Professor Vladimir Buchman
Emeritus Professor
Overview
Research overview
A principal goal of our research is to understand molecular mechanisms involved in pathogenesis of certain human neurodegenerative and metabolic diseases. Currently we focus on studies of normal function of several protein families and dysfunction of family members linked to human pathologies. Various experimental approaches ranging from in vitro macromolecule interactions to production and phenotypical characterisation of animal models are used in these studies.
Publication
2024
- Sennett, C. et al. 2024. α-synuclein deletion impairs platelet function: A role for SNARE complex assembly. Cells 13(24), article number: 2089. (10.3390/cells13242089)
- Jensen, N. M. et al. 2024. MJF-14 proximity ligation assay detects early non-inclusion alpha-synuclein pathology with enhanced specificity and sensitivity. npj Parkinson's Disease 10, article number: 227. (10.1038/s41531-024-00841-9)
- Aubrey, L. D. et al. 2024. Substitution of Met-38 to Ile in γ-synuclein found in two patients with amyotrophic lateral sclerosis induces aggregation into amyloid. Proceedings of the National Academy of Sciences 121(2), article number: e2309700120. (10.1073/pnas.2309700120)
2022
- Chaprov, K., Sukhanova, I., Grineva, A. and Buchman, V. 2022. Beta-Synuclein protein function in behavioral impairment of triple knockout mouse model. Neuroscience Applied, article number: 100353. (10.1016/j.nsa.2022.100353)
- Vorobyov, V., Deev, A., Sukhanova, I., Morozova, O., Oganesyan, Z., Chaprov, K. and Buchman, V. L. 2022. Loss of the synuclein family members differentially affectsbBaseline- and apomorphine-associated EEG determinants in single-, double- and triple-knockout mice. Biomedicines 10(12), article number: 3128. (10.3390/biomedicines10123128)
- Ulamec, S. M. et al. 2022. Single residue modulators of amyloid formation in the N-terminal P1-region of α-synuclein. Nature Communications 13(1), article number: 4986. (10.1038/s41467-022-32687-1)
- Carnazza, K. E. et al. 2022. Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Reports 39(2), article number: 110675. (10.1016/j.celrep.2022.110675)
- An, H. et al. 2022. ALS-linked cytoplasmic FUS assemblies are compositionally different from physiological stress granules and sequester hnRNPA3, a novel modifier of FUS toxicity. Neurobiology of Disease 162, article number: 105585. (10.1016/j.nbd.2021.105585)
2021
- Chaprov, K. D., Lysikova, E. A., Teterina, E. V. and Buchman, V. L. 2021. Kinetics of alpha-synuclein depletion in three brain regions following conditional pan-neuronal inactivation of the encoding gene (Snca) by tamoxifen-induced Cre-recombination in adult mice. Transgenic Research 30, pp. 867-873. (10.1007/s11248-021-00286-3)
- Ninkina, N. et al. 2021. β-synuclein potentiates synaptic vesicle dopamine uptake and rescues dopaminergic neurons from MPTP-induced death in the absence of other synucleins. Journal of Biological Chemistry 297(6), article number: 101375. (10.1016/j.jbc.2021.101375)
- Upcott, M., Chaprov, K. D. and Buchman, V. 2021. Towards disease-modifying therapy of alpha-synucleinopathies: new molecules and new approaches came into the lime-light. Molecules 26(23), article number: 7351. (10.3390/molecules26237351)
- Kukharsky, M. S., Skvortsova, V. I., Bachurin, S. O. and Buchman, V. L. 2021. In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches. Medicinal Research Reviews 41(5), pp. 2804-2822. (10.1002/med.21725)
- Chaprov, K. et al. 2021. A bioisostere of Dimebon/Latrepirdine delays the onset and slows the progression of pathology in FUS transgenic mice. CNS Neuroscience and Therapeutics 27(7), pp. 765-775. (10.1111/cns.13637)
- Guschina, I. A., Ninkina, N., Roman, A., Pokrovskiy, M. V. and Buchman, V. L. 2021. Triple-knockout, synuclein-free mice display compromised lipid pattern. Molecules 26(11), article number: 3078. (10.3390/molecules26113078)
2020
- Hosford, P. S., Ninkina, N., Buchman, V. L., Smith, J. C., Marina, N. and SheikhBahaei, S. 2020. Synuclein deficiency results in age-related respiratory and cardiovascular dysfunctions in mice. Brain Sciences 10(9), article number: 583. (10.3390/brainsci10090583)
- Ninkina, N. et al. 2020. Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice. Neurobiology of Aging 91, pp. 76-87. (10.1016/j.neurobiolaging.2020.02.026)
- Lysikova, E. A. et al. 2020. Low level of expression of C-terminally truncated human FUS causes extensive changes in the spinal cord transcriptome of asymptomatic transgenic mice. Neurochemical Research 45, pp. 1168-1179. (10.1007/s11064-020-02999-z)
- Kukharsky, M. S. et al. 2020. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Translational Psychiatry 10, article number: 171. (10.1038/s41398-020-0854-2)
- An, H., Rabesahala de Meritens, C., Buchman, V. L. and Shelkovnikova, T. A. 2020. Frameshift peptides alter the properties of truncated FUS proteins in ALS-FUS. Molecular Brain 13, article number: 77. (10.1186/s13041-020-00618-0)
- Goloborshcheva, V. V., Chaprov, K. D., Teterina, E. V., Ovchinnikov, R. and Buchman, V. L. 2020. Reduced complement of dopaminergic neurons in the substantia nigra pars compacta of mice with a constitutive “low footprint” genetic knockout of alpha-synuclein. Molecular Brain 13(1), article number: 75. (10.1186/s13041-020-00613-5)
2019
- Shelkovnikova, T. A., An, H., Skelt, L., Tregoning, J. S., Humphreys, I. R. and Buchman, V. L. 2019. Antiviral immune response as a trigger of FUS proteinopathy in amyotrophic lateral sclerosis. Cell Reports 29(13), pp. 4496-4508.e4. (10.1016/j.celrep.2019.11.094)
- Lysikova, E. A. et al. 2019. Behavioural impairments in mice of a novel FUS transgenic line recapitulate features of frontotemporal lobar degeneration.. Genes, Brain and Behavior 18(8), article number: e12607. (10.1111/gbb.12607)
- Ninkina, N., Kukharsky, M. S., Hewitt, M. V., Lysikova, E. A., Skuratovska, L. N., Deykin, A. V. and Buchman, V. 2019. Stem cells in human breast milk. Human Cell 32(3), pp. 223-230. (10.1007/s13577-019-00251-7)
- Egorova, T. V. et al. 2019. CRISPR/Cas9-generated mouse model of Duchenne muscular dystrophy recapitulating a newly identified large 430 kb deletion in the human DMD gene. Disease Models and Mechanisms 12(4), pp. -., article number: dmm037655. (10.1242/dmm.037655)
- An, H. et al. 2019. ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathologica Communications 7, article number: 7. (10.1186/s40478-019-0658-x)
2018
- Skvortsova, V., Bachurin, S., Ustyugov, A., Kukharsky, M., Deikin, A., Buchman, V. L. and Ninkina, N. 2018. Gamma-carbolines derivatives as promising agents for the development of pathogenic therapy for proteinopathy. Acta Naturae 10(4), pp. 59-62.
