Trosolwyg
Nod fy ymchwil yw darganfod mwtaniadau prin sy'n cynyddu atebolrwydd i anhwylderau seiciatrig. Mae gennyf ddiddordeb arbennig mewn defnyddio data dilyniannu'r genhedlaeth nesaf i astudio amrywiadau prin sy'n gysylltiedig â sgitsoffrenia, a all arwain at adnabod genynnau risg penodol a'r mecanweithiau patholegol sy'n sail i'r cyflwr hwn. Yn 2020 dyfarnwyd Cymrodoriaeth Arweinwyr y Dyfodol UKRI i mi ddilyn trywydd ymchwil sy'n ymchwilio i weld a all y dadansoddiad cyfunol o wahanol ddosbarthiadau o amrywiad genetig cyffredin a phrin gynyddu pŵer ar gyfer darganfod genynnau, gwella modelau i haenu is-grwpiau o sgitsoffrenia sy'n ystyrlon yn fiolegol, a nodi ffactorau genetig amddiffynnol mewn unigolion sydd â risg uchel o sgitsoffrenia.
Cyhoeddiad
2024
- Tume, C. E., Chick, S. L., Holmans, P. A., Rees, E., O'Donovan, M. C., Cameron, D. and Bray, N. J. 2024. Genetic implication of specific glutamatergic neurons of the prefrontal cortex in the pathophysiology of schizophrenia. Biological Psychiatry 4(5), article number: 100345. (10.1016/j.bpsgos.2024.100345)
- Legge, S. E. et al. 2024. Genetic and phenotypic features of Schizophrenia in the UK Biobank. JAMA Psychiatry 81, pp. 681-690. (10.1001/jamapsychiatry.2024.0200)
- Kappel, D. et al. 2024. Rare variants in pharmacogenes influence clozapine metabolism in individuals with schizophrenia. European Neuropsychopharmacology 80, pp. 47-54. (10.1016/j.euroneuro.2023.12.007)
- Wellard, N. L., Clifton, N. E., Rees, E., Thomas, K. L. and Hall, J. 2024. The association of hippocampal long-term potentiation-induced gene expression with genetic risk for psychosis. International Journal of Molecular Sciences 25(2), article number: 946. (10.3390/ijms25020946)
2023
- Owen, M., Legge, S., Rees, E., Walters, J. and O'Donovan, M. 2023. Genomic findings in schizophrenia and their implications. Molecular Psychiatry 28, pp. 3638-3647. (10.1038/s41380-023-02293-8)
- Rammos, A., Kirov, G., Hubbard, L., Walters, J., Holmans, P., Owen, M. and Rees, E. 2023. Family-based analysis of the contribution of rare and common genetic variants to school performance in schizophrenia. Molecular Psychiatry 28, pp. 2081-2087. (10.1038/s41380-023-02013-2)
2022
- Wadon, M., Fenner, E., Kendall, K., Bailey, G., Sandor, C., Rees, E. and Peall, K. J. 2022. Clinical and genotypic analysis in determining dystonia non-motor phenotypic heterogeneity: a UK Biobank study. Journal of Neurology 269, pp. 6436-6451. (10.1007/s00415-022-11307-4)
- Clifton, N. et al. 2022. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function. Human Molecular Genetics 31(18), pp. 3095-3106. (10.1093/hmg/ddac105)
- Bracher-Smith, M. et al. 2022. Machine learning for prediction of schizophrenia using genetic and demographic factors in the UK Biobank. Schizophrenia Research 246, pp. 156-164. (10.1016/j.schres.2022.06.006)
- Creeth, H. D. J. et al. 2022. Ultrarare coding variants and cognitive function in schizophrenia. JAMA Psychiatry 79(10), pp. 963-970. (10.1001/jamapsychiatry.2022.2289)
- McAllister, B. et al. 2022. Exome sequencing of individuals with Huntington’s disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset. Nature Neuroscience 25, pp. 446-457. (10.1038/s41593-022-01033-5)
- Singh, T., Schizophrenia Exome Meta-Analysis (SCHEMA) Consortium, ., Kirov, G., Rees, E., Walters, J., Owen, M. and O'Donovan, M. 2022. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, pp. 509-516. (10.1038/s41586-022-04556-w)
