Yr Athro Helen White-Cooper
Cyfarwyddwr Ymchwil (Arloesi a'r Amgylchedd)
- Ar gael fel goruchwyliwr ôl-raddedig
Trosolwyg
Trosolwg ymchwil
Geneteg Datblygiadol - Rheoleiddio Mynegiant Gene yn Drosophila Spermatogenesis
Mae gwahaniaethu celloedd yn cael ei yrru gan newidiadau cydgysylltiedig ym mhroffil mynegiant genynnau'r gell: mae rhai genynnau yn cael eu troi ymlaen, mae eraill wedi'u diffodd. Mae'r sberm aeddfed yn gell arbenigol iawn (bron i 2mm o hyd), y mae ei ffurfio o sbermatocyte sylfaenol syml yn cynnwys meiosis i ffurfio sbermatidau crwn, ac yna newidiadau cymhleth mewn pensaernïaeth celloedd i ffurfio'r sberm motile estynedig terfynol. Yn ystod spermatogenesis mae newid dramatig yn y Proffil mynegiant genynnau celloedd germ gwrywaidd: wrth iddynt fynd i mewn i'r cam spermatocyte cynradd maent yn actifadu trawsgrifio set fawr o enynnau sy'n ofynnol ar gyfer cynhyrchu sberm. Rydym wedi nodi set o broteinau, wedi'u hamgodio gan y genynnau arestio meiotig, sy'n gweithio gyda'i gilydd i actifadu'r rhaglen drawsgrifio hon, ac yn ymchwilio i gyfansoddiad, gweithgaredd ac esblygiad y cymhleth hwn. Yn ddiweddar fe wnaethon ni ddarganfod bod set fach arall o enynnau yn cael ei thrawsgrifio ar ôl meiosis, a bod y mRNAs trawsgrifio hwyr hyn yn lleoleiddio i ranbarth arwahanol o'r gell. Rydym yn astudio eu rheolaeth trawsgrifio, a'r mecanwaith lleoleiddio mRNA. Mae cynhyrchu sberm parhaus yn cael ei gynnal trwy system bôn-gelloedd, ac rydym yn nodweddu ffactor trawsgrifio sy'n ofynnol ar gyfer cynnal bôn-gelloedd.
Cyhoeddiad
2024
- McNamara, C. J., Ant, T. H., Harvey-Samuel, T., White-Cooper, H., Martinez, J., Alphey, L. and Sinkins, S. P. 2024. Transgenic expression of cif genes from Wolbachia strain w AlbB recapitulates cytoplasmic incompatibility in Aedes aegypti. Nature Communications 15, article number: 869. (10.1038/s41467-024-45238-7)
- Moth, E., Messer, F., Chaudhary, S. and White-Cooper, H. 2024. Differential gene expression underpinning production of distinct sperm morphs in the wax moth Galleria mellonella. Open Biology (10.1098/rsob.240002)
2023
- Raz, A. A. et al. 2023. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. eLife 12, article number: e82201. (10.7554/elife.82201)
2022
- Li, H. et al. 2022. Fly cell atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375(6584), article number: 2432. (10.1126/science.abk2432)
2021
- van der Graaf, K., Jindrich, K., Mitchell, R. and White-Cooper, H. 2021. Roles for RNA export factor, Nxt1, in ensuring muscle integrity and normal RNA expression in Drosophila.. G3 11(1), article number: jkaa046. (10.1093/g3journal/jkaa046)
2018
- Laktionov, P. P. et al. 2018. Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis. Epigenetics and Chromatin 11, article number: 14. (10.1186/s13072-018-0183-3)
2016
- Sutton, E., Yu, Y., Shimeld, S., White-Cooper, H. and Alphey, L. 2016. Identification of genes for engineering the male germline of Aedes aegypti and Ceratitis capitata. BMC Genomics 17, article number: 948. (10.1186/s12864-016-3280-3)
2014
- Lowe, N. et al. 2014. Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library. Development 141(20), pp. 3994-4005. (10.1242/dev.111054)
- Lakitionov, P. P., White-Cooper, H., Maksimov, D. A. and Belyakin, S. N. 2014. Transcription factor Comr acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster. Molecular Biology 48(1), pp. 130-140. (10.1134/S0026893314010087)
2013
- Caporilli, S., Yu, Y., Jiang, J. and White-Cooper, H. 2013. The RNA export factor, Nxt1, is required for tissue specific transcriptional regulation. PLOS Genetics 9(6), article number: e1003526. (10.1371/journal.pgen.1003526)
