Trosolwyg
I joined the Cardiff School of Pharmacy and Pharmaceutical Sciences in October 2017 to continue my highly interdisciplinary research into the use of nano, micro and macroscale materials for use in neuroscience research. Specifically I have developed microscale spherical hydrogel scaffolds for cell and growth factor delivery to the Parkinsonian brain and I am developing a variety of other materials for applications in multiple sclerosis, cytokine delivery and neuroimaging.
I joined the Cardiff School of Biosciences in 2013 on a Sir Henry Wellcome Trust Fellowship (carried out in collaboration with the Leibniz Institute for Polymer Research, Dresden, Germany).
Cyhoeddiad
2024
- Wang, Y., Le Joncour, V., Laakkonen, P. and Newland, B. 2024. Supersoft sponge-like cryogel as an implant to treat glioblastoma. Neuro-Oncology 26(7), pp. vii16. (10.1093/neuonc/noae158.064)
- Narasimhan, K., Hakami, A., Comini, G., Patton, T., Newland, B. and Dowd, E. 2024. Cryogel microcarriers loaded with glial cell line-derived neurotrophic factor enhance the engraftment of primary dopaminergic neurons in a rat model of Parkinson’s disease. Journal of Neural Engineering 21(5), article number: 56011. (10.1088/1741-2552/ad7761)
- Hakami, A., Narasimhan, K., Comini, G., Thiele, J., Werner, C., Dowd, E. and Newland, B. 2024. Cryogel microcarriers for sustained local delivery of growth factors to the brain. Journal of Controlled Release 369, pp. 404-419. (10.1016/j.jconrel.2024.03.023)
- Ferraraccio, L. S., Russell, J., Newland, B. and Bertoncello, P. 2024. Poly(ethylene glycol)(PEG)-Cryogels: a novel platform towards enzymatic electrochemiluminescence (ECL)-based sensor applications. Electrochimica Acta 483, article number: 144007. (10.1016/j.electacta.2024.144007)
2023
- Wang, Y., Bastiancich, C. and Newland, B. 2023. Injectable local drug delivery systems for glioblastoma: a systematic review and meta -analysis of progress to date †. Biomaterials Science (10.1039/d2bm01534j)
2022
- Newland, B. and Long, K. R. 2022. Cryogel scaffolds – soft and easy to use tools for neural tissue culture. Neural Regeneration Research 17(9), pp. 1981-1983. (10.4103/1673-5374.335156)
- Newland, B., Starke, J., Bastiancich, C., Gonçalves, D. P. N., Bray, L. J., Wang, W. and Werner, C. 2022. Well-defined polyethylene glycol microscale hydrogel blocks containing gold nanorods for dual photothermal and chemotherapeutic therapy. Pharmaceutics 14(3), article number: 551. (10.3390/pharmaceutics14030551)
2021
- Rizzo, S. A., Bartley, O., Rosser, A. E. and Newland, B. 2021. Oxygen-glucose deprivation in neurons: implications for cell transplantation therapies. Progress in Neurobiology 205, article number: 102126. (10.1016/j.pneurobio.2021.102126)
- Alghamdi, M., Gumbleton, M. and Newland, B. 2021. Local delivery to malignant brain tumors: potential biomaterial-based therapeutic/adjuvant strategies. Biomaterials Science 9(18), pp. 6037-6051. (10.1039/D1BM00896J)
- Bastiancich, C., Bozzato, E., Henley, I. and Newland, B. 2021. Does local drug delivery still hold therapeutic promise for brain cancer? A systematic review. Journal of Controlled Release 337, pp. 296-305. (10.1016/j.jconrel.2021.07.031)
- He, Z., Xu, Q., Newland, B., Foley, R., Lara-Sáez, I., Curtin, J. F. and Wang, W. 2021. Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. Journal of Materials Chemistry B: Materials for biology and medicine 9(32), pp. 6326-6346. (10.1039/D1TB00728A)
- Eigel, D., Werner, C. and Newland, B. 2021. Cryogel biomaterials for neuroscience applications. Neurochemistry International 147, article number: 105012. (10.1016/j.neuint.2021.105012)
- Eigel, D. et al. 2021. Sulfonated cryogel scaffolds for focal delivery in ex-vivo brain tissue cultures. Biomaterials 271, article number: 120712. (10.1016/j.biomaterials.2021.120712)