- Sanders, B. et al. 2022. Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants. Nature Communications 13(1), article number: 27. (10.1038/s41467-021-27601-0)
2021
- Rees, E. et al. 2021. Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nature Communications 12, article number: 5353. (10.1038/s41467-021-25532-4)
- Legge, S. et al. 2021. Associations between schizophrenia polygenic liability, symptom dimensions, and cognitive ability in schizophrenia. JAMA Psychiatry 78(10), pp. 1143-1151. (10.1001/jamapsychiatry.2021.1961)
- Clifton, N. E. et al. 2021. Genetic association of FMRP targets with psychiatric disorders. Molecular Psychiatry 26, pp. 2977-2990. (10.1038/s41380-020-00912-2)
- Hubbard, L. et al. 2021. Rare copy number variations are associated with poorer cognition in schizophrenia. Biological Psychiatry 90(1), pp. 28-34. (10.1016/j.biopsych.2020.11.025)
- Rees, E. and Kirov, G. 2021. Copy number variation and neuropsychiatric illness. Current Opinion in Genetics and Development 68, pp. 57-63. (10.1016/j.gde.2021.02.014)
- Caseras, X. et al. 2021. Effects of genomic copy number variants penetrant for schizophrenia on cortical thickness and surface area in healthy individuals: analysis of the UK Biobank. British Journal of Psychiatry 218(2), pp. 104-111. (10.1192/bjp.2020.139)
2020
- Kendall, K. M. et al. 2020. Impact of schizophrenia genetic liability on the association between schizophrenia and physical illness: a data linkage study. BJPsych Open 6(6), article number: e139. (10.1192/bjo.2020.42)
- Legge, S. et al. 2020. Clinical indicators of treatment-resistant psychosis. British Journal of Psychiatry 216(5), pp. 259-266. (10.1192/bjp.2019.120)
- Martin, J. et al. 2020. A brief report: de novo copy number variants in children with attention deficit hyperactivity disorder. Translational Psychiatry 10, article number: 135. (10.1038/s41398-020-0821-y)
- Warland, A., Kendall, K. M., Rees, E., Kirov, G. and Caseras, X. 2020. Schizophrenia-associated genomic copy number variants and subcortical brain volumes in the UK Biobank. Molecular Psychiatry 25(4), pp. 854-862. (10.1038/s41380-019-0355-y)
- Rees, E. and Owen, M. J. 2020. Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Medicine 12(1), article number: 43. (10.1186/s13073-020-00734-5)
- Szatkiewicz, J. P. et al. 2020. Characterization of single gene copy number variants in schizophrenia. Biological Psychiatry 87(8), pp. 736-744. (10.1016/j.biopsych.2019.09.023)
- Rees, E. et al. 2020. De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nature Neuroscience 23(2), pp. 179-184. (10.1038/s41593-019-0565-2)
- Hall, L. S. et al. 2020. A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Human Molecular Genetics 29(1), pp. 159-167. (10.1093/hmg/ddz253)
2019
- Legge, S. E. et al. 2019. Association of genetic liability to psychotic experiences with neuropsychotic disorders and traits. JAMA Psychiatry 76(12), pp. 1256-1265. (10.1001/jamapsychiatry.2019.2508)
- Chapman, R. M. et al. 2019. Convergent evidence that ZNF804A is a regulator of pre-messenger RNA processing and gene expression. Schizophrenia Bulletin 45(6), pp. 1267-1278. (10.1093/schbul/sby183)
- Kendall, K. M. et al. 2019. Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank. British Journal of Psychiatry 214(5), pp. 297-304. (10.1192/bjp.2018.301)
- Kendall, K. M. et al. 2019. Association of rare copy number variants with risk of depression. JAMA Psychiatry 76(8), pp. 818-825. (10.1001/jamapsychiatry.2019.0566)