- White-Cooper, H. and Caporilli, S. 2013. Transcriptional and post-transcriptional regulation of Drosophila Germline stem cells and their differentiating progeny. In: Hime, G. and Abud, H. eds. Transcriptional and Translational Regulation of Stem Cells., Vol. 1. Advances in Experimental Medicine and Biology Vol. 786. Dordrecht: Springer, pp. 47-61., (10.1007/978-94-007-6621-1_4)
2012
- White-Cooper, H. 2012. Tissue, cell type and stage-specific ectopic gene expression and RNAi induction in the Drosophila testis. Spermatogenesis 2(1), pp. 11-22. (10.4161/spmg.19088)
2011
- Doggett, K., Jiang, J., Aleti, G. and White-Cooper, H. 2011. Wake-up-call, a lin-52 paralogue, and always early, a lin-9 homologue physically interact, but have opposing functions in regulating testis-specific gene expression. Developmental Biology 355(2), pp. 381-393. (10.1016/j.ydbio.2011.04.030)
- White-Cooper, H. and Davidson, I. 2011. Unique aspects of transcription regulation in male germ cells. Cold Spring Harbor Perspectives in Biology 3(7), article number: a002626. (10.1101/cshperspect.a002626)
2010
- Miles, A., Zhao, J., Klyne, G., White-Cooper, H. and Shotton, D. 2010. OpenFlyData: An exemplar data web integrating gene expression data on the fruit fly Drosophila melanogaster. Journal of Biomedical Informatics 43(5), pp. 752-761. (10.1016/j.jbi.2010.04.004)
- White-Cooper, H. and Bausek, N. 2010. Evolution and spermatogenesis. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 365(1546), pp. 1465-1480. (10.1098/rstb.2009.0323)
- Fu, G. et al. 2010. Female-specific flightless phenotype for mosquito control. Proceedings of the National Academy of Sciences of the United States of America 107(10), pp. 4550-4554. (10.1073/pnas.1000251107)
- Zhao, J., Klyne, G., Benson, E., Gudmannsdottir, E., White-Cooper, H. and Shotton, D. 2010. FlyTED: The Drosophila testis gene expression database. Nucleic Acids Research 38(S1), pp. D710-D715. (10.1093/nar/gkp1006)
- White-Cooper, H. 2010. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction 139(1), pp. 11-21. (10.1530/REP-09-0083)
2009
- Morris, C., Benson, E. and White-Cooper, H. 2009. Determination of gene expression patterns using in situ hybridization to Drosophila testes. Nature Protocols 4(12), pp. 1807-1819. (10.1038/nprot.2009.192)
- White-Cooper, H. 2009. Studying how flies make sperm-Investigating gene function in Drosophila testes. Molecular and Cellular Endocrinology 306(1-2), pp. 66-74. (10.1016/j.mce.2008.11.026)
- Sato, A., White-Cooper, H., Doggett, K. and Holland, P. W. H. 2009. Degenerate evolution of the hedgehog gene in a hemichordate lineage. Proceedings of the National Academy of Sciences of the United States of America 106(18), pp. 7491-7494. (10.1073/pnas.0810430106)
2008
- Barreau, C., Benson, E., Gudmannsdottir, E., Newton, F. and White-Cooper, H. 2008. Post-meiotic transcription in Drosophila spermatogenesis. Development 135(11), pp. 1897-1902. (10.1242/dev.021949)
- Kirchner, J., Vissi, E., Gross, S., Szoor, B., Rudenko, A., Alphey, L. and White-Cooper, H. 2008. Drosophila Uri, a PP1alpha binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity. BMC Molecular Biology 9: 36 (10.1186/1471-2199-9-36)
- Townley, H. E., Parker, A. R. and White-Cooper, H. 2008. Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Advanced Functional Materials 18(2), pp. 369-374. (10.1002/adfm.200700609)