- Newland, B. et al. 2021. Injectable glycosaminoglycan-based cryogels from well-defined microscale templates for local growth factor delivery. ACS Chemical Neuroscience 12(7), pp. 1178-1188. (10.1021/acschemneuro.1c00005)
- Zoupi, L. et al. 2021. Selective vulnerability of inhibitory networks in multiple sclerosis. Acta Neuropathologica 141, pp. 415-429. (10.1007/s00401-020-02258-z)
- Ucar, B. et al. 2021. Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomaterialia 121, pp. 250-262. (10.1016/j.actbio.2020.11.035)
- Ng, W. S. V. et al. 2021. New avenues for therapy in mitochondrial optic neuropathies. Therapeutic Advances in Rare Disease 2, pp. 1-14. (10.1177/26330040211029037)
- Jarrin, S., Hakami, A., Newland, B. and Dowd, E. 2021. Growth factor therapy for Parkinson's disease: alternative delivery systems. Journal of Parkinson's Disease 11(S2), pp. S229-S236. (10.3233/JPD-212662)
2020
- Newland, B. et al. 2020. Focal drug administration via heparin-containing cryogel microcarriers reduces cancer growth and metastasis. Carbohydrate Polymers 245, article number: 116504. (10.1016/j.carbpol.2020.116504)
- Alghamdi, M. et al. 2020. Poly(ethylene glycol) based nanotubes for tuneable drug delivery to glioblastoma multiforme. Nanoscale Advances 2(10), pp. 4498-4509. (10.1039/D0NA00471E)
- Varricchio, C., Beirne, K., Heard, C., Newland, B., Rozanowska, M., Brancale, A. and Votruba, M. 2020. The ying and yang of idebenone: Not too little, not too much - cell death in NQO1 deficient cells and the mouse retina. Free Radical Biology and Medicine 152, pp. 551-560. (10.1016/j.freeradbiomed.2019.11.030)
- Gao, Y. et al. 2020. Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nature Reviews Chemistry 4(4), pp. 194-212. (10.1038/s41570-020-0170-7)
- Newland, B. et al. 2020. Macroporous heparin-based microcarriers allow long-term 3D culture and differentiation of neural precursor cells. Biomaterials 230, article number: 119540. (10.1016/j.biomaterials.2019.119540)
2019
- Eigel, D., Zoupi, L., Sekizar, S., Welzel, P. B., Werner, C., Williams, A. and Newland, B. 2019. Cryogel scaffolds for regionally constrained delivery of lysophosphatidylcholine to central nervous system slice cultures: A model of focal demyelination for multiple sclerosis research. Acta Biomaterialia 97, pp. 216-229. (10.1016/j.actbio.2019.08.030)
- Liu, S. et al. 2019. Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nature Communications 10(1), article number: 3307. (10.1038/s41467-019-11190-0)
- Newland, B. et al. 2019. Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers. MethodsX 7, article number: 100805. (10.1016/j.mex.2020.100805)
2018
- Newland, H., Eigel, D., Rosser, A. E., Werner, C. and Newland, B. 2018. Oxygen producing microscale spheres affect cell survival in conditions of oxygen-glucose deprivation in a cell specific manner: implications for cell transplantation. Biomaterials Science 6(10), pp. 2571-2577. (10.1039/C8BM00490K)
- Long, K. R. et al. 2018. Extracellular matrix components HAPLN1, lumican, and collagen I cause hyaluronic acid-dependent folding of the developing human Neocortex. Neuron 99(4), pp. 702-719.e6. (10.1016/j.neuron.2018.07.013)
- Newland, B. et al. 2018. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. Nanoscale 10(18), pp. 8413-8421. (10.1039/C8NR00603B)
- Zhang, H., Zhao, T., Newland, B., Liu, W., Wang, W. and Wang, W. 2018. Catechol functionalized hyperbranched polymers as biomedical materials. Progress in Polymer Science 78, pp. 47-55. (10.1016/j.progpolymsci.2017.09.002)
2017
- Newland, B., Baeger, M., Eigel, D., Newland, H. and Werner, C. 2017. Oxygen-producing gellan gum hydrogels for dual delivery of either oxygen or peroxide with doxorubicin. ACS Biomaterials Science & Engineering 3(5), pp. 787-792. (10.1021/acsbiomaterials.7b00078)