- Shelkovnikova, T. A. et al. 2018. Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Molecular Neurodegeneration 13, article number: 30. (10.1186/s13024-018-0263-7)
2017
- Shelkovnikova, T. et al. 2017. Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly. Cell Death and Disease 8, article number: e2788. (10.1038/cddis.2017.199)
- Roman, A. Y., Limorenko, G., Ustyugov, A. A., Tarasova, T., Lysikova, E. A., Buchman, V. L. and Ninkina, N. 2017. Generation of mouse lines with conditionally or constitutively inactivated Snca gene and Rosa26-stop-lacZ reporter located in cis on the mouse chromosome 6. Transgenic Research 26(2), pp. 301-307. (10.1007/s11248-016-9995-8)
- Dimasi, P., Quintiero, A., Shelkovnikova, T. and Buchman, V. L. 2017. Modulation of p-eIF2α cellular levels and stress granule assembly/disassembly by trehalose. Scientific Reports 7, article number: 44088. (10.1038/srep44088)
2016
- Ludtmann, M. H. R., Angelova, P. R., Ninkina, N. N., Gandhi, S., Buchman, V. L. and Abramov, A. Y. 2016. Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase. Journal of Neuroscience 36(41), pp. 10510-10521. (10.1523/JNEUROSCI.1659-16.2016)
- Connor-Robson, N., Peters, O., Millership, S., Ninkina, N. and Buchman, V. L. 2016. Combinational losses of synucleins reveal their differential requirements for compensating age-dependent alterations in motor behavior and dopamine metabolism. Neurobiology of Aging 46, pp. 107-112. (10.1016/j.neurobiolaging.2016.06.020)
- Khatlani, T., Pradhan, S., Da, Q., Shaw, T., Buchman, V. L., Cruz, M. A. and Vijayan, K. V. 2016. A novel interaction of the catalytic subunit of protein phosphatase 2A with the adaptor protein CIN85 suppresses phosphatase activity and facilitates platelet outside-in ?IIb?3Integrin Signaling. The Journal of Biological Chemistry 291(33), pp. 17360-17368. (10.1074/jbc.M115.704296)
- Fares, M. et al. 2016. Induction of de novo α-synuclein fibrillization in a neuronal model for Parkinson's disease. Proceedings of the National Academy of Sciences 113(7), pp. E912-E921. (10.1073/pnas.1512876113)
2015
- Machhada, A. et al. 2015. Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve. Heart Rhythm 12(11), pp. 2285-2293. (10.1016/j.hrthm.2015.06.005)
- Ninkina, N., Connor-Robson, N., Ustyugov, A. A., Tarasova, T., Shelkovnikova, T. and Buchman, V. L. 2015. A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression. Scientific Reports 5, article number: 16615. (10.1038/srep16615)
- Abramycheva, N. Y. et al. 2015. C9ORF72 hexanucleotide repeat expansion in ALS patients from the Central European Russia population. Neurobiology of Aging 36(10), pp. 2908.e5-2908.e9. (10.1016/j.neurobiolaging.2015.07.004)
- Bronovitsky, E. V. et al. 2015. Gamma-carboline inhibits neurodegenerative processes in a transgenic model of amyotrophic lateral sclerosis. Doklady Biochemistry and Biophysics 462(1), pp. 189-192. (10.1134/S1607672915030138)
- Kukharsky, M. S. et al. 2015. Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis. Molecular Neurodegeneration 10, article number: 20. (10.1186/s13024-015-0014-y)
- Reed, K. R. et al. 2015. Hunk/Mak-v is a negative regulator of intestinal cell proliferation. BMC Cancer 15, article number: 110. (10.1186/s12885-015-1087-2)
- Peters, O. M. et al. 2015. Gamma-synuclein pathology in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology 2(1), pp. 29-37. (10.1002/acn3.143)
- Robinson, H. et al. 2015. Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 16(5-6), pp. 402-409. (10.3109/21678421.2015.1040994)
2014
- Shelkovnikova, T. A., Robinson, H. K., Southcombe, J. A., Ninkina, N. and Buchman, V. L. 2014. Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms. Human Molecular Genetics 23(19), pp. 5211-5226. (10.1093/hmg/ddu243)
- Shelkovnikova, T., Robinson, H., Troakes, C., Ninkina, N. and Buchman, V. 2014. Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Human Molecular Genetics 23(9), pp. 2298-2312. (10.1093/hmg/ddt622)
2013
- Cooper-Knock, J. et al. 2013. C9ORF72 transcription in a frontotemporal dementia case with two expanded alleles. Neurology 81(19), pp. 1719-1721. (10.1212/01.wnl.0000435295.41974.2e)
- Shelkovnikova, T., Robinson, H., Connor-Robson, N. and Buchman, V. L. 2013. Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm. Cell Cycle 12(19), pp. 3194-3202. (10.4161/cc.26241)
- Garcia-Reitboeck, P., Anichtchik, O., Dalley, J. W., Ninkina, N., Tofaris, G. K., Buchman, V. L. and Spillantini, M. G. 2013. Endogenous alpha-synuclein influences the number of dopaminergic neurons in mouse substantia nigra. Experimental Neurology 248, pp. 541-545. (10.1016/j.expneurol.2013.07.015)
- Jones, A. R. et al. 2013. Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-causing hexanucleotide repeat. Neurobiology of Aging 34(9), pp. 2234.e1-2234.e7. (10.1016/j.neurobiolaging.2013.03.003)
- Shelkovnikova, T. et al. 2013. Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. Journal of Biological Chemistry 288(35), pp. 25266-25274. (10.1074/jbc.M113.492017)
- Buchman, V. L. et al. 2013. Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation. Molecular Neurodegeneration 8(1), article number: 12. (10.1186/1750-1326-8-12)
- Peters, O. M. et al. 2013. Chronic administration of dimebon does not ameliorate amyloid-β pathology in 5xFAD transgenic mice. Journal of Alzheimer's Disease 36(3), pp. 589-596. (10.3233/JAD-130071)
- Millership, S. et al. 2013. Correction for Millership et al., Increased lipolysis and altered lipid homeostasis protect -synuclein-null mutant mice from diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America 110(13), pp. 5269. (10.1073/pnas.1302920110)
- Peters, O. M. et al. 2013. Chronic administration of dimebon ameliorates pathology in Tau P301S transgenic mice. Journal of Alzheimer's Disease 33(4), pp. 1041-1049. (10.3233/JAD-2012-121732)
- Millership, S., Ninkina, N., Rochford, J. J. and Buchman, V. L. 2013. γ-synuclein is a novel player in the control of body lipid metabolism. Adipocyte 2(4), pp. 276-280. (10.4161/adip.25162)
2012
- Ninkina, N., Peters, O. M., Connor-Robson, N., Lytkina, O., Sharfeddin, E. and Buchman, V. L. 2012. Contrasting effects of α-Synuclein and γ-Synuclein on the phenotype of cysteine string protein α (CSPα) null mutant mice suggest distinct function of these proteins in neuronal synapses. Journal of Biological Chemistry 287(53), pp. 44471-44477. (10.1074/jbc.M112.422402)
- Millership, S. et al. 2012. Increased lipolysis and altered lipid homeostasis protect γ-synuclein–null mutant mice from diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America 109(51), pp. 20943-20948. (10.1073/pnas.1210022110)
- Samoylenko, A. et al. 2012. Increased levels of the HER1 adaptor protein Ruk(l)/CIN85 contribute to breast cancer malignancy. Carcinogenesis 33(10), pp. 1976-1984. (10.1093/carcin/bgs228)
- Peters, O. M. et al. 2012. Selective pattern of motor system damage in gamma-synuclein transgenic mice mirrors the respective pathology in amyotrophic lateral sclerosis. Neurobiology of Disease 48(1), pp. 124-131. (10.1016/j.nbd.2012.06.016)
- Shelkovnikova, T., Ninkina, N. and Buchman, V. L. 2012. In Vivo properties of mutant FUS variants. Febs Journal 279(Supp1), pp. 446-446. (10.1111/j.1742-4658.2010.08705.x)
- Kokhan, V. S. et al. 2012. Targeted inactivation of the gene encoding gamma-synuclein affects anxiety levels and investigative activity in mice. Neuroscience and Behavioral Physiology 42(6), pp. 575-581. (10.1007/s11055-012-9603-1)
- Bachurin, S. O. et al. 2012. Dimebon slows progression of proteinopathy in γ-synuclein transgenic mice. Neurotoxicity Research 22(1), pp. 33-42. (10.1007/s12640-011-9299-y)
- Peña-Oliver, Y. et al. 2012. Deletion of alpha-synuclein decreases impulsivity in mice. Genes, Brain and Behavior 11(2), pp. 137-146. (10.1111/j.1601-183X.2011.00758.x)
- Kalinichenko, S. V., Itoh, K., Korobko, E. V., Sokol, S. Y., Buchman, V. L. and Korobko, I. V. 2012. Identification of Nedd4 E3 ubiquitin ligase as a binding partner and regulator of MAK-V protein kinase. PLoS ONE 7(6), article number: e39505. (10.1371/journal.pone.0039505)
- Ustyugov, A. A. et al. 2012. Dimebon reduces the levels of aggregated amyloidogenic protein forms in detergent-insoluble fractions in vivo. Bulletin of Experimental Biology and Medicine 152(6), pp. 731-733. (10.1007/s10517-012-1618-7)
- Shelkovnikova, T., Kulikova, A. A., Tsvetkov, P. O., Peters, O. M., Bachurin, S. O., Buchman, V. L. and Ninkina, N. 2012. Proteinopathies, neurodegenerative disorders with protein aggregation-based pathology. Molecular Biology 46(3), pp. 362-374. (10.1134/S0026893312020161)
2011
- Anwar, S. et al. 2011. Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family. Journal of Neuroscience 31(20), pp. 7264-7274. (10.1523/JNEUROSCI.6194-10.2011)
- Guschina, I., Millership, S., O'Donnell, V. B., Ninkina, N., Harwood, J. and Buchman, V. L. 2011. Lipid classes and fatty acid patterns are altered in the brain of γ-synuclein null mutant mice. Lipids 46(2), pp. 121-130. (10.1007/s11745-010-3486-0)
- Nguyen, J. V. et al. 2011. Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proceedings of the National Academy of Sciences 108(3), pp. 1176-1181. (10.1073/pnas.1013965108)