- Rees, E. et al. 2019. Targeted sequencing of 10,198 samples confirms abnormalities in neuronal activity and implicates voltage-gated sodium channels in schizophrenia pathogenesis. Biological Psychiatry 85(7), pp. 554-562. (10.1016/j.biopsych.2018.08.022)
- Vadgama, N. et al. 2019. De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes. European Journal of Human Genetics 27(7), pp. 1121-1133. (10.1038/s41431-019-0376-7)
- Drakesmith, M. et al. 2019. Genetic risk for schizophrenia and developmental delay is associated with shape and microstructure of midline white-matter structures. Translational Psychiatry 9(1), article number: 102. (10.1038/s41398-019-0440-7)
- Crawford, K. et al. 2019. Medical consequences of pathogenic CNVs in adults: Analysis of the UK Biobank. Journal of Medical Genetics 56, pp. 131-138. (10.1136/jmedgenet-2018-105477)
2018
- Owen, D. et al. 2018. Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics 19(1), article number: 867. (10.1186/s12864-018-5292-7)
- Pardinas, A. F. et al. 2018. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics 50, pp. 381-389. (10.1038/s41588-018-0059-2)
2017
- Legge, S. E. et al. 2017. Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia. Molecular Psychiatry 22, pp. 1502-1508. (10.1038/mp.2016.97)
- Singh, T. et al. 2017. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nature Genetics 49, pp. 1167-1173. (10.1038/ng.3903)
- Kendall, K. M. et al. 2017. Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK Biobank subjects. Biological Psychiatry 82(2), pp. P103-110. (10.1016/j.biopsych.2016.08.014)
- Huang, A. Y. et al. 2017. Rare copy number variants in NRXN1 and CNTN6 increase risk for Tourette Syndrome. Neuron 94(6), pp. 1101-1111.e7. (10.1016/j.neuron.2017.06.010)
- Clifton, N. E. et al. 2017. Schizophrenia copy number variants and associative learning. Molecular Psychiatry 22(2), pp. 178-182. (10.1038/mp.2016.227)
2016
- Rees, E. et al. 2016. Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiatry 73(9), pp. 963-969. (10.1001/jamapsychiatry.2016.1831)
- Tansey, K. E. et al. 2016. Common alleles contribute to schizophrenia in CNV carriers. Molecular Psychiatry 21, pp. 1085-1089. (10.1038/mp.2015.143)
- Pardinas, A. et al. 2016. Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection. [Online]. bioRxiv. (10.1101/068593) Available at: http://dx.doi.org/10.1101/068593
- Han, J. et al. 2016. Gender differences in CNV burden do not confound schizophrenia CNV associations. Scientific Reports 6, article number: 25986. (10.1038/srep25986)
- Isles, A. R. et al. 2016. Parental origin of interstitial duplications at 15q11.2-q13.3 in schizophrenia and neurodevelopmental disorders. PLoS Genetics 12(5), article number: e1005993. (10.1371/journal.pgen.1005993)
- Singh, T. et al. 2016. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nature Neuroscience 19(4), pp. 571-577. (10.1038/nn.4267)
- Fry, A. E. et al. 2016. Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC Medical Genetics 17, pp. -., article number: 34. (10.1186/s12881-016-0294-2)
- Singh, T. et al. 2016. Rare loss-of-function variants in KMT2F are associated with schizophrenia and developmental disorders. Nature Neuroscience 19, pp. 571-577. (10.1101/036384)
- Richards, A. et al. 2016. Exome arrays capture polygenic rare variant contributions to schizophrenia. Human Molecular Genetics 25(5), pp. 1001-1007. (10.1093/hmg/ddv620)
2015
