Overview
Research summary
The study of neural substrates of recognition memory and episodic memory
Cingulate cortex hypoactivity and its contribution to Dementia
Publication
2024
- Milczarek, M. M. et al. 2024. Impairments in the early consolidation of spatial memories via group II mGluR agonism in the mammillary bodies. Scientific Reports 14 5977. (10.1038/s41598-024-56015-3)
- Yanakieva, S. et al. 2024. Disrupting direct inputs from the dorsal subiculum to the granular retrosplenial cortex impairs flexible spatial memory in the rat. European Journal of Neuroscience 59 (10), pp.2715-2731. (10.1111/ejn.16303)
2022
- Yanakieva, S. et al. 2022. Collateral rostral thalamic projections to prelimbic, infralimbic, anterior cingulate and retrosplenial cortices in the rat brain. European Journal of Neuroscience 56 (10), pp.5869-5887. (10.1111/ejn.15819)
2021
- Mathiasen, M. L. et al. 2021. A direct comparison of afferents to the rat anterior thalamic nuclei and nucleus reuniens: overlapping but different. eNeuro 8 (5) 103. (10.1523/ENEURO.0103-20.2021)
2020
- Nelson, A. J. D. et al. 2020. Deconstructing the direct reciprocal hippocampal-anterior thalamic pathways for spatial learning. Journal of Neuroscience 40 (36), pp.6978-6990. (10.1523/JNEUROSCI.0874-20.2020)
2019
- Kinnavane, L. et al. 2019. Do the rat anterior thalamic nuclei contribute to behavioural flexibility?. Behavioural Brain Research 359 , pp.536-549. (10.1016/j.bbr.2018.10.012)
- Mathiasen, M. L. et al. 2019. Separate cortical and hippocampal cell populations target the rat nucleus reuniens and mammillary bodies. European Journal of Neuroscience 49 (12), pp.1649-1672. (10.1111/ejn.14341)
2018
- Powell, A. et al. 2018. Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat. Brain and Neuroscience Advances 2 , pp.1-15. (10.1177/2398212818811235)
2017
- Kinnavane, L. et al. 2017. Medial temporal pathways for contextual learning: Network c-fos mapping in rats with or without perirhinal cortex lesions. Brain and Neuroscience Advances 1 , pp.1-14. (10.1177/2398212817694167)
- Powell, A. L. et al. 2017. The retrosplenial cortex and object recency memory in the rat. European Journal of Neuroscience 45 (11), pp.1451-1464. (10.1111/ejn.13577)
2016
- Kinnavane, L. et al. 2016. Detecting and discriminating novel objects: the impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus 26 (11), pp.1393-1413. (10.1002/hipo.22615)
- Nelson, A. et al. 2016. Perirhinal cortex lesions that impair object recognition memory spare landmark discriminations. Behavioural Brain Research 313 , pp.255-259. (10.1016/j.bbr.2016.07.031)
2015
- Albasser, M. M. et al., 2015. Perirhinal cortex lesions in rats: Novelty detection and sensitivity to interference. Behavioral Neuroscience 129 (3), pp.227-243. (10.1037/bne0000049)
- Dumont, J. R. et al. 2015. The impact of fornix lesions in rats on spatial learning tasks sensitive to anterior thalamic and hippocampal damage. Behavioural Brain Research 278 , pp.360-374. (10.1016/j.bbr.2014.10.016)
- Olarte-Sánchez, C. M. et al., 2015. Perirhinal cortex lesions impair tests of object recognition memory yet spare novelty detection. European Journal of Neuroscience 42 (12), pp.3117-3127. (10.1111/ejn.13106)
2014
- Dumont, J. R. , Amin, E. and Aggleton, J. P. 2014. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues. European Journal of Neuroscience 39 (2), pp.241-256. (10.1111/ejn.12409)
- Kinnavane, L. et al. 2014. Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus. European Journal of Neuroscience 40 (12), pp.3720-3734. (10.1111/ejn.12740)
- Olarte-Sánchez, C. M. et al. 2014. Contrasting networks for recognition memory and recency memory revealed by immediate-early gene imaging in the rat. Behavioral Neuroscience 128 (4), pp.504-522. (10.1037/a0037055)
2013