- Shelkovnikova, T., Ustyugov, A. A., Smirnov, A. P., Skvortsova, V. I., Buchman, V. L., Bachurin, S. O. and Ninkina, N. 2011. FUS gene mutations associated with familiar forms of amyotrophic lateral sclerosis affect cellular localization and aggregation properties of the encoded protein. Doklady Biochemistry and Biophysics 438(1), pp. 123-126. (10.1134/S1607672911030045)
- Shelkovnikova, T. et al. 2011. Dimebon does not ameliorate pathological changes caused by expression of truncated (1-120) human alpha-synuclein in dopaminergic neurons of transgenic mice. Neurodegenerative Diseases 8(6), pp. 430-437. (10.1159/000324989)
2010
- Venda, L. L., Cragg, S. J., Buchman, V. L. and Wade-Martins, R. 2010. α-Synuclein and dopamine at the crossroads of Parkinson's disease. Trends in Neurosciences 33(12), pp. 559-568. (10.1016/j.tins.2010.09.004)
- Greten-Harrison, B. et al. 2010. αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proceedings of the National Academy of Sciences of the United States of America 107(45), pp. 19573-19578. (10.1073/pnas.1005005107)
- Korobko, I., Kalinichenko, S., Korobko, E., Ninkina, N., Kiselev, S. and Buchman, V. L. 2010. Pro-survival activity of the MAK-V protein kinase in PC12 cells [Letter]. Cell Cycle 9(20), pp. 4248-4249. (10.4161/cc.9.20.13592)
- Burre, J., Sharma, M., Tsetsenis, T., Buchman, V. L., Etherton, M. R. and Sudhof, T. C. 2010. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999), pp. 1663-1667. (10.1126/science.1195227)
- Peña-Oliver, Y., Buchman, V. L. and Stephens, D. 2010. Lack of involvement of alpha-synuclein in unconditioned anxiety in mice. Behavioural Brain Research 209(2), pp. 234-240. (10.1016/j.bbr.2010.01.049)
- Havrylov, S., Redowicz, M. J. and Buchman, V. L. 2010. Emerging roles of Ruk/CIN85 in vesicle-mediated transport, adhesion, migration and malignancy. Traffic 11(6), pp. 721-731. (10.1111/j.1600-0854.2010.01061.x)
- Al-Wandi, A., Ninkina, N., Millership, S., Williamson, S. J. M., Jones, P. A. and Buchman, V. L. 2010. Absence of α-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice. Neurobiology of Aging 31(5), pp. 796-804. (10.1016/j.neurobiolaging.2008.11.001)
2009
- Ninkina, N., Peters, O. M., Millership, S., Salem, H. O., Van der Putten, H. and Buchman, V. L. 2009. y-Synucleinopathy: neurodegeneration associated with overexpression of the mouse protein. Human Molecular Genetics 18(10), pp. 1779-1794. (10.1093/hmg/ddp090)
- Sato, Y., Shimizu, M., Mizunoya, W., Wariishi, H., Tatsumi, R., Buchman, V. L. and Ikeuchi, Y. 2009. Differential Expression of Sarcoplasmic and Myofibrillar Proteins of Rat Soleus Muscle during Denervation Atrophy. Bioscience Biotechnology and Biochemistry 73(8), pp. 1748-1756. (10.1271/bbb.90085)
- Bachurin, S. O., Ustyugov, A. A., Peters, O., Shelkovnikova, T., Buchman, V. L. and Ninkina, N. 2009. Hindering of proteinopathy-induced neurodegeneration as a new mechanism of action for neuroprotectors and cognition enhancing compounds. Doklady Biochemistry and Biophysics 428(1), pp. 235-238. (10.1134/S1607672909050032)
- Nikolaienko, O. et al. 2009. Intersectin 1 forms a complex with adaptor protein Ruk/CIN85 in vivo independently of epidermal growth factor stimulation. Cellular Signalling 21(5), pp. 753-759. (10.1016/j.cellsig.2009.01.013)
- Yamashita, M. et al. 2009. Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Letters 583(14), pp. 2419-2424. (10.1016/j.febslet.2009.06.042)
2008
- Havrylov, S., Ichioka, F., Powell, K., Borthwick, E. B., J, B., Maki, M. and Buchman, V. L. 2008. Adaptor protein Ruk/CIN85 is associated with a subset of COPI coated membranes of the Golgi complex. Traffic 9(5), pp. 798-812. (10.1111/j.1600-0854.2008.00724.x)
- Senior, S., Ninkina, N., Deacon, R., Bannerman, D., Buchman, V. L., Cragg, S. and Wade-Martins, R. 2008. Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. European Journal of Neuroscience 27(4), pp. 947-957. (10.1111/j.1460-9568.2008.06055.x)
- Mertsalov, I. B., Ninkina, N., Wanless, J. S., Buchman, V., Korochkin, L. I. and Kulikova, D. A. 2008. Generation of mutant mice with targeted disruption of two members of the d4 gene family: neuro-d4 and cer-d4. Doklady Biochemistry and Biophysics 419, pp. 65-68. (10.1134/S1607672908020051)
- Akil, O., Weber, C. M., Park, S. N., Ninkina, N., Buchman, V. and Lustig, L. R. 2008. Localization of Syncleins in the Mammalian Cochlea. JARO-Journal of the Association for Research in Otolaryngology 9(4), pp. 452-463. (10.1007/s10162-008-0134-y)
- Buchman, V. and Ninkina, N. 2008. Modulation of α-synuclein expression in transgenic animals for modelling synucleinopathies-is the juice worth the squeeze?. Neurotoxicity Research 14(4), pp. 329-341.
- Ninkina, N., Ustiugov, A. A. and Buchman, V. 2008. Modelling synucleinopathies in genetically modified animals - successes and failures. Molekulyarnaya Biologiya 42(5), pp. 747 -761. (10.1134/S0026893308050129)
- Oort, P. J. et al. 2008. y-Synuclein is an Adipocyte-Neuron Gene Coordinately-Expressed with Leptin and Increased in Human Obesity. Journal of Nutrition 135(5), pp. 841-848.
2007
- Kuhn, M., Haebig, K., Bonin, M., Ninkina, N., Buchman, V. L., Poths, S. and Riess, O. 2007. Whole genome expression analyses of single- and double-knock-out mice implicate partially overlapping functions of alpha- and gamma-synuclein. Neurogenetics 8(2), pp. 71-81. (10.1007/s10048-007-0079-z)
- Ichioka, F., Takaya, E., Suzuki, H., Kajigaya, S., Buchman, V. L., Shibata, H. and Maki, M. 2007. HD-PTP and Alix share some membrane-traffic related proteins that interact with their Bro1 domains or proline-rich regions. Archives of biochemistry and biophysics 457(2), pp. 142-149. (10.1016/j.abb.2006.11.008)
- Korobko, I. V., Korobko, E. V., Ninkina, N., Buchman, V. L. and Kiselev, S. L. 2007. Phosphorylation of MAK-V protein kinase in mammalian cells. Doklady Biochemistry and Biophysics 412(1), pp. 37-39. (10.1134/S1607672907010115)
2006
- Papachroni, K. K. et al. 2006. Autoantibodies to alpha-synuclein in inherited Parkinson's disease. Journal of Neurochemistry 101(3), pp. 749-756. (10.1111/j.1471-4159.2006.04365.x)
- Rzhepetskyy, Y. A., Svinchuk, V. V., Mikhalap, S. V., Buchman, V. L., Sidorenko, S. P. and Drobot, L. B. 2006. Identification of protein kinases possibly involved in adaptor protein Ruk/CIN85 post-translational modification [note]. Ukrain'skyi Biokhimichnyi Zhurnal 78(6), article number: 150.
- Mayevska, O. et al. 2006. Expression of adaptor protein Ruk/CIN85 isoforms in cell lines of various tissue origins and human melanoma. Experimental Oncology 28(4), pp. 275-281.
2005
- Ilnytska, O. M. et al. 2005. Intra- and intermolecular interactions mediated by adaptor protein Ruk/CIN85/SETA. Biopolymers and Cell 21(1), pp. 48-54. (10.7124/bc.0006DB)
- Surgucheva, I., Ninkina, N., Buchman, V. L., Grasing, K. and Surguchov, A. 2005. Protein aggregation in retinal cells and approaches to cell protection. Cellular and Molecular Neurobiology 25(6), pp. 1051-1066. (10.1007/s10571-005-8474-1)
- Papachroni, K., Ninkina, N., Wanless, J., Kalofoutis, A. T., Gnuchev, N. V. and Buchman, V. L. 2005. Peripheral sensory neurons survive in the absence of α- and γ-synucleins. Journal of Molecular Neuroscience 25(2), pp. 157-164. (10.1385/JMN:25:2:157)
- Simonova, O. B., Kulikova, D. A., Mertsalov, I. B., Umnova, O. N., Bashkirov, V. N., Buchman, V. L. and Korochkin, L. I. 2005. Analysis of the overexpression of a newly found gene toothrin in Drosophila. Russian Journal of Genetics 41(2), pp. 138-143. (10.1007/s11177-005-0037-5)
- Mayevska, O. M. et al. 2005. Monoclonal and polyclonal antibodies produced against adaptor/scaffold protein Ruk/CIN85/SETA: characterization and practical applications. Ukrain'skyi Biokhimichnyi Zhurnal 77(2), article number: 211.
2004
- Borthwick, E. B. et al. 2004. Multiple Domains of Ruk/CIN85/SETA/CD2BP3 are Involved in Interaction with p85α Regulatory Subunit of PI 3-kinase. Journal of Molecular Biology 343(4), pp. 1135-1146. (10.1016/j.jmb.2004.08.075)
- Robertson, D. C., Schmidt, O., Ninkina, N., Jones, P. A., Sharkey, J. and Buchman, V. 2004. Developmental loss and resistance to MPTP toxicity of dopaminergic neurones in substantia nigra pars compacta of γ-synuclein, α-synuclein and double α/γ- synuclein null mutant mice. Journal of Neurochemistry 89(5), pp. 1126-1136. (10.1111/j.1471-4159.2004.02378.x)
- Saha, A. R. et al. 2004. Parkinson's disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons. Journal of Cell Science 117(Pt 7), pp. 1017-1024. (10.1242/jcs.00967)
- Ruzov, A. S., Meehan, R., Kiselev, S. L., Buchman, V. L., Korobko, I. V. and Mertsalov, I. B. 2004. Cloning and developmental expression of MARK/Par-1/MELK-related protein kinase xMAK-V in Xenopus laevis. Development Genes and Evolution 214(3), pp. 139-143. (10.1007/s00427-004-0381-9)
2003
- Ninkina, N. et al. 2003. Neurons Expressing the Highest Levels of γ-Synuclein Are Unaffected by Targeted Inactivation of the Gene. Molecular and Cellular Biology 23(22), pp. 8233-8245. (10.1128/MCB.23.22.8233-8245.2003)
- Dev, K. K., Hofele, K., Barbieri, S., Buchman, V. L. and van der Putten, H. 2003. Part II: α-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology 45(1), pp. 14-44. (10.1016/S0028-3908(03)00140-0)
- Kit, Y. Y. et al. 2003. Adaptor protein Ruk1 forms protein-protein complexes with endonuclease activity in HEK293 cells. Biochemistry (Moscow) 68(7), pp. 810-815.