- Tansey, K. E. et al. 2015. Common alleles contribute to schizophrenia in CNV carriers [Erratum]. Molecular Psychiatry 21, article number: 1153. (10.1038/mp.2015.170)
- Escott-Price, V., Kirov, G., Rees, E., Isles, A. R., Owen, M. J. and O'Donovan, M. C. 2015. No evidence for enrichment in schizophrenia for common allelic associations at imprinted loci. PLoS ONE 10(12), pp. -., article number: e0144172. (10.1371/journal.pone.0144172)
- Heyes, S., Pratt, W. S., Rees, E., Dahimene, S., Ferron, L., Owen, M. J. and Dolphin, A. C. 2015. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in Neurobiology 134, pp. 36-54. (10.1016/j.pneurobio.2015.09.002)
- Pocklington, A. et al. 2015. Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 86(5), pp. 1203-1214. (10.1016/j.neuron.2015.04.022)
- Kirov, G., Rees, E. and Walters, J. T. R. 2015. What a psychiatrist needs to know about copy number variants. BJPscyh Advances 21(3), pp. 157-163. (10.1192/apt.bp.113.012039)
- Rees, E., O'Donovan, M. C. and Owen, M. J. 2015. Genetics of schizophrenia. Current Opinion in Behavioral Sciences 2, pp. 8-14. (10.1016/j.cobeha.2014.07.001)
- Green, E. K. et al. 2015. Copy number variation in bipolar disorder. Molecular Psychiatry 21(1), pp. 89-93. (10.1038/mp.2014.174)
- Rees, E. et al. 2015. Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia. Translational Psychiatry 5(7), article number: e607. (10.1038/tp.2015.99)
2014
- Georgieva, L. et al. 2014. De novo CNVs in bipolar affective disorder and schizophrenia. Human Molecular Genetics 23(24), pp. 6677-6683. (10.1093/hmg/ddu379)
- Szatkiewicz, J. P. et al. 2014. Copy number variation in schizophrenia in Sweden. Molecular Psychiatry 19(7), pp. 762-773. (10.1038/mp.2014.40)
- Rees, E., Walters, J. T. R., Owen, M. J. and Kirov, G. 2014. Authors' reply [Letter]. British Journal of Psychiatry 205(1), pp. 78. (10.1192/bjp.205.1.78)
- Morris, D. W. et al. 2014. An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis. Human Molecular Genetics 23(12), pp. 3316-3326. (10.1093/hmg/ddu025)
- Rees, E. et al. 2014. CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Human Molecular Genetics 23(6), pp. 1669-1676. (10.1093/hmg/ddt540)
- Rees, E. et al. 2014. Analysis of copy number variations at 15 schizophrenia-associated loci. British Journal of Psychiatry 204(2), pp. 108-114. (10.1192/bjp.bp.113.131052)
- Fromer, M. et al. 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, pp. 179-184. (10.1038/nature12929)
2013
- Rees, E. et al. 2013. Evidence that duplications of 22q11.2 protect against schizophrenia. Molecular Psychiatry n/a (10.1038/mp.2013.156)
- Guha, S. et al. 2013. Implication of a rare deletion at distal 16p11.2 in schizophrenia. JAMA Psychiatry 70(3), pp. 253-260. (10.1001/2013.jamapsychiatry.71)
- Chapman, J. et al. 2013. A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer's disease risk. Human Molecular Genetics 22(4), pp. 816-824. (10.1093/hmg/dds476)
- Kirov, G. et al. 2013. The penetrance of copy number variations for schizophrenia and developmental delay. Biological Psychiatry 75(5), pp. 378-385. (10.1016/j.biopsych.2013.07.022)
2012
- Rees, E., Kirov, G., O'Donovan, M. C. and Owen, M. J. 2012. De Novo mutation in schizophrenia. Schizophrenia Bulletin 38(3), pp. 377-381. (10.1093/schbul/sbs047)
- Kirov, G. et al. 2012. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Molecular Psychiatry 17(2), pp. 142-153. (10.1038/mp.2011.154)
2011