- Nair-Roberts, R. G., Chatelain-Badie, S. D., Benson, E., White-Cooper, H., Bolam, J. P. and Ungless, M. A. 2008. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152(4), pp. 1024-31. (10.1016/j.neuroscience.2008.01.046)
- Barreau, C., Benson, E. and White-Cooper, H. 2008. Comet and cup genes in Drosophila spermatogenesis: the first demonstration of post-meiotic transcription. Biochemical Society Transactions 36(3), pp. 540-542. (10.1042/BST0360540)
2007
- Jiang, J., Benson, E., Bausek, N., Doggett, K. and White-Cooper, H. 2007. Tombola, a tesmin/TSO1 family protein, regulates transcriptional activation in the Drosophila male germline and physically interacts with Always early. Development 134, pp. 1549-1559. (10.1242/dev.000521)
2004
- Korenjak, M. et al. 2004. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 19(2), pp. 181-193. (10.1016/j.cell.2004.09.034)
- L, P., J, J., B, B., M, H., E, B., MT, F. and White-Cooper, H. 2004. Regulation of transcription of meiotic cell cycle and terminal differentiation genes by the testis-specific Zn finger protein matotopetli. Development 131, pp. 1691-1702. (10.1242/dev.01032)
2003
- Jiang, J. and White-Cooper, H. 2003. Transcriptional activation in Drosophila spermatogenesis involves the mutually dependent function of aly and a novel meiotic arrest gene cookie monster. Development 130(3), pp. 563-573. (10.1242/dev.00246)
Articles
- McNamara, C. J., Ant, T. H., Harvey-Samuel, T., White-Cooper, H., Martinez, J., Alphey, L. and Sinkins, S. P. 2024. Transgenic expression of cif genes from Wolbachia strain w AlbB recapitulates cytoplasmic incompatibility in Aedes aegypti. Nature Communications 15, article number: 869. (10.1038/s41467-024-45238-7)
- Moth, E., Messer, F., Chaudhary, S. and White-Cooper, H. 2024. Differential gene expression underpinning production of distinct sperm morphs in the wax moth Galleria mellonella. Open Biology (10.1098/rsob.240002)
- Raz, A. A. et al. 2023. Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes. eLife 12, article number: e82201. (10.7554/elife.82201)
- Li, H. et al. 2022. Fly cell atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375(6584), article number: 2432. (10.1126/science.abk2432)
- van der Graaf, K., Jindrich, K., Mitchell, R. and White-Cooper, H. 2021. Roles for RNA export factor, Nxt1, in ensuring muscle integrity and normal RNA expression in Drosophila.. G3 11(1), article number: jkaa046. (10.1093/g3journal/jkaa046)
- Laktionov, P. P. et al. 2018. Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis. Epigenetics and Chromatin 11, article number: 14. (10.1186/s13072-018-0183-3)
- Sutton, E., Yu, Y., Shimeld, S., White-Cooper, H. and Alphey, L. 2016. Identification of genes for engineering the male germline of Aedes aegypti and Ceratitis capitata. BMC Genomics 17, article number: 948. (10.1186/s12864-016-3280-3)
- Lowe, N. et al. 2014. Analysis of the expression patterns, subcellular localisations and interaction partners of Drosophila proteins using a pigP protein trap library. Development 141(20), pp. 3994-4005. (10.1242/dev.111054)
- Lakitionov, P. P., White-Cooper, H., Maksimov, D. A. and Belyakin, S. N. 2014. Transcription factor Comr acts as a direct activator in the genetic program controlling spermatogenesis in D. melanogaster. Molecular Biology 48(1), pp. 130-140. (10.1134/S0026893314010087)
- Caporilli, S., Yu, Y., Jiang, J. and White-Cooper, H. 2013. The RNA export factor, Nxt1, is required for tissue specific transcriptional regulation. PLOS Genetics 9(6), article number: e1003526. (10.1371/journal.pgen.1003526)