- Albasser, M. M. et al. 2013. Association rules for rat spatial learning: the importance of the hippocampus for binding item identity with item location. Hippocampus 23 (12), pp.1162-1178. (10.1002/hipo.22154)
2012
- Albasser, M. M. et al. 2012. Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory. Behavioral Neuroscience 126 (5), pp.659-669. (10.1037/a0029754)
2011
- Aggleton, J. P. et al. 2011. Lesions in the anterior thalamic nuclei of rats do not disrupt acquisition of stimulus sequence learning. The Quarterly Journal of Experimental Psychology 64 (1), pp.65-73. (10.1080/17470218.2010.495407)
- Albasser, M. M. et al. 2011. Perirhinal cortex lesions uncover subsidiary systems in the rat for the detection of novel and familiar objects. European Journal of Neuroscience 34 (2), pp.331-342. (10.1111/j.1460-9568.2011.07755.x)
- Albasser, M. M. et al. 2011. Separate but interacting recognition memory systems for different senses: The role of the rat perirhinal cortex. Learning & Memory 18 (7), pp.435-443. (10.1101/lm.2132911)
- Poirier, G. L. et al. 2011. Early-onset dysfunction of retrosplenial cortex precedes overt amyloid plaque formation in Tg2576 mice. Neuroscience 174 , pp.71-83. (10.1016/j.neuroscience.2010.11.025)
2010
- Albasser, M. M. et al. 2010. New behavioral protocols to extend our knowledge of rodent object recognition memory. Learning & Memory 17 (8), pp.407-419. (10.1101/lm.1879610)
- Amin, E. et al. 2010. Selective lamina dysregulation in granular retrosplenial cortex (area 29) after anterior thalamic lesions: an in situ hybridization and trans-neuronal tracing study in rats. Neuroscience 169 (3), pp.1255-1267. (10.1016/j.neuroscience.2010.05.055)
2008
- Kyd, R. J. et al. 2008. The effects of hippocampal system lesions on a novel temporal discrimination task for rats. Behavioural Brain Research 187 (1), pp.159-171. (10.1016/j.bbr.2007.09.010)
- Poirier, G. L. et al. 2008. Anterior thalamic lesions produce chronic and profuse transcriptional deregulation in retrosplenial cortex: A model of retrosplenial hypoactivity and covert pathology. Thalamus and Related Systems 4 (1), pp.59-77.
- Poirier, G. L. , Amin, E. and Aggleton, J. P. 2008. Qualitatively different hippocampal subfield engagement emerges with mastery of a spatial memory task by rats. The Journal of Neuroscience 28 (5), pp.1034-1045. (10.1523/JNEUROSCI.4607-07.2008)
2006
- Amin, E. et al. 2006. Novel temporal configurations of stimuli produce discrete changes in immediate-early gene expression in the rat hippocampus. European Journal of Neuroscience 24 (9), pp.2611-2621. (10.1111/j.1460-9568.2006.05131.x)
- Jenkins, T. A. et al., 2006. Changes in immediate early gene expression in the rat brain after unilateral lesions of the hippocampus. Neuroscience 137 (3), pp.747-759. (10.1016/j.neuroscience.2005.09.034)
2004
- Jenkins, T. A. et al., 2004. Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: a c-fos expression study. Neuroscience 124 (1), pp.43-52. (10.1016/j.neuroscience.2003.11.024)
- Jenkins, T. A. et al., 2004. Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats?. European Journal of Neuroscience 19 (12), pp.3291-3304. (10.1111/j.0953-816X.2004.03421.x)
2003
- Aggleton, J. P. et al. 2003. Cortical and limbic interactions in memory processes. European Neuropsychopharmacology 13 (S4), pp.S135-S135. (10.1016/S0924-977X(03)91656-7)
- Jenkins, T. A. et al., 2003. Distinct patterns of hippocampal formation activity associated with different spatial tasks: a Fos imaging study in rats. Experimental Brain Research 151 (4), pp.514-523. (10.1007/s00221-003-1499-0)
2002
- Jenkins, T. A. et al., 2002. Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei. European Journal of Neuroscience 16 (8), pp.1425-1432. (10.1046/j.1460-9568.2002.02211.x)
- Jenkins, T. A. et al. 2002. Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats. Journal of Neuroscience 22 (12), pp.5230-5238.
