cell chemoattractant with selectivity for MDR15/BLR1 (now termed CXCR5). (>400 citations)
9 Loetscher, P., M. Uguccioni, L.Bordoli, M. Baggiolini, B. Moser, C. Chizzolini, J.M. Dayer. 1998. CCR5 is characteristic of Th1 lymphocytes. Nature, 391:344-345. (PMID: 9450748)
Demonstration that CCR5 is preferentially expressed on Th1 cells, giving a rationale for the depletion of peripheral blood Th1 cells during primary infection with R5-HIV-1. (>690 citations)
10 Arenzana-Seisdedos, F., A. Amara, D. Thomas, J.-L. Virelizier, F. Baleux, I. Clark-Lewis, D.F. Legler, B. Moser, and M. Baggiolini. 1998. b-chemokine MDC and HIV‑1 infection. Science, 281:487a.
Technical comment in response to a Science report by R. Gallo's group (Baltimore). Demonstration that R. Gallo’s report is wrong, saying that MDC (now termed CCL22) and its selective receptor CCR4 act as HIV-1 suppressor and HIV-1 co-receptor, respectively. Merger of the two fields, chemokines and HIV infection, created a substantial number of controversial reports.
11 Schaerli, P., K. Willimann, A.L. Lang, M. Lipp, P. Loetscher, and B. Moser. 2000. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med., 192:1553-1562. (PMID: 11104798)
Demonstration that CXCR5 is characteristic for a subset of human CD4+ T cells with B cell helper activities. Together with a back-to-back report by M. Lipp’s group (Berlin), these findings led to the definition of a novel Thelper subset, which we have termed follicular B helper T cells (TFH cells). (>370 citations)
12 Kurth, I., K. Willimann, P. Schaerli, T. Hunziker, I. Clark-Lewis, and B. Moser. 2001. Monocyte selectivity and tissue localization suggests a role for breast and kidney–expressed chemokine (BRAK) in macrophage development. J. Exp. Med. 194:855-862. (PMID: 11561000)
Demonstration of the epithelial tissue localisation of the novel chemokine BRAK (now termed CXCL14) and its selectivity for monocytes. The finding initiated our interest in immune surveillance of peripheral tissues.
13 Schaerli, P., L. Ebert, K. Willimann, A. Blaser, R. Stuber Roos, P. Loetscher, and B. Moser. 2004. A skin-selective homing mechanism for human immune surveillance T cells. J. Exp. Med., 199:1265-1275. (PMID: 15125746)
First report of a selective accumulation of CCR8+ T cells in healthy human skin, which led to current research into the mechanisms underlying the generation/maintenance of steady-state immunity (immune surveillance) in healthy peripheral tissues.
14 Brandes, M., K. Willimann, and B. Moser. 2005. Professional antigen-presentation function by human gd T cells. Science, 309:264-268. (PMID: 15933162)
Discovery of gdT-APC (VgVd-TCR gdT cell-derived antigen-presenting cells). These findings formed the basis for current translational initiatives directed at using gdT-APC vaccines for immunotherapy of cancer patients. (>230 citations)
15 Schaerli, P., K. Willimann, L.M. Ebert, A. Walz, and B. Moser. 2005. Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity, 23:331-342. (PMID: 16169505)
In an extension to ref 12, this report provides evidence for a role of CXCL14 in the generation of cutaneous dendritic cells under steady-state conditions. First demonstration of the importance of tissue factors in “shaping” immune surveillance cells.
16 Brandes, M., K. Willimann, G. Bioley, N. Lévy, M. Eberl, M. Luo, R. Tampé, F. Lévy, P. Romero, and B. Moser. 2009. Cross-Presenting Human gd T Cells Induce Robust CD8+ ab T Effector Cell Responses. Proc. Natl. Acad. Sci. USA 106:2307-2312. (PMID: 19171897)
In an extension to ref 14, this report demonstrates the ability of gdT-APC to cross-present antigens to CD8+ T cells, which is relevant for the initiation of anti-tumour immunity.
17 Eberl, M., G. W. Roberts, S. Meuter, J.D. Williams, N. Topley, and B. Moser. 2009. A rapid crosstalk of human gd T cells and monocytes drives the acute inflammation in bacterial infections. PLoS Pathogens 5:e1000308. (PMID: 19229322)
This report highlights the functional synergy between gdT cells and monocytes, two types of immune cells that are recruited early to sites of microbial infections.
18 Meuter, S., M. Eberl, and B. Moser. 2010. Prolonged antigen survival and cytosolic export in cross-presenting human gd T cells. Proc. Natl. Acad. Sci. USA 107:8730-8735. (PMID: 20413723)
In an extension to refs 14 and 16, this report interrogates mechanisms underlying the exceptional antigen cross-presentation capabilities of gdT-APC, which is of obvious relevance to tumour immunotherapy.
19 Islam, S.A., D.S. Chang, R.C. Colvin, M.H. Byrne, M.L. McCully, B. Moser, S.A. Lira, I.F. Charo, and A.D. Luster. 2010. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ Th2 cells. Nat. Immunol. 12:167-177. (PMID: 21217759)
This report demonstrates that CCR8 is expressed on a subset of human blood Th2 cells, lending “weight” to the findings in mice of CCR8 expression on Th2 cells in a model of atopic dermatitis. This work pertains directly to current research into human skin T cells.
20 McCully, M.L., K. Ladell, S. Hakobyan, R.E. Mansel, D.A. Price, and B. Moser. 2012. Epidermis instructs skin homing receptor expression in human T cells. Blood 120:4591-98. (PMID:23043070)
Based on novel staining reagents, this report identifies CCR8 as a marker for skin-specific immune surveillance T cells, whose generation is dependent on epidermis-derived T cell differentiation factors. This study forms the basis for current cutaneous CCR8+ T cell research.
Bywgraffiad
08/1981 – 07/1982 Research Associated Federal Institute of Technology (ETH), Zurich
12/1988 – 08/1994 Research Assistant Theodor-Kocher Institute, University of Bern, Bern
09/1994 – 12/2004 Group Leader Theodor-Kocher Institute, University of Bern, Bern
09/1997 – 07/1998 Visiting Professor Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston
08/2001 – 12/2003 Director Theodor-Kocher Institute (TKI), University of Bern, Bern
01/2004 – 11/2006 Group Leader Institute of Cell Biology, University of Bern, Bern
12/2006 – present Professor Chair in Infection & Immunology, Cardiff University, Cardiff
05/2007 – 09/2011 Chair Infection, Immunity & Inflammation Interdisciplinary Research Group, Cardiff University, Cardiff
Anrhydeddau a dyfarniadau
1983-85 Terry Fox Cancer Research Foundation Grad. Scholarship (Canada)
1995-2000 Prof. Dr. Max Cloëtta Research Career Development Award (Switzerland)
1997 Pfizer Research Prize (Rheumatology/Immunology) (USA)
2003 Prize Prof. Dr. Max Cloëtta (Switzerland)
2007 Royal Society-Wolfson Research Merit Award (UK)
2008 Henry Kunkel Society (member) (USA)
Contact Details
+44 29206 87058
Adeilad Henry Wellcome ar gyfer Ymchwil Biofeddygol, Ystafell 3F08, Ysbyty Athrofaol Cymru, Parc y Mynydd Bychan, Caerdydd, CF14 4XN