- Gao, Y., Newland, B., Zhou, D., Matyjaszewski, K. and Wang, W. 2017. Controlled polymerization of multivinyl monomers: Formation of cyclized/knotted single-chain polymer architectures. Angewandte Chemie International Edition 56(2), pp. 450-460. (10.1002/anie.201608786)
2016
- Newland, B., Dunnett, S. B. and Dowd, E. 2016. Targeting delivery in Parkinson's disease. Drug Discovery Today 21(8), pp. 1313-1320. (10.1016/j.drudis.2016.06.003)
- Newland, B., Thomas, L., Zheng, Y., Steinhart, M., Werner, C. and Wang, W. 2016. Preparation, loading, and cytotoxicity analysis of polymer nanotubes from an ethylene glycol dimethacrylate homopolymer in comparison to multi-walled carbon nanotubes. Journal of Interdisciplinary Nanomedicine 1(1), pp. 9-18. (10.1002/jin2.7)
- Newland, B. et al. 2016. Synthesis of ROS scavenging microspheres from a dopamine containing poly(beta-amino ester) for applications for neurodegenerative disorders. Biomaterials Science 4(3), pp. 400-404. (10.1039/C5BM00542F)
- Breydo, L., Newland, B., Zhang, H., Rosser, A. E., Werner, C., Uversky, V. N. and Wang, W. 2016. A hyperbranched dopamine-containing PEG-based polymer for the inhibition of a-synuclein fibrillation. Biochemical and Biophysical Research Communications 469(4), pp. 830-835. (10.1016/j.bbrc.2015.12.060)
2015
- Newland, B., Leupelt, D., Zheng, Y., Thomas, L. S. V., Werner, C., Steinhart, M. and Wang, W. 2015. Magnetically controllable polymer nanotubes from a cyclized crosslinker for site-specific delivery of doxorubicin. Scientific Reports 5, article number: 17478. (10.1038/srep17478)
- Newland, B. et al. 2015. Tackling cell transplantation anoikis: an injectable, shape memory cryogel microcarrier platform material for stem cell and neuronal cell growth. Small 11(38), pp. 5047-5053. (10.1002/smll.201500898)
- Newland, B., Newland, H., Werner, C., Rosser, A. E. and Wang, W. 2015. Prospects for polymer therapeutics in Parkinson's disease and other neurodegenerative disorders. Progress in Polymer Science 44, pp. 79-112. (10.1016/j.progpolymsci.2014.12.002)
2014
- Newland, B. et al. 2014. Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain. Nanoscale 6(13), pp. 7526-7533. (10.1039/C3NR06737H)
Articles
- Wang, Y., Le Joncour, V., Laakkonen, P. and Newland, B. 2024. Supersoft sponge-like cryogel as an implant to treat glioblastoma. Neuro-Oncology 26(7), pp. vii16. (10.1093/neuonc/noae158.064)
- Narasimhan, K., Hakami, A., Comini, G., Patton, T., Newland, B. and Dowd, E. 2024. Cryogel microcarriers loaded with glial cell line-derived neurotrophic factor enhance the engraftment of primary dopaminergic neurons in a rat model of Parkinson’s disease. Journal of Neural Engineering 21(5), article number: 56011. (10.1088/1741-2552/ad7761)
- Hakami, A., Narasimhan, K., Comini, G., Thiele, J., Werner, C., Dowd, E. and Newland, B. 2024. Cryogel microcarriers for sustained local delivery of growth factors to the brain. Journal of Controlled Release 369, pp. 404-419. (10.1016/j.jconrel.2024.03.023)
- Ferraraccio, L. S., Russell, J., Newland, B. and Bertoncello, P. 2024. Poly(ethylene glycol)(PEG)-Cryogels: a novel platform towards enzymatic electrochemiluminescence (ECL)-based sensor applications. Electrochimica Acta 483, article number: 144007. (10.1016/j.electacta.2024.144007)
- Wang, Y., Bastiancich, C. and Newland, B. 2023. Injectable local drug delivery systems for glioblastoma: a systematic review and meta -analysis of progress to date †. Biomaterials Science (10.1039/d2bm01534j)
- Newland, B. and Long, K. R. 2022. Cryogel scaffolds – soft and easy to use tools for neural tissue culture. Neural Regeneration Research 17(9), pp. 1981-1983. (10.4103/1673-5374.335156)