2002
- Orel, V. R. et al. 2002. Subcellular localization of adapter protein Ruk, in HEK293 cells. Biopolymers and Cell 18(4), pp. 312-318. (10.7124/bc.000611)
- Verdier, F., Valovka, T., Zhyvoloup, A., Drobot, L. B., Buchman, V. L., Waterfield, M. and Gout, I. 2002. Ruk is ubiquitinated but not degraded by the proteasome. European Journal of Biochemistry 269(14), pp. 3402-3408. (10.1046/j.1432-1033.2002.03031.x)
- Buchman, V. L., Luke, C., Borthwick, E. B., Gout, I. and Ninkina, N. 2002. Organization of the mouse Ruk locus and expression of isoforms in mouse tissues. Gene 295(1), pp. 13-17. (10.1016/S0378-1119(02)00821-1)
- Nabirochkina, E., Simonova, O. B., Mertsalov, I. B., Kulikova, D. A., Ladigina, N. G., Korochkin, L. I. and Buchman, V. L. 2002. Expression pattern of dd4, a sole member of the d4 family of transcription factors in Drosophila melanogaster. Mechanisms of Development 114(1-2), pp. 119-123. (10.1016/S0925-4773(02)00035-7)
2001
- Orike, N., Middleton, G., Borthwick, E., Buchman, V. L., Cowen, T. and Davies, A. M. 2001. Role of PI 3-kinase, Akt and Bcl-2-related proteins in sustaining the survival of neurotrophic factor-independent adult sympathetic neurons. Journal of cell biology, pp. 995-1005. (10.1083/jcb.200101068)
- Alonzi, T. et al. 2001. Role of STAT3 and PI 3-Kinase/Akt in mediating the survival actions of cytokines on sensory neurons. Molecular and Cellular Neuroscience 18(3), pp. 270-282. (10.1006/mcne.2001.1018)
- Ninkina, N. et al. 2001. Cerd4, third member of the d4 gene family: expression and organization of genomic locus. Mammalian Genome 12(11), pp. 862-866. (10.1007/s00335-001-3039-1)
2000
- Saha, A. R., Ninkina, N. N., Hanger, D. P., Anderton, B. H., Davies, A. M. and Buchman, V. L. 2000. Induction of neuronal death by alpha-synuclein. European Journal of Neuroscience 12(8), pp. 3073-3077. (10.1046/j.1460-9568.2000.00210.x)
- Tiunova, A. . A. et al. 2000. Chicken synucleins: cloning and expression in the developing embryo. Mechanisms of Development 99(1-2), pp. 195-198. (10.1016/S0925-4773(00)00484-6)
- Mertsalov, I. B., Kulikova, D. A., Alimova-Kost, M. V., Ninkina, N. N., Korochkin, L. I. and Buchman, V. L. 2000. Structure and expression of two members of the d4 gene family in mouse. Mammalian Genome 11(1), pp. 72-74. (10.1007/s003350010014)
- Ninkina, N. and Buchman, V. L. 2000. Synucleins: to have or not to have?. Russian Journal of Genetics 36(11), pp. 1487-1491.
- Gout, I. et al. 2000. Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein. Embo Journal 19(15), pp. 4015-4025.
- Mertsalov, I. V., Kulikova, D. A., Ninkina, N., Simonova, O. B., Buchman, V. L. and Korochkin, L. 2000. Genomic organization of the mouse neuro-d4 gene. Russian Journal of Genetics 3(36), pp. 241-244.
Erthyglau
- Sennett, C. et al. 2024. α-synuclein deletion impairs platelet function: A role for SNARE complex assembly. Cells 13(24), article number: 2089. (10.3390/cells13242089)
- Jensen, N. M. et al. 2024. MJF-14 proximity ligation assay detects early non-inclusion alpha-synuclein pathology with enhanced specificity and sensitivity. npj Parkinson's Disease 10, article number: 227. (10.1038/s41531-024-00841-9)
- Aubrey, L. D. et al. 2024. Substitution of Met-38 to Ile in γ-synuclein found in two patients with amyotrophic lateral sclerosis induces aggregation into amyloid. Proceedings of the National Academy of Sciences 121(2), article number: e2309700120. (10.1073/pnas.2309700120)
- Chaprov, K., Sukhanova, I., Grineva, A. and Buchman, V. 2022. Beta-Synuclein protein function in behavioral impairment of triple knockout mouse model. Neuroscience Applied, article number: 100353. (10.1016/j.nsa.2022.100353)
- Vorobyov, V., Deev, A., Sukhanova, I., Morozova, O., Oganesyan, Z., Chaprov, K. and Buchman, V. L. 2022. Loss of the synuclein family members differentially affectsbBaseline- and apomorphine-associated EEG determinants in single-, double- and triple-knockout mice. Biomedicines 10(12), article number: 3128. (10.3390/biomedicines10123128)
- Ulamec, S. M. et al. 2022. Single residue modulators of amyloid formation in the N-terminal P1-region of α-synuclein. Nature Communications 13(1), article number: 4986. (10.1038/s41467-022-32687-1)
- Carnazza, K. E. et al. 2022. Synaptic vesicle binding of α-synuclein is modulated by β- and γ-synucleins. Cell Reports 39(2), article number: 110675. (10.1016/j.celrep.2022.110675)
- An, H. et al. 2022. ALS-linked cytoplasmic FUS assemblies are compositionally different from physiological stress granules and sequester hnRNPA3, a novel modifier of FUS toxicity. Neurobiology of Disease 162, article number: 105585. (10.1016/j.nbd.2021.105585)
- Chaprov, K. D., Lysikova, E. A., Teterina, E. V. and Buchman, V. L. 2021. Kinetics of alpha-synuclein depletion in three brain regions following conditional pan-neuronal inactivation of the encoding gene (Snca) by tamoxifen-induced Cre-recombination in adult mice. Transgenic Research 30, pp. 867-873. (10.1007/s11248-021-00286-3)
- Ninkina, N. et al. 2021. β-synuclein potentiates synaptic vesicle dopamine uptake and rescues dopaminergic neurons from MPTP-induced death in the absence of other synucleins. Journal of Biological Chemistry 297(6), article number: 101375. (10.1016/j.jbc.2021.101375)
- Upcott, M., Chaprov, K. D. and Buchman, V. 2021. Towards disease-modifying therapy of alpha-synucleinopathies: new molecules and new approaches came into the lime-light. Molecules 26(23), article number: 7351. (10.3390/molecules26237351)
- Kukharsky, M. S., Skvortsova, V. I., Bachurin, S. O. and Buchman, V. L. 2021. In a search for efficient treatment for amyotrophic lateral sclerosis: Old drugs for new approaches. Medicinal Research Reviews 41(5), pp. 2804-2822. (10.1002/med.21725)
- Chaprov, K. et al. 2021. A bioisostere of Dimebon/Latrepirdine delays the onset and slows the progression of pathology in FUS transgenic mice. CNS Neuroscience and Therapeutics 27(7), pp. 765-775. (10.1111/cns.13637)
- Guschina, I. A., Ninkina, N., Roman, A., Pokrovskiy, M. V. and Buchman, V. L. 2021. Triple-knockout, synuclein-free mice display compromised lipid pattern. Molecules 26(11), article number: 3078. (10.3390/molecules26113078)
- Hosford, P. S., Ninkina, N., Buchman, V. L., Smith, J. C., Marina, N. and SheikhBahaei, S. 2020. Synuclein deficiency results in age-related respiratory and cardiovascular dysfunctions in mice. Brain Sciences 10(9), article number: 583. (10.3390/brainsci10090583)
- Ninkina, N. et al. 2020. Alterations in the nigrostriatal system following conditional inactivation of α-synuclein in neurons of adult and aging mice. Neurobiology of Aging 91, pp. 76-87. (10.1016/j.neurobiolaging.2020.02.026)
- Lysikova, E. A. et al. 2020. Low level of expression of C-terminally truncated human FUS causes extensive changes in the spinal cord transcriptome of asymptomatic transgenic mice. Neurochemical Research 45, pp. 1168-1179. (10.1007/s11064-020-02999-z)
- Kukharsky, M. S. et al. 2020. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Translational Psychiatry 10, article number: 171. (10.1038/s41398-020-0854-2)
- An, H., Rabesahala de Meritens, C., Buchman, V. L. and Shelkovnikova, T. A. 2020. Frameshift peptides alter the properties of truncated FUS proteins in ALS-FUS. Molecular Brain 13, article number: 77. (10.1186/s13041-020-00618-0)
- Goloborshcheva, V. V., Chaprov, K. D., Teterina, E. V., Ovchinnikov, R. and Buchman, V. L. 2020. Reduced complement of dopaminergic neurons in the substantia nigra pars compacta of mice with a constitutive “low footprint” genetic knockout of alpha-synuclein. Molecular Brain 13(1), article number: 75. (10.1186/s13041-020-00613-5)
- Shelkovnikova, T. A., An, H., Skelt, L., Tregoning, J. S., Humphreys, I. R. and Buchman, V. L. 2019. Antiviral immune response as a trigger of FUS proteinopathy in amyotrophic lateral sclerosis. Cell Reports 29(13), pp. 4496-4508.e4. (10.1016/j.celrep.2019.11.094)
- Lysikova, E. A. et al. 2019. Behavioural impairments in mice of a novel FUS transgenic line recapitulate features of frontotemporal lobar degeneration.. Genes, Brain and Behavior 18(8), article number: e12607. (10.1111/gbb.12607)
- Ninkina, N., Kukharsky, M. S., Hewitt, M. V., Lysikova, E. A., Skuratovska, L. N., Deykin, A. V. and Buchman, V. 2019. Stem cells in human breast milk. Human Cell 32(3), pp. 223-230. (10.1007/s13577-019-00251-7)
- Egorova, T. V. et al. 2019. CRISPR/Cas9-generated mouse model of Duchenne muscular dystrophy recapitulating a newly identified large 430 kb deletion in the human DMD gene. Disease Models and Mechanisms 12(4), pp. -., article number: dmm037655. (10.1242/dmm.037655)
- An, H. et al. 2019. ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathologica Communications 7, article number: 7. (10.1186/s40478-019-0658-x)
- Skvortsova, V., Bachurin, S., Ustyugov, A., Kukharsky, M., Deikin, A., Buchman, V. L. and Ninkina, N. 2018. Gamma-carbolines derivatives as promising agents for the development of pathogenic therapy for proteinopathy. Acta Naturae 10(4), pp. 59-62.