- White-Cooper, H. 2012. Tissue, cell type and stage-specific ectopic gene expression and RNAi induction in the Drosophila testis. Spermatogenesis 2(1), pp. 11-22. (10.4161/spmg.19088)
- Doggett, K., Jiang, J., Aleti, G. and White-Cooper, H. 2011. Wake-up-call, a lin-52 paralogue, and always early, a lin-9 homologue physically interact, but have opposing functions in regulating testis-specific gene expression. Developmental Biology 355(2), pp. 381-393. (10.1016/j.ydbio.2011.04.030)
- White-Cooper, H. and Davidson, I. 2011. Unique aspects of transcription regulation in male germ cells. Cold Spring Harbor Perspectives in Biology 3(7), article number: a002626. (10.1101/cshperspect.a002626)
- Miles, A., Zhao, J., Klyne, G., White-Cooper, H. and Shotton, D. 2010. OpenFlyData: An exemplar data web integrating gene expression data on the fruit fly Drosophila melanogaster. Journal of Biomedical Informatics 43(5), pp. 752-761. (10.1016/j.jbi.2010.04.004)
- White-Cooper, H. and Bausek, N. 2010. Evolution and spermatogenesis. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 365(1546), pp. 1465-1480. (10.1098/rstb.2009.0323)
- Fu, G. et al. 2010. Female-specific flightless phenotype for mosquito control. Proceedings of the National Academy of Sciences of the United States of America 107(10), pp. 4550-4554. (10.1073/pnas.1000251107)
- Zhao, J., Klyne, G., Benson, E., Gudmannsdottir, E., White-Cooper, H. and Shotton, D. 2010. FlyTED: The Drosophila testis gene expression database. Nucleic Acids Research 38(S1), pp. D710-D715. (10.1093/nar/gkp1006)
- White-Cooper, H. 2010. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction 139(1), pp. 11-21. (10.1530/REP-09-0083)
- Morris, C., Benson, E. and White-Cooper, H. 2009. Determination of gene expression patterns using in situ hybridization to Drosophila testes. Nature Protocols 4(12), pp. 1807-1819. (10.1038/nprot.2009.192)
- White-Cooper, H. 2009. Studying how flies make sperm-Investigating gene function in Drosophila testes. Molecular and Cellular Endocrinology 306(1-2), pp. 66-74. (10.1016/j.mce.2008.11.026)
- Sato, A., White-Cooper, H., Doggett, K. and Holland, P. W. H. 2009. Degenerate evolution of the hedgehog gene in a hemichordate lineage. Proceedings of the National Academy of Sciences of the United States of America 106(18), pp. 7491-7494. (10.1073/pnas.0810430106)
- Barreau, C., Benson, E., Gudmannsdottir, E., Newton, F. and White-Cooper, H. 2008. Post-meiotic transcription in Drosophila spermatogenesis. Development 135(11), pp. 1897-1902. (10.1242/dev.021949)
- Kirchner, J., Vissi, E., Gross, S., Szoor, B., Rudenko, A., Alphey, L. and White-Cooper, H. 2008. Drosophila Uri, a PP1alpha binding protein, is essential for viability, maintenance of DNA integrity and normal transcriptional activity. BMC Molecular Biology 9: 36 (10.1186/1471-2199-9-36)
- Townley, H. E., Parker, A. R. and White-Cooper, H. 2008. Exploitation of diatom frustules for nanotechnology: tethering active biomolecules. Advanced Functional Materials 18(2), pp. 369-374. (10.1002/adfm.200700609)
- Nair-Roberts, R. G., Chatelain-Badie, S. D., Benson, E., White-Cooper, H., Bolam, J. P. and Ungless, M. A. 2008. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152(4), pp. 1024-31. (10.1016/j.neuroscience.2008.01.046)
- Barreau, C., Benson, E. and White-Cooper, H. 2008. Comet and cup genes in Drosophila spermatogenesis: the first demonstration of post-meiotic transcription. Biochemical Society Transactions 36(3), pp. 540-542. (10.1042/BST0360540)