- Newland, B., Starke, J., Bastiancich, C., Gonçalves, D. P. N., Bray, L. J., Wang, W. and Werner, C. 2022. Well-defined polyethylene glycol microscale hydrogel blocks containing gold nanorods for dual photothermal and chemotherapeutic therapy. Pharmaceutics 14(3), article number: 551. (10.3390/pharmaceutics14030551)
- Rizzo, S. A., Bartley, O., Rosser, A. E. and Newland, B. 2021. Oxygen-glucose deprivation in neurons: implications for cell transplantation therapies. Progress in Neurobiology 205, article number: 102126. (10.1016/j.pneurobio.2021.102126)
- Alghamdi, M., Gumbleton, M. and Newland, B. 2021. Local delivery to malignant brain tumors: potential biomaterial-based therapeutic/adjuvant strategies. Biomaterials Science 9(18), pp. 6037-6051. (10.1039/D1BM00896J)
- Bastiancich, C., Bozzato, E., Henley, I. and Newland, B. 2021. Does local drug delivery still hold therapeutic promise for brain cancer? A systematic review. Journal of Controlled Release 337, pp. 296-305. (10.1016/j.jconrel.2021.07.031)
- He, Z., Xu, Q., Newland, B., Foley, R., Lara-Sáez, I., Curtin, J. F. and Wang, W. 2021. Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. Journal of Materials Chemistry B: Materials for biology and medicine 9(32), pp. 6326-6346. (10.1039/D1TB00728A)
- Eigel, D., Werner, C. and Newland, B. 2021. Cryogel biomaterials for neuroscience applications. Neurochemistry International 147, article number: 105012. (10.1016/j.neuint.2021.105012)
- Eigel, D. et al. 2021. Sulfonated cryogel scaffolds for focal delivery in ex-vivo brain tissue cultures. Biomaterials 271, article number: 120712. (10.1016/j.biomaterials.2021.120712)
- Newland, B. et al. 2021. Injectable glycosaminoglycan-based cryogels from well-defined microscale templates for local growth factor delivery. ACS Chemical Neuroscience 12(7), pp. 1178-1188. (10.1021/acschemneuro.1c00005)
- Zoupi, L. et al. 2021. Selective vulnerability of inhibitory networks in multiple sclerosis. Acta Neuropathologica 141, pp. 415-429. (10.1007/s00401-020-02258-z)
- Ucar, B. et al. 2021. Biomaterial based strategies to reconstruct the nigrostriatal pathway in organotypic slice co-cultures. Acta Biomaterialia 121, pp. 250-262. (10.1016/j.actbio.2020.11.035)
- Ng, W. S. V. et al. 2021. New avenues for therapy in mitochondrial optic neuropathies. Therapeutic Advances in Rare Disease 2, pp. 1-14. (10.1177/26330040211029037)
- Jarrin, S., Hakami, A., Newland, B. and Dowd, E. 2021. Growth factor therapy for Parkinson's disease: alternative delivery systems. Journal of Parkinson's Disease 11(S2), pp. S229-S236. (10.3233/JPD-212662)
- Newland, B. et al. 2020. Focal drug administration via heparin-containing cryogel microcarriers reduces cancer growth and metastasis. Carbohydrate Polymers 245, article number: 116504. (10.1016/j.carbpol.2020.116504)
- Alghamdi, M. et al. 2020. Poly(ethylene glycol) based nanotubes for tuneable drug delivery to glioblastoma multiforme. Nanoscale Advances 2(10), pp. 4498-4509. (10.1039/D0NA00471E)
- Varricchio, C., Beirne, K., Heard, C., Newland, B., Rozanowska, M., Brancale, A. and Votruba, M. 2020. The ying and yang of idebenone: Not too little, not too much - cell death in NQO1 deficient cells and the mouse retina. Free Radical Biology and Medicine 152, pp. 551-560. (10.1016/j.freeradbiomed.2019.11.030)
- Gao, Y. et al. 2020. Complex polymer architectures through free-radical polymerization of multivinyl monomers. Nature Reviews Chemistry 4(4), pp. 194-212. (10.1038/s41570-020-0170-7)
- Newland, B. et al. 2020. Macroporous heparin-based microcarriers allow long-term 3D culture and differentiation of neural precursor cells. Biomaterials 230, article number: 119540. (10.1016/j.biomaterials.2019.119540)