2001
- Bussey, T. J. et al., 2001. Perirhinal cortex and place-object conditional learning in the rat. Behavioral Neuroscience 115 (4), pp.776-785. (10.1037/0735-7044.115.4.776)
Articles
- Aggleton, J. P. et al. 2011. Lesions in the anterior thalamic nuclei of rats do not disrupt acquisition of stimulus sequence learning. The Quarterly Journal of Experimental Psychology 64 (1), pp.65-73. (10.1080/17470218.2010.495407)
- Aggleton, J. P. et al. 2003. Cortical and limbic interactions in memory processes. European Neuropsychopharmacology 13 (S4), pp.S135-S135. (10.1016/S0924-977X(03)91656-7)
- Albasser, M. M. et al. 2011. Perirhinal cortex lesions uncover subsidiary systems in the rat for the detection of novel and familiar objects. European Journal of Neuroscience 34 (2), pp.331-342. (10.1111/j.1460-9568.2011.07755.x)
- Albasser, M. M. et al. 2011. Separate but interacting recognition memory systems for different senses: The role of the rat perirhinal cortex. Learning & Memory 18 (7), pp.435-443. (10.1101/lm.2132911)
- Albasser, M. M. et al. 2012. Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory. Behavioral Neuroscience 126 (5), pp.659-669. (10.1037/a0029754)
- Albasser, M. M. et al. 2010. New behavioral protocols to extend our knowledge of rodent object recognition memory. Learning & Memory 17 (8), pp.407-419. (10.1101/lm.1879610)
- Albasser, M. M. et al. 2013. Association rules for rat spatial learning: the importance of the hippocampus for binding item identity with item location. Hippocampus 23 (12), pp.1162-1178. (10.1002/hipo.22154)
- Albasser, M. M. et al., 2015. Perirhinal cortex lesions in rats: Novelty detection and sensitivity to interference. Behavioral Neuroscience 129 (3), pp.227-243. (10.1037/bne0000049)
- Amin, E. et al. 2006. Novel temporal configurations of stimuli produce discrete changes in immediate-early gene expression in the rat hippocampus. European Journal of Neuroscience 24 (9), pp.2611-2621. (10.1111/j.1460-9568.2006.05131.x)
- Amin, E. et al. 2010. Selective lamina dysregulation in granular retrosplenial cortex (area 29) after anterior thalamic lesions: an in situ hybridization and trans-neuronal tracing study in rats. Neuroscience 169 (3), pp.1255-1267. (10.1016/j.neuroscience.2010.05.055)
- Bussey, T. J. et al., 2001. Perirhinal cortex and place-object conditional learning in the rat. Behavioral Neuroscience 115 (4), pp.776-785. (10.1037/0735-7044.115.4.776)
- Dumont, J. R. , Amin, E. and Aggleton, J. P. 2014. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues. European Journal of Neuroscience 39 (2), pp.241-256. (10.1111/ejn.12409)
- Dumont, J. R. et al. 2015. The impact of fornix lesions in rats on spatial learning tasks sensitive to anterior thalamic and hippocampal damage. Behavioural Brain Research 278 , pp.360-374. (10.1016/j.bbr.2014.10.016)
- Jenkins, T. A. et al., 2004. Novel spatial arrangements of familiar visual stimuli promote activity in the rat hippocampal formation but not the parahippocampal cortices: a c-fos expression study. Neuroscience 124 (1), pp.43-52. (10.1016/j.neuroscience.2003.11.024)
- Jenkins, T. A. et al., 2006. Changes in immediate early gene expression in the rat brain after unilateral lesions of the hippocampus. Neuroscience 137 (3), pp.747-759. (10.1016/j.neuroscience.2005.09.034)