- Shelkovnikova, T. A. et al. 2018. Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Molecular Neurodegeneration 13, article number: 30. (10.1186/s13024-018-0263-7)
- Shelkovnikova, T. et al. 2017. Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly. Cell Death and Disease 8, article number: e2788. (10.1038/cddis.2017.199)
- Roman, A. Y., Limorenko, G., Ustyugov, A. A., Tarasova, T., Lysikova, E. A., Buchman, V. L. and Ninkina, N. 2017. Generation of mouse lines with conditionally or constitutively inactivated Snca gene and Rosa26-stop-lacZ reporter located in cis on the mouse chromosome 6. Transgenic Research 26(2), pp. 301-307. (10.1007/s11248-016-9995-8)
- Dimasi, P., Quintiero, A., Shelkovnikova, T. and Buchman, V. L. 2017. Modulation of p-eIF2α cellular levels and stress granule assembly/disassembly by trehalose. Scientific Reports 7, article number: 44088. (10.1038/srep44088)
- Ludtmann, M. H. R., Angelova, P. R., Ninkina, N. N., Gandhi, S., Buchman, V. L. and Abramov, A. Y. 2016. Monomeric alpha-synuclein exerts a physiological role on brain ATP synthase. Journal of Neuroscience 36(41), pp. 10510-10521. (10.1523/JNEUROSCI.1659-16.2016)
- Connor-Robson, N., Peters, O., Millership, S., Ninkina, N. and Buchman, V. L. 2016. Combinational losses of synucleins reveal their differential requirements for compensating age-dependent alterations in motor behavior and dopamine metabolism. Neurobiology of Aging 46, pp. 107-112. (10.1016/j.neurobiolaging.2016.06.020)
- Khatlani, T., Pradhan, S., Da, Q., Shaw, T., Buchman, V. L., Cruz, M. A. and Vijayan, K. V. 2016. A novel interaction of the catalytic subunit of protein phosphatase 2A with the adaptor protein CIN85 suppresses phosphatase activity and facilitates platelet outside-in ?IIb?3Integrin Signaling. The Journal of Biological Chemistry 291(33), pp. 17360-17368. (10.1074/jbc.M115.704296)
- Fares, M. et al. 2016. Induction of de novo α-synuclein fibrillization in a neuronal model for Parkinson's disease. Proceedings of the National Academy of Sciences 113(7), pp. E912-E921. (10.1073/pnas.1512876113)
- Machhada, A. et al. 2015. Control of ventricular excitability by neurons of the dorsal motor nucleus of the vagus nerve. Heart Rhythm 12(11), pp. 2285-2293. (10.1016/j.hrthm.2015.06.005)
- Ninkina, N., Connor-Robson, N., Ustyugov, A. A., Tarasova, T., Shelkovnikova, T. and Buchman, V. L. 2015. A novel resource for studying function and dysfunction of α-synuclein: mouse lines for modulation of endogenous Snca gene expression. Scientific Reports 5, article number: 16615. (10.1038/srep16615)
- Abramycheva, N. Y. et al. 2015. C9ORF72 hexanucleotide repeat expansion in ALS patients from the Central European Russia population. Neurobiology of Aging 36(10), pp. 2908.e5-2908.e9. (10.1016/j.neurobiolaging.2015.07.004)
- Bronovitsky, E. V. et al. 2015. Gamma-carboline inhibits neurodegenerative processes in a transgenic model of amyotrophic lateral sclerosis. Doklady Biochemistry and Biophysics 462(1), pp. 189-192. (10.1134/S1607672915030138)
- Kukharsky, M. S. et al. 2015. Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis. Molecular Neurodegeneration 10, article number: 20. (10.1186/s13024-015-0014-y)
- Reed, K. R. et al. 2015. Hunk/Mak-v is a negative regulator of intestinal cell proliferation. BMC Cancer 15, article number: 110. (10.1186/s12885-015-1087-2)
- Peters, O. M. et al. 2015. Gamma-synuclein pathology in amyotrophic lateral sclerosis. Annals of Clinical and Translational Neurology 2(1), pp. 29-37. (10.1002/acn3.143)
- Robinson, H. et al. 2015. Early lethality and neuronal proteinopathy in mice expressing cytoplasm-targeted FUS that lacks the RNA recognition motif. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 16(5-6), pp. 402-409. (10.3109/21678421.2015.1040994)
- Shelkovnikova, T. A., Robinson, H. K., Southcombe, J. A., Ninkina, N. and Buchman, V. L. 2014. Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms. Human Molecular Genetics 23(19), pp. 5211-5226. (10.1093/hmg/ddu243)
- Shelkovnikova, T., Robinson, H., Troakes, C., Ninkina, N. and Buchman, V. 2014. Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Human Molecular Genetics 23(9), pp. 2298-2312. (10.1093/hmg/ddt622)
- Cooper-Knock, J. et al. 2013. C9ORF72 transcription in a frontotemporal dementia case with two expanded alleles. Neurology 81(19), pp. 1719-1721. (10.1212/01.wnl.0000435295.41974.2e)
- Shelkovnikova, T., Robinson, H., Connor-Robson, N. and Buchman, V. L. 2013. Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm. Cell Cycle 12(19), pp. 3194-3202. (10.4161/cc.26241)
- Garcia-Reitboeck, P., Anichtchik, O., Dalley, J. W., Ninkina, N., Tofaris, G. K., Buchman, V. L. and Spillantini, M. G. 2013. Endogenous alpha-synuclein influences the number of dopaminergic neurons in mouse substantia nigra. Experimental Neurology 248, pp. 541-545. (10.1016/j.expneurol.2013.07.015)
- Jones, A. R. et al. 2013. Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-causing hexanucleotide repeat. Neurobiology of Aging 34(9), pp. 2234.e1-2234.e7. (10.1016/j.neurobiolaging.2013.03.003)
- Shelkovnikova, T. et al. 2013. Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. Journal of Biological Chemistry 288(35), pp. 25266-25274. (10.1074/jbc.M113.492017)
- Buchman, V. L. et al. 2013. Simultaneous and independent detection of C9ORF72 alleles with low and high number of GGGGCC repeats using an optimised protocol of Southern blot hybridisation. Molecular Neurodegeneration 8(1), article number: 12. (10.1186/1750-1326-8-12)
- Peters, O. M. et al. 2013. Chronic administration of dimebon does not ameliorate amyloid-β pathology in 5xFAD transgenic mice. Journal of Alzheimer's Disease 36(3), pp. 589-596. (10.3233/JAD-130071)
- Millership, S. et al. 2013. Correction for Millership et al., Increased lipolysis and altered lipid homeostasis protect -synuclein-null mutant mice from diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America 110(13), pp. 5269. (10.1073/pnas.1302920110)
- Peters, O. M. et al. 2013. Chronic administration of dimebon ameliorates pathology in Tau P301S transgenic mice. Journal of Alzheimer's Disease 33(4), pp. 1041-1049. (10.3233/JAD-2012-121732)
- Millership, S., Ninkina, N., Rochford, J. J. and Buchman, V. L. 2013. γ-synuclein is a novel player in the control of body lipid metabolism. Adipocyte 2(4), pp. 276-280. (10.4161/adip.25162)
- Ninkina, N., Peters, O. M., Connor-Robson, N., Lytkina, O., Sharfeddin, E. and Buchman, V. L. 2012. Contrasting effects of α-Synuclein and γ-Synuclein on the phenotype of cysteine string protein α (CSPα) null mutant mice suggest distinct function of these proteins in neuronal synapses. Journal of Biological Chemistry 287(53), pp. 44471-44477. (10.1074/jbc.M112.422402)
- Millership, S. et al. 2012. Increased lipolysis and altered lipid homeostasis protect γ-synuclein–null mutant mice from diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America 109(51), pp. 20943-20948. (10.1073/pnas.1210022110)
- Samoylenko, A. et al. 2012. Increased levels of the HER1 adaptor protein Ruk(l)/CIN85 contribute to breast cancer malignancy. Carcinogenesis 33(10), pp. 1976-1984. (10.1093/carcin/bgs228)
- Peters, O. M. et al. 2012. Selective pattern of motor system damage in gamma-synuclein transgenic mice mirrors the respective pathology in amyotrophic lateral sclerosis. Neurobiology of Disease 48(1), pp. 124-131. (10.1016/j.nbd.2012.06.016)
- Shelkovnikova, T., Ninkina, N. and Buchman, V. L. 2012. In Vivo properties of mutant FUS variants. Febs Journal 279(Supp1), pp. 446-446. (10.1111/j.1742-4658.2010.08705.x)
- Kokhan, V. S. et al. 2012. Targeted inactivation of the gene encoding gamma-synuclein affects anxiety levels and investigative activity in mice. Neuroscience and Behavioral Physiology 42(6), pp. 575-581. (10.1007/s11055-012-9603-1)
- Bachurin, S. O. et al. 2012. Dimebon slows progression of proteinopathy in γ-synuclein transgenic mice. Neurotoxicity Research 22(1), pp. 33-42. (10.1007/s12640-011-9299-y)
- Peña-Oliver, Y. et al. 2012. Deletion of alpha-synuclein decreases impulsivity in mice. Genes, Brain and Behavior 11(2), pp. 137-146. (10.1111/j.1601-183X.2011.00758.x)
- Kalinichenko, S. V., Itoh, K., Korobko, E. V., Sokol, S. Y., Buchman, V. L. and Korobko, I. V. 2012. Identification of Nedd4 E3 ubiquitin ligase as a binding partner and regulator of MAK-V protein kinase. PLoS ONE 7(6), article number: e39505. (10.1371/journal.pone.0039505)
- Ustyugov, A. A. et al. 2012. Dimebon reduces the levels of aggregated amyloidogenic protein forms in detergent-insoluble fractions in vivo. Bulletin of Experimental Biology and Medicine 152(6), pp. 731-733. (10.1007/s10517-012-1618-7)