- Rees, E., Escott-Price, V., Owen, M. J., O'Donovan, M. C. and Kirov, G. 2011. De novo rates and selection of schizophrenia-associated copy number variants. Biological Psychiatry 70(12), pp. 1109-1114. (10.1016/j.biopsych.2011.07.011)
Articles
- Tume, C. E., Chick, S. L., Holmans, P. A., Rees, E., O'Donovan, M. C., Cameron, D. and Bray, N. J. 2024. Genetic implication of specific glutamatergic neurons of the prefrontal cortex in the pathophysiology of schizophrenia. Biological Psychiatry 4(5), article number: 100345. (10.1016/j.bpsgos.2024.100345)
- Legge, S. E. et al. 2024. Genetic and phenotypic features of Schizophrenia in the UK Biobank. JAMA Psychiatry 81, pp. 681-690. (10.1001/jamapsychiatry.2024.0200)
- Kappel, D. et al. 2024. Rare variants in pharmacogenes influence clozapine metabolism in individuals with schizophrenia. European Neuropsychopharmacology 80, pp. 47-54. (10.1016/j.euroneuro.2023.12.007)
- Wellard, N. L., Clifton, N. E., Rees, E., Thomas, K. L. and Hall, J. 2024. The association of hippocampal long-term potentiation-induced gene expression with genetic risk for psychosis. International Journal of Molecular Sciences 25(2), article number: 946. (10.3390/ijms25020946)
- Owen, M., Legge, S., Rees, E., Walters, J. and O'Donovan, M. 2023. Genomic findings in schizophrenia and their implications. Molecular Psychiatry 28, pp. 3638-3647. (10.1038/s41380-023-02293-8)
- Rammos, A., Kirov, G., Hubbard, L., Walters, J., Holmans, P., Owen, M. and Rees, E. 2023. Family-based analysis of the contribution of rare and common genetic variants to school performance in schizophrenia. Molecular Psychiatry 28, pp. 2081-2087. (10.1038/s41380-023-02013-2)
- Wadon, M., Fenner, E., Kendall, K., Bailey, G., Sandor, C., Rees, E. and Peall, K. J. 2022. Clinical and genotypic analysis in determining dystonia non-motor phenotypic heterogeneity: a UK Biobank study. Journal of Neurology 269, pp. 6436-6451. (10.1007/s00415-022-11307-4)
- Clifton, N. et al. 2022. Developmental disruption to the cortical transcriptome and synaptosome in a model of SETD1A loss-of-function. Human Molecular Genetics 31(18), pp. 3095-3106. (10.1093/hmg/ddac105)
- Bracher-Smith, M. et al. 2022. Machine learning for prediction of schizophrenia using genetic and demographic factors in the UK Biobank. Schizophrenia Research 246, pp. 156-164. (10.1016/j.schres.2022.06.006)
- Creeth, H. D. J. et al. 2022. Ultrarare coding variants and cognitive function in schizophrenia. JAMA Psychiatry 79(10), pp. 963-970. (10.1001/jamapsychiatry.2022.2289)
- McAllister, B. et al. 2022. Exome sequencing of individuals with Huntington’s disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset. Nature Neuroscience 25, pp. 446-457. (10.1038/s41593-022-01033-5)
- Singh, T., Schizophrenia Exome Meta-Analysis (SCHEMA) Consortium, ., Kirov, G., Rees, E., Walters, J., Owen, M. and O'Donovan, M. 2022. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, pp. 509-516. (10.1038/s41586-022-04556-w)
- Sanders, B. et al. 2022. Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants. Nature Communications 13(1), article number: 27. (10.1038/s41467-021-27601-0)
- Rees, E. et al. 2021. Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nature Communications 12, article number: 5353. (10.1038/s41467-021-25532-4)
- Legge, S. et al. 2021. Associations between schizophrenia polygenic liability, symptom dimensions, and cognitive ability in schizophrenia. JAMA Psychiatry 78(10), pp. 1143-1151. (10.1001/jamapsychiatry.2021.1961)