- Eigel, D., Zoupi, L., Sekizar, S., Welzel, P. B., Werner, C., Williams, A. and Newland, B. 2019. Cryogel scaffolds for regionally constrained delivery of lysophosphatidylcholine to central nervous system slice cultures: A model of focal demyelination for multiple sclerosis research. Acta Biomaterialia 97, pp. 216-229. (10.1016/j.actbio.2019.08.030)
- Liu, S. et al. 2019. Highly branched poly(β-amino ester) delivery of minicircle DNA for transfection of neurodegenerative disease related cells. Nature Communications 10(1), article number: 3307. (10.1038/s41467-019-11190-0)
- Newland, B. et al. 2019. Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers. MethodsX 7, article number: 100805. (10.1016/j.mex.2020.100805)
- Newland, H., Eigel, D., Rosser, A. E., Werner, C. and Newland, B. 2018. Oxygen producing microscale spheres affect cell survival in conditions of oxygen-glucose deprivation in a cell specific manner: implications for cell transplantation. Biomaterials Science 6(10), pp. 2571-2577. (10.1039/C8BM00490K)
- Long, K. R. et al. 2018. Extracellular matrix components HAPLN1, lumican, and collagen I cause hyaluronic acid-dependent folding of the developing human Neocortex. Neuron 99(4), pp. 702-719.e6. (10.1016/j.neuron.2018.07.013)
- Newland, B. et al. 2018. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery. Nanoscale 10(18), pp. 8413-8421. (10.1039/C8NR00603B)
- Zhang, H., Zhao, T., Newland, B., Liu, W., Wang, W. and Wang, W. 2018. Catechol functionalized hyperbranched polymers as biomedical materials. Progress in Polymer Science 78, pp. 47-55. (10.1016/j.progpolymsci.2017.09.002)
- Newland, B., Baeger, M., Eigel, D., Newland, H. and Werner, C. 2017. Oxygen-producing gellan gum hydrogels for dual delivery of either oxygen or peroxide with doxorubicin. ACS Biomaterials Science & Engineering 3(5), pp. 787-792. (10.1021/acsbiomaterials.7b00078)
- Gao, Y., Newland, B., Zhou, D., Matyjaszewski, K. and Wang, W. 2017. Controlled polymerization of multivinyl monomers: Formation of cyclized/knotted single-chain polymer architectures. Angewandte Chemie International Edition 56(2), pp. 450-460. (10.1002/anie.201608786)
- Newland, B., Dunnett, S. B. and Dowd, E. 2016. Targeting delivery in Parkinson's disease. Drug Discovery Today 21(8), pp. 1313-1320. (10.1016/j.drudis.2016.06.003)
- Newland, B., Thomas, L., Zheng, Y., Steinhart, M., Werner, C. and Wang, W. 2016. Preparation, loading, and cytotoxicity analysis of polymer nanotubes from an ethylene glycol dimethacrylate homopolymer in comparison to multi-walled carbon nanotubes. Journal of Interdisciplinary Nanomedicine 1(1), pp. 9-18. (10.1002/jin2.7)
- Newland, B. et al. 2016. Synthesis of ROS scavenging microspheres from a dopamine containing poly(beta-amino ester) for applications for neurodegenerative disorders. Biomaterials Science 4(3), pp. 400-404. (10.1039/C5BM00542F)
- Breydo, L., Newland, B., Zhang, H., Rosser, A. E., Werner, C., Uversky, V. N. and Wang, W. 2016. A hyperbranched dopamine-containing PEG-based polymer for the inhibition of a-synuclein fibrillation. Biochemical and Biophysical Research Communications 469(4), pp. 830-835. (10.1016/j.bbrc.2015.12.060)
- Newland, B., Leupelt, D., Zheng, Y., Thomas, L. S. V., Werner, C., Steinhart, M. and Wang, W. 2015. Magnetically controllable polymer nanotubes from a cyclized crosslinker for site-specific delivery of doxorubicin. Scientific Reports 5, article number: 17478. (10.1038/srep17478)
- Newland, B. et al. 2015. Tackling cell transplantation anoikis: an injectable, shape memory cryogel microcarrier platform material for stem cell and neuronal cell growth. Small 11(38), pp. 5047-5053. (10.1002/smll.201500898)
- Newland, B., Newland, H., Werner, C., Rosser, A. E. and Wang, W. 2015. Prospects for polymer therapeutics in Parkinson's disease and other neurodegenerative disorders. Progress in Polymer Science 44, pp. 79-112. (10.1016/j.progpolymsci.2014.12.002)