- Shelkovnikova, T., Kulikova, A. A., Tsvetkov, P. O., Peters, O. M., Bachurin, S. O., Buchman, V. L. and Ninkina, N. 2012. Proteinopathies, neurodegenerative disorders with protein aggregation-based pathology. Molecular Biology 46(3), pp. 362-374. (10.1134/S0026893312020161)
- Anwar, S. et al. 2011. Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family. Journal of Neuroscience 31(20), pp. 7264-7274. (10.1523/JNEUROSCI.6194-10.2011)
- Guschina, I., Millership, S., O'Donnell, V. B., Ninkina, N., Harwood, J. and Buchman, V. L. 2011. Lipid classes and fatty acid patterns are altered in the brain of γ-synuclein null mutant mice. Lipids 46(2), pp. 121-130. (10.1007/s11745-010-3486-0)
- Nguyen, J. V. et al. 2011. Myelination transition zone astrocytes are constitutively phagocytic and have synuclein dependent reactivity in glaucoma. Proceedings of the National Academy of Sciences 108(3), pp. 1176-1181. (10.1073/pnas.1013965108)
- Shelkovnikova, T., Ustyugov, A. A., Smirnov, A. P., Skvortsova, V. I., Buchman, V. L., Bachurin, S. O. and Ninkina, N. 2011. FUS gene mutations associated with familiar forms of amyotrophic lateral sclerosis affect cellular localization and aggregation properties of the encoded protein. Doklady Biochemistry and Biophysics 438(1), pp. 123-126. (10.1134/S1607672911030045)
- Shelkovnikova, T. et al. 2011. Dimebon does not ameliorate pathological changes caused by expression of truncated (1-120) human alpha-synuclein in dopaminergic neurons of transgenic mice. Neurodegenerative Diseases 8(6), pp. 430-437. (10.1159/000324989)
- Venda, L. L., Cragg, S. J., Buchman, V. L. and Wade-Martins, R. 2010. α-Synuclein and dopamine at the crossroads of Parkinson's disease. Trends in Neurosciences 33(12), pp. 559-568. (10.1016/j.tins.2010.09.004)
- Greten-Harrison, B. et al. 2010. αβγ-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proceedings of the National Academy of Sciences of the United States of America 107(45), pp. 19573-19578. (10.1073/pnas.1005005107)
- Korobko, I., Kalinichenko, S., Korobko, E., Ninkina, N., Kiselev, S. and Buchman, V. L. 2010. Pro-survival activity of the MAK-V protein kinase in PC12 cells [Letter]. Cell Cycle 9(20), pp. 4248-4249. (10.4161/cc.9.20.13592)
- Burre, J., Sharma, M., Tsetsenis, T., Buchman, V. L., Etherton, M. R. and Sudhof, T. C. 2010. α-Synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999), pp. 1663-1667. (10.1126/science.1195227)
- Peña-Oliver, Y., Buchman, V. L. and Stephens, D. 2010. Lack of involvement of alpha-synuclein in unconditioned anxiety in mice. Behavioural Brain Research 209(2), pp. 234-240. (10.1016/j.bbr.2010.01.049)
- Havrylov, S., Redowicz, M. J. and Buchman, V. L. 2010. Emerging roles of Ruk/CIN85 in vesicle-mediated transport, adhesion, migration and malignancy. Traffic 11(6), pp. 721-731. (10.1111/j.1600-0854.2010.01061.x)
- Al-Wandi, A., Ninkina, N., Millership, S., Williamson, S. J. M., Jones, P. A. and Buchman, V. L. 2010. Absence of α-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice. Neurobiology of Aging 31(5), pp. 796-804. (10.1016/j.neurobiolaging.2008.11.001)
- Ninkina, N., Peters, O. M., Millership, S., Salem, H. O., Van der Putten, H. and Buchman, V. L. 2009. y-Synucleinopathy: neurodegeneration associated with overexpression of the mouse protein. Human Molecular Genetics 18(10), pp. 1779-1794. (10.1093/hmg/ddp090)
- Sato, Y., Shimizu, M., Mizunoya, W., Wariishi, H., Tatsumi, R., Buchman, V. L. and Ikeuchi, Y. 2009. Differential Expression of Sarcoplasmic and Myofibrillar Proteins of Rat Soleus Muscle during Denervation Atrophy. Bioscience Biotechnology and Biochemistry 73(8), pp. 1748-1756. (10.1271/bbb.90085)
- Bachurin, S. O., Ustyugov, A. A., Peters, O., Shelkovnikova, T., Buchman, V. L. and Ninkina, N. 2009. Hindering of proteinopathy-induced neurodegeneration as a new mechanism of action for neuroprotectors and cognition enhancing compounds. Doklady Biochemistry and Biophysics 428(1), pp. 235-238. (10.1134/S1607672909050032)
- Nikolaienko, O. et al. 2009. Intersectin 1 forms a complex with adaptor protein Ruk/CIN85 in vivo independently of epidermal growth factor stimulation. Cellular Signalling 21(5), pp. 753-759. (10.1016/j.cellsig.2009.01.013)
- Yamashita, M. et al. 2009. Methylene blue and dimebon inhibit aggregation of TDP-43 in cellular models. FEBS Letters 583(14), pp. 2419-2424. (10.1016/j.febslet.2009.06.042)
- Havrylov, S., Ichioka, F., Powell, K., Borthwick, E. B., J, B., Maki, M. and Buchman, V. L. 2008. Adaptor protein Ruk/CIN85 is associated with a subset of COPI coated membranes of the Golgi complex. Traffic 9(5), pp. 798-812. (10.1111/j.1600-0854.2008.00724.x)
- Senior, S., Ninkina, N., Deacon, R., Bannerman, D., Buchman, V. L., Cragg, S. and Wade-Martins, R. 2008. Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alpha-synuclein and gamma-synuclein. European Journal of Neuroscience 27(4), pp. 947-957. (10.1111/j.1460-9568.2008.06055.x)
- Mertsalov, I. B., Ninkina, N., Wanless, J. S., Buchman, V., Korochkin, L. I. and Kulikova, D. A. 2008. Generation of mutant mice with targeted disruption of two members of the d4 gene family: neuro-d4 and cer-d4. Doklady Biochemistry and Biophysics 419, pp. 65-68. (10.1134/S1607672908020051)
- Akil, O., Weber, C. M., Park, S. N., Ninkina, N., Buchman, V. and Lustig, L. R. 2008. Localization of Syncleins in the Mammalian Cochlea. JARO-Journal of the Association for Research in Otolaryngology 9(4), pp. 452-463. (10.1007/s10162-008-0134-y)
- Buchman, V. and Ninkina, N. 2008. Modulation of α-synuclein expression in transgenic animals for modelling synucleinopathies-is the juice worth the squeeze?. Neurotoxicity Research 14(4), pp. 329-341.
- Ninkina, N., Ustiugov, A. A. and Buchman, V. 2008. Modelling synucleinopathies in genetically modified animals - successes and failures. Molekulyarnaya Biologiya 42(5), pp. 747 -761. (10.1134/S0026893308050129)
- Oort, P. J. et al. 2008. y-Synuclein is an Adipocyte-Neuron Gene Coordinately-Expressed with Leptin and Increased in Human Obesity. Journal of Nutrition 135(5), pp. 841-848.
- Kuhn, M., Haebig, K., Bonin, M., Ninkina, N., Buchman, V. L., Poths, S. and Riess, O. 2007. Whole genome expression analyses of single- and double-knock-out mice implicate partially overlapping functions of alpha- and gamma-synuclein. Neurogenetics 8(2), pp. 71-81. (10.1007/s10048-007-0079-z)
- Ichioka, F., Takaya, E., Suzuki, H., Kajigaya, S., Buchman, V. L., Shibata, H. and Maki, M. 2007. HD-PTP and Alix share some membrane-traffic related proteins that interact with their Bro1 domains or proline-rich regions. Archives of biochemistry and biophysics 457(2), pp. 142-149. (10.1016/j.abb.2006.11.008)
- Korobko, I. V., Korobko, E. V., Ninkina, N., Buchman, V. L. and Kiselev, S. L. 2007. Phosphorylation of MAK-V protein kinase in mammalian cells. Doklady Biochemistry and Biophysics 412(1), pp. 37-39. (10.1134/S1607672907010115)
- Papachroni, K. K. et al. 2006. Autoantibodies to alpha-synuclein in inherited Parkinson's disease. Journal of Neurochemistry 101(3), pp. 749-756. (10.1111/j.1471-4159.2006.04365.x)
- Rzhepetskyy, Y. A., Svinchuk, V. V., Mikhalap, S. V., Buchman, V. L., Sidorenko, S. P. and Drobot, L. B. 2006. Identification of protein kinases possibly involved in adaptor protein Ruk/CIN85 post-translational modification [note]. Ukrain'skyi Biokhimichnyi Zhurnal 78(6), article number: 150.
- Mayevska, O. et al. 2006. Expression of adaptor protein Ruk/CIN85 isoforms in cell lines of various tissue origins and human melanoma. Experimental Oncology 28(4), pp. 275-281.
- Ilnytska, O. M. et al. 2005. Intra- and intermolecular interactions mediated by adaptor protein Ruk/CIN85/SETA. Biopolymers and Cell 21(1), pp. 48-54. (10.7124/bc.0006DB)
- Surgucheva, I., Ninkina, N., Buchman, V. L., Grasing, K. and Surguchov, A. 2005. Protein aggregation in retinal cells and approaches to cell protection. Cellular and Molecular Neurobiology 25(6), pp. 1051-1066. (10.1007/s10571-005-8474-1)
- Papachroni, K., Ninkina, N., Wanless, J., Kalofoutis, A. T., Gnuchev, N. V. and Buchman, V. L. 2005. Peripheral sensory neurons survive in the absence of α- and γ-synucleins. Journal of Molecular Neuroscience 25(2), pp. 157-164. (10.1385/JMN:25:2:157)
- Simonova, O. B., Kulikova, D. A., Mertsalov, I. B., Umnova, O. N., Bashkirov, V. N., Buchman, V. L. and Korochkin, L. I. 2005. Analysis of the overexpression of a newly found gene toothrin in Drosophila. Russian Journal of Genetics 41(2), pp. 138-143. (10.1007/s11177-005-0037-5)
- Mayevska, O. M. et al. 2005. Monoclonal and polyclonal antibodies produced against adaptor/scaffold protein Ruk/CIN85/SETA: characterization and practical applications. Ukrain'skyi Biokhimichnyi Zhurnal 77(2), article number: 211.