- Clifton, N. E. et al. 2021. Genetic association of FMRP targets with psychiatric disorders. Molecular Psychiatry 26, pp. 2977-2990. (10.1038/s41380-020-00912-2)
- Hubbard, L. et al. 2021. Rare copy number variations are associated with poorer cognition in schizophrenia. Biological Psychiatry 90(1), pp. 28-34. (10.1016/j.biopsych.2020.11.025)
- Rees, E. and Kirov, G. 2021. Copy number variation and neuropsychiatric illness. Current Opinion in Genetics and Development 68, pp. 57-63. (10.1016/j.gde.2021.02.014)
- Caseras, X. et al. 2021. Effects of genomic copy number variants penetrant for schizophrenia on cortical thickness and surface area in healthy individuals: analysis of the UK Biobank. British Journal of Psychiatry 218(2), pp. 104-111. (10.1192/bjp.2020.139)
- Kendall, K. M. et al. 2020. Impact of schizophrenia genetic liability on the association between schizophrenia and physical illness: a data linkage study. BJPsych Open 6(6), article number: e139. (10.1192/bjo.2020.42)
- Legge, S. et al. 2020. Clinical indicators of treatment-resistant psychosis. British Journal of Psychiatry 216(5), pp. 259-266. (10.1192/bjp.2019.120)
- Martin, J. et al. 2020. A brief report: de novo copy number variants in children with attention deficit hyperactivity disorder. Translational Psychiatry 10, article number: 135. (10.1038/s41398-020-0821-y)
- Warland, A., Kendall, K. M., Rees, E., Kirov, G. and Caseras, X. 2020. Schizophrenia-associated genomic copy number variants and subcortical brain volumes in the UK Biobank. Molecular Psychiatry 25(4), pp. 854-862. (10.1038/s41380-019-0355-y)
- Rees, E. and Owen, M. J. 2020. Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Medicine 12(1), article number: 43. (10.1186/s13073-020-00734-5)
- Szatkiewicz, J. P. et al. 2020. Characterization of single gene copy number variants in schizophrenia. Biological Psychiatry 87(8), pp. 736-744. (10.1016/j.biopsych.2019.09.023)
- Rees, E. et al. 2020. De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nature Neuroscience 23(2), pp. 179-184. (10.1038/s41593-019-0565-2)
- Hall, L. S. et al. 2020. A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Human Molecular Genetics 29(1), pp. 159-167. (10.1093/hmg/ddz253)
- Legge, S. E. et al. 2019. Association of genetic liability to psychotic experiences with neuropsychotic disorders and traits. JAMA Psychiatry 76(12), pp. 1256-1265. (10.1001/jamapsychiatry.2019.2508)
- Chapman, R. M. et al. 2019. Convergent evidence that ZNF804A is a regulator of pre-messenger RNA processing and gene expression. Schizophrenia Bulletin 45(6), pp. 1267-1278. (10.1093/schbul/sby183)
- Kendall, K. M. et al. 2019. Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank. British Journal of Psychiatry 214(5), pp. 297-304. (10.1192/bjp.2018.301)
- Kendall, K. M. et al. 2019. Association of rare copy number variants with risk of depression. JAMA Psychiatry 76(8), pp. 818-825. (10.1001/jamapsychiatry.2019.0566)
- Rees, E. et al. 2019. Targeted sequencing of 10,198 samples confirms abnormalities in neuronal activity and implicates voltage-gated sodium channels in schizophrenia pathogenesis. Biological Psychiatry 85(7), pp. 554-562. (10.1016/j.biopsych.2018.08.022)
- Vadgama, N. et al. 2019. De novo single-nucleotide and copy number variation in discordant monozygotic twins reveals disease-related genes. European Journal of Human Genetics 27(7), pp. 1121-1133. (10.1038/s41431-019-0376-7)