- Jiang, J., Benson, E., Bausek, N., Doggett, K. and White-Cooper, H. 2007. Tombola, a tesmin/TSO1 family protein, regulates transcriptional activation in the Drosophila male germline and physically interacts with Always early. Development 134, pp. 1549-1559. (10.1242/dev.000521)
- Korenjak, M. et al. 2004. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 19(2), pp. 181-193. (10.1016/j.cell.2004.09.034)
- L, P., J, J., B, B., M, H., E, B., MT, F. and White-Cooper, H. 2004. Regulation of transcription of meiotic cell cycle and terminal differentiation genes by the testis-specific Zn finger protein matotopetli. Development 131, pp. 1691-1702. (10.1242/dev.01032)
- Jiang, J. and White-Cooper, H. 2003. Transcriptional activation in Drosophila spermatogenesis involves the mutually dependent function of aly and a novel meiotic arrest gene cookie monster. Development 130(3), pp. 563-573. (10.1242/dev.00246)
Book sections
- White-Cooper, H. and Caporilli, S. 2013. Transcriptional and post-transcriptional regulation of Drosophila Germline stem cells and their differentiating progeny. In: Hime, G. and Abud, H. eds. Transcriptional and Translational Regulation of Stem Cells., Vol. 1. Advances in Experimental Medicine and Biology Vol. 786. Dordrecht: Springer, pp. 47-61., (10.1007/978-94-007-6621-1_4)
Ymchwil
Rheoleiddio Mynegiant Gene yn Drosophila Spermatogenesis
Mae gwahaniaethu celloedd yn cael ei yrru gan newidiadau cydgysylltiedig ym mhroffil mynegiant genynnau'r gell: mae rhai genynnau yn cael eu troi ymlaen, mae eraill wedi'u diffodd. Mae un o'r newidiadau mwyaf rhyfeddol a reoleiddir yn ddatblygiadol mewn morffoleg celloedd yn digwydd mewn sbermatogenesis. Mae'r sberm aeddfed yn gell arbenigol iawn, y mae ei ffurfio o sbermatocyte sylfaenol syml yn cynnwys rhaniad celloedd anarferol (meiosis) i ffurfio sbermatid crwn, Wedi'i ddilyn gan newidiadau cymhleth ym mhensaernïaeth y gell i ffurfio'r sberm motile estynedig terfynol. Mae'r digwyddiadau gwahaniaethu hyn yn gofyn am lawer o gynhyrchion genynnau a ddefnyddir ar unrhyw adeg arall yn y datblygiad. Yn sail i hyn, mae newid dramatig ym mhroffil mynegiant genynnau celloedd germ gwrywaidd: wrth iddynt fynd i mewn i'r cam spermatocyte cynradd maent yn actifadu trawsgrifio set fawr o enynnau sy'n ofynnol ar gyfer cynhyrchu sberm. Rydym wedi darganfod yn ddiweddar bod set fach arall o enynnau yn cael ei thrawsgrifio ar ôl meiosis, wrth ymestyn sbermatidau, ac yn ymchwilio i'w rôl yn swyddogaeth sberm.
Y loci arestio meiotig
Mae dosbarth arestio meiotig genynnau Drosophila yn rheoleiddio trawsgrifio mewn sbermatogenesis; Yn benodol, mae eu hangen ar gyfer actifadu mynegiant o nifer o enynnau sy'n ofynnol ar gyfer gwahaniaethu sbermatid. Datgelodd cyfres o arbrofion micro-amrywiaeth fod tua hanner yr holl enynnau codio protein Drosophila yn cael eu mynegi mewn ceilliau, a bod 15-20% o'r rhain yn cael eu rheoleiddio gan ein genynnau, hy, trawsgrifio hyd at 10% o'r holl drosoffilia genynnau codio protein. Fe wnaethon ni glonio a nodweddu pump o'r genynnau arestio meiotig hyn (aly, comr, achi / vis, topi a bedd). Mae gan Aly a Comr swyddogaethau anhysbys, topi, beddrod ac achi / vis amgodio proteinau rhwymo DNA. Mewn sbermatocytau sylfaenol arferol mae'r holl broteinau arestio meiotig yn gysylltiedig cromatin, yn gyson â'u rôl mewn rheoleiddio mynegiant genynnau. Mae eu lleoleiddio mewn gwahanol gefndiroedd mutant yn amrywio: e.e. mae angen swyddogaeth aly ar gyfer lleoleiddio niwclear Comr, ac i'r gwrthwyneb, sy'n dangos bod ffurfio a lleoleiddio cymhleth gweithredol yn cael ei reoleiddio'n fawr. Ar hyn o bryd rydym yn ymchwilio i ffurfio'r cymhleth, a'i weithgarwch yn hyrwyddwyr targed.