- Borthwick, E. B. et al. 2004. Multiple Domains of Ruk/CIN85/SETA/CD2BP3 are Involved in Interaction with p85α Regulatory Subunit of PI 3-kinase. Journal of Molecular Biology 343(4), pp. 1135-1146. (10.1016/j.jmb.2004.08.075)
- Robertson, D. C., Schmidt, O., Ninkina, N., Jones, P. A., Sharkey, J. and Buchman, V. 2004. Developmental loss and resistance to MPTP toxicity of dopaminergic neurones in substantia nigra pars compacta of γ-synuclein, α-synuclein and double α/γ- synuclein null mutant mice. Journal of Neurochemistry 89(5), pp. 1126-1136. (10.1111/j.1471-4159.2004.02378.x)
- Saha, A. R. et al. 2004. Parkinson's disease alpha-synuclein mutations exhibit defective axonal transport in cultured neurons. Journal of Cell Science 117(Pt 7), pp. 1017-1024. (10.1242/jcs.00967)
- Ruzov, A. S., Meehan, R., Kiselev, S. L., Buchman, V. L., Korobko, I. V. and Mertsalov, I. B. 2004. Cloning and developmental expression of MARK/Par-1/MELK-related protein kinase xMAK-V in Xenopus laevis. Development Genes and Evolution 214(3), pp. 139-143. (10.1007/s00427-004-0381-9)
- Ninkina, N. et al. 2003. Neurons Expressing the Highest Levels of γ-Synuclein Are Unaffected by Targeted Inactivation of the Gene. Molecular and Cellular Biology 23(22), pp. 8233-8245. (10.1128/MCB.23.22.8233-8245.2003)
- Dev, K. K., Hofele, K., Barbieri, S., Buchman, V. L. and van der Putten, H. 2003. Part II: α-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology 45(1), pp. 14-44. (10.1016/S0028-3908(03)00140-0)
- Kit, Y. Y. et al. 2003. Adaptor protein Ruk1 forms protein-protein complexes with endonuclease activity in HEK293 cells. Biochemistry (Moscow) 68(7), pp. 810-815.
- Orel, V. R. et al. 2002. Subcellular localization of adapter protein Ruk, in HEK293 cells. Biopolymers and Cell 18(4), pp. 312-318. (10.7124/bc.000611)
- Verdier, F., Valovka, T., Zhyvoloup, A., Drobot, L. B., Buchman, V. L., Waterfield, M. and Gout, I. 2002. Ruk is ubiquitinated but not degraded by the proteasome. European Journal of Biochemistry 269(14), pp. 3402-3408. (10.1046/j.1432-1033.2002.03031.x)
- Buchman, V. L., Luke, C., Borthwick, E. B., Gout, I. and Ninkina, N. 2002. Organization of the mouse Ruk locus and expression of isoforms in mouse tissues. Gene 295(1), pp. 13-17. (10.1016/S0378-1119(02)00821-1)
- Nabirochkina, E., Simonova, O. B., Mertsalov, I. B., Kulikova, D. A., Ladigina, N. G., Korochkin, L. I. and Buchman, V. L. 2002. Expression pattern of dd4, a sole member of the d4 family of transcription factors in Drosophila melanogaster. Mechanisms of Development 114(1-2), pp. 119-123. (10.1016/S0925-4773(02)00035-7)
- Orike, N., Middleton, G., Borthwick, E., Buchman, V. L., Cowen, T. and Davies, A. M. 2001. Role of PI 3-kinase, Akt and Bcl-2-related proteins in sustaining the survival of neurotrophic factor-independent adult sympathetic neurons. Journal of cell biology, pp. 995-1005. (10.1083/jcb.200101068)
- Alonzi, T. et al. 2001. Role of STAT3 and PI 3-Kinase/Akt in mediating the survival actions of cytokines on sensory neurons. Molecular and Cellular Neuroscience 18(3), pp. 270-282. (10.1006/mcne.2001.1018)
- Ninkina, N. et al. 2001. Cerd4, third member of the d4 gene family: expression and organization of genomic locus. Mammalian Genome 12(11), pp. 862-866. (10.1007/s00335-001-3039-1)
- Saha, A. R., Ninkina, N. N., Hanger, D. P., Anderton, B. H., Davies, A. M. and Buchman, V. L. 2000. Induction of neuronal death by alpha-synuclein. European Journal of Neuroscience 12(8), pp. 3073-3077. (10.1046/j.1460-9568.2000.00210.x)
- Tiunova, A. . A. et al. 2000. Chicken synucleins: cloning and expression in the developing embryo. Mechanisms of Development 99(1-2), pp. 195-198. (10.1016/S0925-4773(00)00484-6)
- Mertsalov, I. B., Kulikova, D. A., Alimova-Kost, M. V., Ninkina, N. N., Korochkin, L. I. and Buchman, V. L. 2000. Structure and expression of two members of the d4 gene family in mouse. Mammalian Genome 11(1), pp. 72-74. (10.1007/s003350010014)
- Ninkina, N. and Buchman, V. L. 2000. Synucleins: to have or not to have?. Russian Journal of Genetics 36(11), pp. 1487-1491.
- Gout, I. et al. 2000. Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein. Embo Journal 19(15), pp. 4015-4025.
- Mertsalov, I. V., Kulikova, D. A., Ninkina, N., Simonova, O. B., Buchman, V. L. and Korochkin, L. 2000. Genomic organization of the mouse neuro-d4 gene. Russian Journal of Genetics 3(36), pp. 241-244.
- Ninkina, N. and Buchman, V. L. 2000. Synucleins: to have or not to have?. Russian Journal of Genetics 36(11), pp. 1487-1491.
- Mertsalov, I. V., Kulikova, D. A., Ninkina, N., Simonova, O. B., Buchman, V. L. and Korochkin, L. 2000. Genomic organization of the mouse neuro-d4 gene. Russian Journal of Genetics 3(36), pp. 241-244.
Research
Projects
Synuclein biology
Synucleins came into the limelight in 1997 after the first studies have been published linking missense mutations in the SNCA, a gene encoding alpha-synuclein, to a familial form of Parkinson's disease, and aggregation of alpha-synuclein to histopathological changes typical to the majority of Parkinson's disease cases. Despite the high level of interest triggered by these findings, neither normal function of alpha-synuclein, nor the exact mechanism of pathological changes caused by its dysfunction are well understood. Even less is known about the function of two other members of the family, beta-synuclein and gamma-synuclein, in health and disease. The research community still encounters difficulties with interpretation of the results obtained in many laboratories using various experimental systems, mainly due to unconventional structural properties of synucleins, their involvement in multiple intracellular processes, differential effect of various protein isoforms (monomers, oligomers, protofibrils and fibrils) on these processes and functional redundancy within the family. Therefore, further detailed studies of all aspects of synuclein biology in more appropriate experimental systems are vital for the understanding of the role of these proteins in normal and degenerating nervous systems. Currently, we are involved in several projects that might help to achieve these goals:
Normal function of synucleins
i. In synaptic transmission
Recently, we have produced mice lacking members of the synuclein family in all possible combinations (single, double and triple knock-outs) and employed these models to reveal the importance of these proteins in modulation of neurotransmitter release in various types of neurons (for example see Figure 1). We also have evidence of synucleins involvement in neurotransmitter uptake by presynaptic vesicles and are currently studying the exact mechanism of this effect.
ii. In the development of midbrain dopaminergic neurons.
Our previous results suggested differential role for synuclein family members in this process, and the existence of certain mechanisms that might compensate for the dysfunction of these proteins during critical developmental periods. Currently, we are studying how these changes may affect sensitivity of adult dopaminergic neurons to various neurotoxic challenges.
iii. In mitochondria energy production.
Although synucleins were always considered to be involved in normal function of brain mitochondria, it is still not clear what elements of the energy production chain might be modulated by these proteins. To address this question, we apply various biochemical, biophysical and pharmacological methods to assess the effects of each synuclein on mitochondrial function. These studies are carried out on purified mitochondria, neuronal cell cultures and brain slices obtained from various synuclein knock-out mice. We also reintroduce synucleins into cultured neurons by lentiviral delivery, or by adding functional monomeric recombinant synucleins to in vitro reactions.
iv. In adipocyte biology (gamma-synuclein).
In addition to robust expression in the nervous system, particularly in periphery sensory and lower motor neurons, gamma-synuclein is abundant in white adipose tissue. We have demonstrated dietary regulation of gamma-synuclein expression in adipocytes and rescue of mice from high fat diet induced obesity and metabolic phenotype by knocking-out the gamma-synuclein gene. Our data support the hypothesis that gamma-synuclein depletion increases the level of lipolisis in adipocytes in conditions of nutrient excess, possibly by the modulation of ATGL activity and lipid droplet fusion (Figure 2). Ongoing detail studies of these mechanisms should reveal if gamma-synuclein can be considered as a promising target for therapy of obesity and metabolic syndrome.
Synucleins in pathological processes
i. Cytotoxicity of alpha-synuclein aggregation intermediates.
We study the toxicity of various intermediates or final products of purified recombinant alpha-synuclein aggregation to various types of neurons, including neurons from synuclein knock-out mice. These alpha-synuclein species are also used to assess their effects on the function of mitochondria, as described above.
ii. Toxic gain-of-function of gamma-synuclein in motor neurons and its role in motor neuron disease.