- Drakesmith, M. et al. 2019. Genetic risk for schizophrenia and developmental delay is associated with shape and microstructure of midline white-matter structures. Translational Psychiatry 9(1), article number: 102. (10.1038/s41398-019-0440-7)
- Crawford, K. et al. 2019. Medical consequences of pathogenic CNVs in adults: Analysis of the UK Biobank. Journal of Medical Genetics 56, pp. 131-138. (10.1136/jmedgenet-2018-105477)
- Owen, D. et al. 2018. Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics 19(1), article number: 867. (10.1186/s12864-018-5292-7)
- Pardinas, A. F. et al. 2018. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics 50, pp. 381-389. (10.1038/s41588-018-0059-2)
- Legge, S. E. et al. 2017. Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia. Molecular Psychiatry 22, pp. 1502-1508. (10.1038/mp.2016.97)
- Singh, T. et al. 2017. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nature Genetics 49, pp. 1167-1173. (10.1038/ng.3903)
- Kendall, K. M. et al. 2017. Cognitive performance among carriers of pathogenic copy number variants: analysis of 152,000 UK Biobank subjects. Biological Psychiatry 82(2), pp. P103-110. (10.1016/j.biopsych.2016.08.014)
- Huang, A. Y. et al. 2017. Rare copy number variants in NRXN1 and CNTN6 increase risk for Tourette Syndrome. Neuron 94(6), pp. 1101-1111.e7. (10.1016/j.neuron.2017.06.010)
- Clifton, N. E. et al. 2017. Schizophrenia copy number variants and associative learning. Molecular Psychiatry 22(2), pp. 178-182. (10.1038/mp.2016.227)
- Rees, E. et al. 2016. Analysis of intellectual disability copy number variants for association with schizophrenia. JAMA Psychiatry 73(9), pp. 963-969. (10.1001/jamapsychiatry.2016.1831)
- Tansey, K. E. et al. 2016. Common alleles contribute to schizophrenia in CNV carriers. Molecular Psychiatry 21, pp. 1085-1089. (10.1038/mp.2015.143)
- Han, J. et al. 2016. Gender differences in CNV burden do not confound schizophrenia CNV associations. Scientific Reports 6, article number: 25986. (10.1038/srep25986)
- Isles, A. R. et al. 2016. Parental origin of interstitial duplications at 15q11.2-q13.3 in schizophrenia and neurodevelopmental disorders. PLoS Genetics 12(5), article number: e1005993. (10.1371/journal.pgen.1005993)
- Singh, T. et al. 2016. Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nature Neuroscience 19(4), pp. 571-577. (10.1038/nn.4267)
- Fry, A. E. et al. 2016. Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC Medical Genetics 17, pp. -., article number: 34. (10.1186/s12881-016-0294-2)
- Singh, T. et al. 2016. Rare loss-of-function variants in KMT2F are associated with schizophrenia and developmental disorders. Nature Neuroscience 19, pp. 571-577. (10.1101/036384)
- Richards, A. et al. 2016. Exome arrays capture polygenic rare variant contributions to schizophrenia. Human Molecular Genetics 25(5), pp. 1001-1007. (10.1093/hmg/ddv620)
- Tansey, K. E. et al. 2015. Common alleles contribute to schizophrenia in CNV carriers [Erratum]. Molecular Psychiatry 21, article number: 1153. (10.1038/mp.2015.170)
- Escott-Price, V., Kirov, G., Rees, E., Isles, A. R., Owen, M. J. and O'Donovan, M. C. 2015. No evidence for enrichment in schizophrenia for common allelic associations at imprinted loci. PLoS ONE 10(12), pp. -., article number: e0144172. (10.1371/journal.pone.0144172)
- Heyes, S., Pratt, W. S., Rees, E., Dahimene, S., Ferron, L., Owen, M. J. and Dolphin, A. C. 2015. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in Neurobiology 134, pp. 36-54. (10.1016/j.pneurobio.2015.09.002)