Swyddogaeth genynnau mewn spermatogenesis
Ym 1998 tynnais fodel o swyddogaeth y genynnau arestio meiotig, lle gwnes i bostio y byddai aly yn rheoleiddio llawer o enynnau sy'n ofynnol ar gyfer gwahaniaethu sbermatid. Roedd y model hwn yn seiliedig ar ddata mynegiant ar gyfer tua 20 genyn. Dyluniwyd yr arbrawf arae i brofi'r model gyda llawer mwy o enynnau. Fodd bynnag, y prif arsylwad a ddatgelwyd gan y dadansoddiad array yw mai ychydig iawn a wyddom am swyddogaeth genynnau yn spermatogenesis Drosophila . I ddechrau, ni allaf ateb fy nghwestiwn "A yw'r loci arestio meiotig yn rheoleiddio genynnau sy'n ofynnol ar gyfer sbermiogenesis yn bennaf, ac nid genynnau sy'n ofynnol cyn meiosis?" oherwydd nad oedd swyddogaeth y mwyafrif o enynnau a newidiodd yn sylweddol yn y mwtaniaid yn hysbys. Felly, dechreuon ni brosiect swyddogaethol-geneteg ar raddfa fawr yn yr ydym yn defnyddio RNA mewn croesiad i'r fan a'r lle i ddisgrifio patrwm mynegiant, a rheoleiddio genetig, mwy na 1000 o enynnau mewn ceilliau. Rydym wedi archwilio patrymau mynegiant tua 1200 o enynnau, ac mae'n ymddangos bod fy rhagfynegiad cychwynnol yn gywir – mae genynnau sy'n gweithredu ar ôl meiosis yn tueddu i gael eu rheoleiddio gan y genynnau arestio meiotig, tra bod genynnau sy'n gweithredu yn gynharach yn tueddu i beidio â gofyn am y genynnau arestio meiotig ar gyfer eu mynegiant.
Mynegiant genynnau ôl-meiotig yn Drosophila
Derbyniwyd yn gyffredinol nad oes trawsgrifiad ôl-meiotig yn spermatogenesis Drosophila . Fodd bynnag, yn ein prosiect croesfridio yn y fan a'r lle , rydym wedi nodi tua 25 o enynnau sy'n cael eu trawsgrifio yn ystod cam ymestyn datblygiad sbermatid. Ar ben hynny, mae eu trawsgrifiadau wedi'u lleoleiddio i ben distal y sbermatidau. Mae'r trawsgrifiadau lleol yn perthyn i ddau ddosbarth - "cwpanau" a "comedau". Treiglad yn un o Mae'r genynnau comed, Scotti, yn ddi-haint gwrywaidd, gyda diffygion yn hwyr mewn spermatogenesis. Rydym yn defnyddio mewn vivo gohebydd yn adeiladu a dadansoddiad genetig i archwilio'r mecanweithiau sy'n rheoli'r mRNA a lleoleiddiadau a swyddogaethau protein.
Gwyliwch fideo am pam mae sberm mor ddiddorol
Cyllid
Mae ymchwil yn fy labordy yn cael ei ariannu gan BBSRC.
Aelodau'r grŵp
- Dr Saurabh Chaudhary
- Mrs Sabrina Williams
- Dr Fiona Messer
Myfyrwyr ymchwil ôl-raddedig
- Miss Dana Jackson
- Miss Cristina Fernadez Garcia
Addysgu
Rwy'n addysgu hanfodion geneteg a mwtaniadau yn y modiwl "Geneteg ac Esblygiad" blwyddyn 1. Mae hyn yn cynnwys darlithoedd a sesiwn ymarferol labordy ar eneteg Drosoffilia.
Rwy'n dysgu mwy am fwtaniadau yn ogystal ag ailgyfuniad a thechnolegau anifeiliaid trawsgenig yn "Bioleg Foleciwlaidd y Genyn" ym mlwyddyn 2. Mae hyn yn cynnwys darlithoedd a sesiwn ymarferol labordy ar ddifrod DNA ac atgyweirio.
Yn bl3 "Current Topics in Development, Bôn-gelloedd and Repair" rwy'n darlithio ar bwysigrwydd rheoleiddio cromatotin a thrawsgrifio mewn bioleg ddatblygiadol, yn enwedig yng nghyd-destun manyleb a swyddogaeth celloedd germ.
Rwy'n croesawu myfyrwyr prosiect blwyddyn olaf yn y grŵp - fel arfer yn goruchwylio 4-6 myfyriwr BSc ar brosiectau labordy neu ddadansoddi data, ac un myfyriwr traethawd hir terfynol Meistr Integredig.