- Newland, B. et al. 2014. Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain. Nanoscale 6(13), pp. 7526-7533. (10.1039/C3NR06737H)
Ymchwil
Our group is focused on developing a range of materials for a variety of applications in neuroscience research. We use a variety of polymerization techniques to create materials from monomers or pre-polymer building blocks. The shape, composition and attributes of the materials can be varied by use of various templating techniques, emulsions and/or microfluidic devices. A large emphasis of our work is to introduce pores into hydrogel networks via a process called cryogelation: freezing the solution prior to crosslinking the network so that ice crystals cause pore formation. This work invariably involves collaborating with other research groups who are experts in their field of neuroscience. The goals of some of our projects are described below, but we are always interested in the using or tailoring our materials to answer other biological questions. A large focus of our work has been on trying to improve the survival of dopamine cells following cell transplantation to the parkinsonian brain. Parkinson’s disease is characterized by a loss of dopaminergic neurons, so successful replacement of these cells could potentially be one way to halt the progression of the disease. Unfortunately the majority of transplanted cells die during the grafting process, so we are developing microscale spherical cryogel scaffolds which we term microcarriers in order to investigate if pre-loading the cells to a supportive scaffold will improve their post-transplantation survival. A more recent research focus has been towards creating better ex-vivo brain slice models of multiple sclerosis. Current demyelination models via brain slice culture exhibit global demyelination (i.e. the entire brain slice is demyelinated). In contrast, the disease pathology typically shows areas or focal points of demyelination. We have synthesized scaffolds for a more focal delivery of detergents for creating focal demyelination in brain slice cultures in order to better mimic the disease pathology of multiple-sclerosis. Other research topics include creating microspheres for the delivery of anti-inflammatory cytokines to the brain and polymer nanotubes for local, sustained drug delivery of anti-cancer therapeutics.
Addysgu
Undergraduate
- Module leader of PH1121 (Molecule to Patient)
- Personal tutor
- Contribution to MPharm modules:
- PH1121 Molecule to Patient
- PH1124 Human Body Systems (Nervous System, Urinary System)
- PH1125 Chemical and Biological Properties of Drug Molecules
- PH2113 Diseases and Drugs 1
- PH3110 Optimisation of Pharmaceutical Care
- PH4116 Pharmacy Research Project
- OSCE examination marker
Postgraduate
- PhD student supervision
Bywgraffiad
I joined the Cardiff School of Pharmacy and Pharmaceutical Sciences in October 2017 to continue my highly interdisciplinary research into the use of nano, micro and macroscale materials for use in neuroscience research. Specifically I have developed microscale spherical hydrogel scaffolds for cell and growth factor delivery to the Parkinsonian brain and I am developing a variety of other materials for applications in multiple sclerosis, cytokine delivery and neuroimaging.
I joined the Cardiff School of Biosciences in 2013 on a Sir Henry Wellcome Trust Fellowship (carried out in collaboration with the Leibniz Institute for Polymer Research, Dresden, Germany).
Anrhydeddau a dyfarniadau
2013 - 2017 Sir Henry Wellcome Postdoctoral Fellowship
Contact Details
+44 29225 10799
Adeilad Redwood , Ystafell 2.54A, Rhodfa'r Brenin Edward VII, Caerdydd, CF10 3NB