- Pocklington, A. et al. 2015. Novel findings from CNVs implicate inhibitory and excitatory signaling complexes in schizophrenia. Neuron 86(5), pp. 1203-1214. (10.1016/j.neuron.2015.04.022)
- Kirov, G., Rees, E. and Walters, J. T. R. 2015. What a psychiatrist needs to know about copy number variants. BJPscyh Advances 21(3), pp. 157-163. (10.1192/apt.bp.113.012039)
- Rees, E., O'Donovan, M. C. and Owen, M. J. 2015. Genetics of schizophrenia. Current Opinion in Behavioral Sciences 2, pp. 8-14. (10.1016/j.cobeha.2014.07.001)
- Green, E. K. et al. 2015. Copy number variation in bipolar disorder. Molecular Psychiatry 21(1), pp. 89-93. (10.1038/mp.2014.174)
- Rees, E. et al. 2015. Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia. Translational Psychiatry 5(7), article number: e607. (10.1038/tp.2015.99)
- Georgieva, L. et al. 2014. De novo CNVs in bipolar affective disorder and schizophrenia. Human Molecular Genetics 23(24), pp. 6677-6683. (10.1093/hmg/ddu379)
- Szatkiewicz, J. P. et al. 2014. Copy number variation in schizophrenia in Sweden. Molecular Psychiatry 19(7), pp. 762-773. (10.1038/mp.2014.40)
- Rees, E., Walters, J. T. R., Owen, M. J. and Kirov, G. 2014. Authors' reply [Letter]. British Journal of Psychiatry 205(1), pp. 78. (10.1192/bjp.205.1.78)
- Morris, D. W. et al. 2014. An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis. Human Molecular Genetics 23(12), pp. 3316-3326. (10.1093/hmg/ddu025)
- Rees, E. et al. 2014. CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Human Molecular Genetics 23(6), pp. 1669-1676. (10.1093/hmg/ddt540)
- Rees, E. et al. 2014. Analysis of copy number variations at 15 schizophrenia-associated loci. British Journal of Psychiatry 204(2), pp. 108-114. (10.1192/bjp.bp.113.131052)
- Fromer, M. et al. 2014. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, pp. 179-184. (10.1038/nature12929)
- Rees, E. et al. 2013. Evidence that duplications of 22q11.2 protect against schizophrenia. Molecular Psychiatry n/a (10.1038/mp.2013.156)
- Guha, S. et al. 2013. Implication of a rare deletion at distal 16p11.2 in schizophrenia. JAMA Psychiatry 70(3), pp. 253-260. (10.1001/2013.jamapsychiatry.71)
- Chapman, J. et al. 2013. A genome-wide study shows a limited contribution of rare copy number variants to Alzheimer's disease risk. Human Molecular Genetics 22(4), pp. 816-824. (10.1093/hmg/dds476)
- Kirov, G. et al. 2013. The penetrance of copy number variations for schizophrenia and developmental delay. Biological Psychiatry 75(5), pp. 378-385. (10.1016/j.biopsych.2013.07.022)
- Rees, E., Kirov, G., O'Donovan, M. C. and Owen, M. J. 2012. De Novo mutation in schizophrenia. Schizophrenia Bulletin 38(3), pp. 377-381. (10.1093/schbul/sbs047)
- Kirov, G. et al. 2012. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Molecular Psychiatry 17(2), pp. 142-153. (10.1038/mp.2011.154)
- Rees, E., Escott-Price, V., Owen, M. J., O'Donovan, M. C. and Kirov, G. 2011. De novo rates and selection of schizophrenia-associated copy number variants. Biological Psychiatry 70(12), pp. 1109-1114. (10.1016/j.biopsych.2011.07.011)
Websites
- Pardinas, A. et al. 2016. Common schizophrenia alleles are enriched in mutation-intolerant genes and maintained by background selection. [Online]. bioRxiv. (10.1101/068593) Available at: http://dx.doi.org/10.1101/068593
Contact Details
ReesEG@caerdydd.ac.uk
+44 29206 88375
Adeilad Hadyn Ellis, Ystafell 2.19, Heol Maendy, Caerdydd, CF24 4HQ
+44 29206 88375
Adeilad Hadyn Ellis, Ystafell 2.19, Heol Maendy, Caerdydd, CF24 4HQ