Recently, we have described novel gamma-synuclein-positive pathological profiles in the cortico-spinal tract of a subset of ALS patients. We suggested that these structures represent aggregates of gamma-synuclein formed in degenerating axons of upper motor neurons, and therefore, pathological aggregation of gamma-synuclein might be involved in pathogenesis of certain forms or stages of the disease. Consistently, mice overexpressing wild type mouse gamma-synuclein in neurons develop age- and gene dose-dependent motor phenotype caused by the aggregation of gamma-synuclein in neuron cell bodies and axons followed by selective degeneration of certain motor neuron populations (Figure 3). Our next goal is to reveal the chain of events leading to neuronal dysfunction and death in this model of ALS and clarify the origin and composition of pathological gamma-synuclein-positive profiles in the nervous system of ALS patients.
iii. Age-dependent depletion of functional synucleins from neuronal synapses and its contribution to compromised neurotransmission.
It is feasible that massive pathological aggregation of alpha-synuclein in neuron cell body and axons of Parkinson's and Lewy body disease patients leads to profound depletion of presynaptic terminals from functional alpha-synuclein. This might compromise normal synaptic neurotransmission and contribute to the manifestation of disease symptoms. In mice constitutive knock-out of the gene this effect can be neutralised by certain compensatory mechanisms during critical periods of the development (see above). To leapfrog this, we have recently produced mice in which the alpha-synuclein gene can be conditionally inactivated in selected neuronal populations and at any developmental stage, including ageing animals (Figure 4). Studies of these mice shall reveal a role of functional alpha-synuclein deficiency in the development of symptoms typical for synucleinopathies.
iv. Gamma-synuclein in tumourigenesis and malignisation.
In addition to neural and white adipose tissues, abundant gamma-synuclein is often found in certain types of tumours, particularly at advance stages of malignisation. This phenomenon has not been properly studied, but it has been suggested in literature, that gamma-synuclein is involved in the progression of mammary gland tumours. We observed a correlation between expression of gamma-synuclein and Erb2B in this type of tumours and tumour cell lines. However, our studies of Erb2B-induced mammary tumourigenesis and metastasis in the presence and absence of gamma-synuclein demonstrate that this protein is not required for either of these processes, at least in this type of tumours. Further studies should reveal why gamma-synuclein becomes a marker of certain advance stage tumours.
Relationship between RNA metabolism and pathological aggregation of RNA-binding proteins in the development of ALS and related diseases
A significant number of ALS-associated mutations has been identified in genes encoding RNA-binding proteins. Moreover, some of these proteins possess prion-like domains that are responsible for their high propensity to aggregate. Consistently, pathological aggregates formed by these proteins were found in the nervous system of both familial and sporadic ALS and certain other neurodegenerative diseases. Thus, both compromised RNA metabolism and pathological protein aggregation are considered as potential causes of neurodegeneration, but contribution to the development of pathology and relationship between these processes are not yet well understood. To clarify this, we currently employ various cell and animal models to study FUS, one of RNA-binding proteins involved in pathogenesis of ALS and related diseases, and plan to extend these studies to other RNA-binding proteins that have been very recently linked to these diseases, namely hnRNPA1 and hnRNPA2/B1.
Mechanism of pathological aggregation of FUS protein in cells
Our studies of intracellular localisation and formation of atypical structures (small or larger puncta, aggresomes, etc.) by various modified forms of human FUS protein in a number of stable cell lines, have demonstrated that FUS becomes highly aggregation-prone when it is not able to bind target RNA (Figure 5). Based on these observations, we suggested a hypothesis of pathological aggregation of FUS (manuscript under review).
Animal models of FUSopathies
To extend our studies of FUS aggregation to a more relevant in vivo system, we have produced transgenic mice expressing C-terminally truncated form of human FUS in their neurons. These mice abruptly develop severe motor pathology at the age of 2.5 – 4.5 months, characterised by profound aggregation of both human and endogenous mouse FUS in all neuronal compartments, and severe damage of selected populations of motor neurons and their axons (paper in press). Other mouse lines expressing different variants of FUS has also been produced, and studies of their phenotypes are underway.
Physiological and pathological sequestering of FUS and other aggregation-prone RNA-binding proteins in nuclear and cytoplasmic RNP complexes
These proteins are residents of various nuclear and cytoplasmic RNP complexes in normal cells and their abilities to associate with these complexes are often compromised in degenerating neurons. However, the function of each protein in each RNP complex is not clear. The aim of our studies is to reveal these functions and link them with pathological changes in ALS and other neurodegenerative diseases.
Repeat expansions in the C9ORF72 genomic locus as aetiological factor for ALS and related diseases
Expansion of GGGGCC repeats in the C9ORF72 locus is the most common mutation in ALS patients, but molecular mechanisms of pathology development are still elusive. In collaboration with colleagues from the Institute of Neurology, Kings College London, and the Sheffield Institute for Translational Neuroscience, we study the effects of the repeat size on the onset, clinical manifestations and other parameters of the disease, (Figure 6).
Functional domains of neurospecific transcriptional modulators belonging to the d4/DPF/BAF45 family
Three genes comprise the d4 family of transcriptional modulators, but alternative promoters and splicing events produce a large variety of encoded proteins with different composition of structural domains. Neurospecific members of the d4 protein family (neuro-d4/BAF45b and cer-d4/BAF45c) are components of a large chromatin remodelling complex in differentiated neurons. Existing data suggest that developmental switch from neuronal progenitor cells to committed neurons requires substitution of a slightly related BAF45a protein to d4 proteins in this complex. We study the role of various structural domains of d4 proteins in interaction with components of chromatin and phospholipids. We have also produced mice expressing only C-terminally truncated, i.e. lacking important double PHD finger domains, versions of neuro-d4/BAF45b and cer-d4/BAF45c proteins. Although both single and double mutant mice are viable, the latter develop certain behavioural abnormalities.
Affiliated staff
Postgraduate research students
- Mrs Haiyan An (PhD student)
Former students and members of the Cardiff laboratory
- Dr. Owen Peters (PhD student, then postdoc 2007-2012, PhD degree awarded in 2011, currently postdoc in the laboratory of Robert H. Brown, Jr., University of Massachusetts Medical School)
- Dr. Steven Millership (Research Assistant, part-time PhD student, then postdoc 2007-2012, PhD degree awarded in 2012, currently postdoc in the Metabolic Signalling Group, Imperial College, London)
- Dr. Essam Sharfeddin (PhD student 2008-2012, PhD degree awarded in 2013, returned to the Institute in Libya that supported his PhD Programme in the UK)
- Dr. Natalie Connor-Robson (PhD student 2009-2012, PhD degree awarded in 2013, currently Career Development Fellow in Oxford Parkinson's Disease Centre, University of Oxford)
Current grant support
- Parkinson's UK Project Grant
- Michael J. Fox Foundation Rapid Response Innovation Award
- Alzheimer's Society Project Grant
- Motor Neurone Disease Association Project Grant
Collaborators
- Prof. Thomas Südhof, Stanford University, USA (physiological function of synucleins)
- Dr. Herman van der Putten, Novartis Pharma, Basel, Switzerland (synucleins and neurodegeneration)
- Prof. Michel Goedert, MRC LMB, Cambridge, UK (pathological protein aggregation)
- Prof. Maria Spillantini, Cambrudge University, UK (alpha-synuclein in the development of dopaminergic neurons)
- Prof. Olaf Riess, University of Tübingen, Germany (physiological function of synucleins)
- Dr. Justin J. Rochford, Aberdeen University, UK (gamma-synuclein in adipocyte biology)
- Dr. Nicholas Marsh-Armstrong, John Hopkins University, Baltimore , USA (gamma-synuclein in function and dysfunction of the optic system)
- Prof. Andrey Abramov, University College London, UK (mitochondrial function and dysfunction of synucleins)
- Dr. Richard Wade-Martins, Dr. Stephanie J. Cragg, and Prof. J. Peter Bolam, Oxford University, UK (function of synucleins in dopamine neurotransmission)
- Dr. Sreeganga S. Chandra, Yale University, USA (physiological function of synucleins)
- Prof. David N.Stephens, University of Sussex, Brighton, UK (effects of alpha-synuclein depletion on animal behaviour)
- Dr. Natalia Ninkina, Cardiff University, UK (synucleins and RNA-binding proteins in human diseases)
- Prof. Alun Davies, Cardiff University, UK (signal transduction pathways implicated in neuronal differentiation)
- Prof. Alan Clarke, Cardiff University, UK (MAK-V/Hunk kinase in tumour cells)
- Prof. Ivan Gout, University College London (Ruk isoforms in intracellular signalling)
- Prof. Masatoshi Maki, Nagoya University, Japan (Ruk isoforms in membrane trafficking)
- Dr. Ludmila Drobot, Institute of Cell Biology, Lviv, Ukraine (Ruk isoforms in tumour cells)
- Drs. Elena and Igor Korobko, Institute of Gene Biology, Moscow, Russia (intra- and intermolecular interactions of Ruk proteins; the role of MAK-V kinase in mouse development and physiology)
- Drs. Ilja Mertsalov, Dina Kulikova and Olga Simonova, Institute of Gene Biology, Moscow, Russia (functional studies of d4 family members in mice and Drosophila)
- Prof. Pamela J. Shaw, Sheffield Institute for Translational Neuroscience, UK (GGGGCC repeat expansion in ALS and related diseases)
- Prof. Amar Al-Chalabi, Institute of Neurology, Kings College London, UK (C9ORF72 locus mutations in familial ALS)
- Prof. Sergey O. Bachurin, Institute of Physiologically Active Compounds Chernogolovka, Russia (gamma-carbolines as neurodegenerative disease modifying drugs)
Contact Details
+44 29208 79068
Sir Martin Evans Building, Room Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Museum Avenue, Cardiff, CF10 3AX