Bywgraffiad
I graduated from Cambridge University with a BA in Natural Sciences (Zoology) in 1990, then went to Dundee University to carry out PhD research on the regulation of cell division in fruit flies. In 1995 I went to Stanford University in California for a period of post-doctoral research, concentrating on the role of specific genes co-ordination of various cellular events during sperm production in flies. In 1998 I moved to Oxford to set up my own lab, initially as a departmental lecturer, and in 2001 earned Royal Society University Research Fellowship. I continued to focus on spermatogenesis in Drosophila, specifically looking at regulation and function of testis specific genes. In April 2008 I moved to Cardiff University, to take up a position as a Senior Lecturer, continuing with the fly testis research. I was promoted to Reader in 2011 and to Professor in 2014.
Pwyllgorau ac adolygu
- Chaired the BBSRC BBR grant committee in 2021 and 2022
- Member of the BBSRC sLOLA Outline stage assessment panel in 2021
- Grant reviewer for BBSRC responsive mode
- Have reviewed papers for numerous journals, including for PLOS genetics and G3
Meysydd goruchwyliaeth
SWBIO-DTP PhD project available
A video describing the project
I am also willing to consider self-funded applicants to work on aspects of regulation of gene expression, RNA localisation and circRNAs, and stem cells in Drosophila. I would work with the student to define a project of mutual interest.
Project Description for SWBio project
We have discovered a set of localised mRNAs, which are found specifically at the growing ends of Drosophila spermatids, in patterns resembling comets or cups. We also discovered a set of known RNA-binding proteins that also localise to this region. In this project you will investigate potential roles of the RNA-binding proteins in localising these specific mRNAs. RNA localisation and translation will be investigated in RNA-binding protein mutants. Protein- RNA interactions will be assayed in vitro with both purified components and extracts (to allow ternary complex formation). You will also determine whether, and how, mutations in the localised mRNAs and RNA-binding proteins affect the intricate structure of developing spermatid tail tips.
This will provide the basis for a further analysis of this novel and virtually uncharacterised set of localised mRNAs. For example, systems biology and mathematical modelling approaches can be applied once the basic parameters of localisations, using super-resolution methods, and interactions at the biochemical and functional levels have been determined.
Objectives
-To describe and compare the comet and cup mRNAs’, and RNA-binding proteins’, localisations at the growing ends of spermatids.
-To determine whether the known RNA-binding proteins are important for localisation of any comet and cup mRNAs.
-To identify and characterise direct (or indirect) protein-RNA binding interactions between the localised mRNAs and the RNA-binding proteins.
-To investigate whether mutations in comet and cup genes, and the RNA-binding proteins, cause defects in the cellular structure at the growing ends of elongating spermatids.
-To uncover the relationship between "comet" and "cup" transcript localisation patterns.
-To determine whether the known RNA-binding proteins regulate comet and cup mRNA translation.
Eligibility
This studentship is available to UK and EU nationals who have established UK residency (EU nationals must have ordinarily lived in the UK throughout the three years preceding the start of the studentship). Please refer to the DTP eligibility webpage for more details: https://www.swbio.ac.uk/programme/eligibility/
Cardiff University will be able to award up to one fully funded four-year studentship for EU students who do not meet the residency requirements.
Entry requirements
Please refer to the DTP eligibility webpage for academic entry requirements: https://www.swbio.ac.uk/programme/eligibility/
If English is not your first language, you will need to achieve an IELTS score of 6.5 with 6.5 in all skills.
How to apply
Make your application to Cardiff University: https://www.cardiff.ac.uk/study/postgraduate/applying/how-to-apply
Please ensure that your application includes:
Two references. Neither of the referees should be part of the supervisory team.
Academic transcripts / degree certificate(s)
Personal statement. Please include supporting evidence for your Maths background.
Curriculum Vitae (CV)
English language certificates (where applicable)
Please refer to the DTP webpage for information about the selection process: https://www.swbio.ac.uk/programme/selection-process/
Applications must be submitted by midnight on Monday 2nd December 2019.
Funding Notes
This studentship will provide a stipend for 4 years in line with UK Research and Innovation (Research Council) rates (£15,009 in 2019/20), payment of university tuition fees, and a Research and Training and Support Grant (RTSG) to support the project.
Contact Details
+44 29208 75492
Adeilad Syr Martin Evans, Ystafell W3.21, Rhodfa'r Amgueddfa, Caerdydd, CF10 3AX
Themâu ymchwil
Arbenigeddau
- Bioleg datblygiadol ac atgenhedlu anifeiliaid
- Geneteg ddatblygiadol
- Bioleg foleciwlaidd
- Bioleg Celloedd