- Jenkins, T. A. et al., 2003. Distinct patterns of hippocampal formation activity associated with different spatial tasks: a Fos imaging study in rats. Experimental Brain Research 151 (4), pp.514-523. (10.1007/s00221-003-1499-0)
- Jenkins, T. A. et al., 2002. Changes in Fos expression in the rat brain after unilateral lesions of the anterior thalamic nuclei. European Journal of Neuroscience 16 (8), pp.1425-1432. (10.1046/j.1460-9568.2002.02211.x)
- Jenkins, T. A. et al., 2004. Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats?. European Journal of Neuroscience 19 (12), pp.3291-3304. (10.1111/j.0953-816X.2004.03421.x)
- Jenkins, T. A. et al. 2002. Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats. Journal of Neuroscience 22 (12), pp.5230-5238.
- Kinnavane, L. et al. 2019. Do the rat anterior thalamic nuclei contribute to behavioural flexibility?. Behavioural Brain Research 359 , pp.536-549. (10.1016/j.bbr.2018.10.012)
- Kinnavane, L. et al. 2014. Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus. European Journal of Neuroscience 40 (12), pp.3720-3734. (10.1111/ejn.12740)
- Kinnavane, L. et al. 2016. Detecting and discriminating novel objects: the impact of perirhinal cortex disconnection on hippocampal activity patterns. Hippocampus 26 (11), pp.1393-1413. (10.1002/hipo.22615)
- Kinnavane, L. et al. 2017. Medial temporal pathways for contextual learning: Network c-fos mapping in rats with or without perirhinal cortex lesions. Brain and Neuroscience Advances 1 , pp.1-14. (10.1177/2398212817694167)
- Kyd, R. J. et al. 2008. The effects of hippocampal system lesions on a novel temporal discrimination task for rats. Behavioural Brain Research 187 (1), pp.159-171. (10.1016/j.bbr.2007.09.010)
- Mathiasen, M. L. et al. 2019. Separate cortical and hippocampal cell populations target the rat nucleus reuniens and mammillary bodies. European Journal of Neuroscience 49 (12), pp.1649-1672. (10.1111/ejn.14341)
- Mathiasen, M. L. et al. 2021. A direct comparison of afferents to the rat anterior thalamic nuclei and nucleus reuniens: overlapping but different. eNeuro 8 (5) 103. (10.1523/ENEURO.0103-20.2021)
- Milczarek, M. M. et al. 2024. Impairments in the early consolidation of spatial memories via group II mGluR agonism in the mammillary bodies. Scientific Reports 14 5977. (10.1038/s41598-024-56015-3)
- Nelson, A. et al. 2016. Perirhinal cortex lesions that impair object recognition memory spare landmark discriminations. Behavioural Brain Research 313 , pp.255-259. (10.1016/j.bbr.2016.07.031)
- Nelson, A. J. D. et al. 2020. Deconstructing the direct reciprocal hippocampal-anterior thalamic pathways for spatial learning. Journal of Neuroscience 40 (36), pp.6978-6990. (10.1523/JNEUROSCI.0874-20.2020)
- Olarte-Sánchez, C. M. et al., 2015. Perirhinal cortex lesions impair tests of object recognition memory yet spare novelty detection. European Journal of Neuroscience 42 (12), pp.3117-3127. (10.1111/ejn.13106)
- Olarte-Sánchez, C. M. et al. 2014. Contrasting networks for recognition memory and recency memory revealed by immediate-early gene imaging in the rat. Behavioral Neuroscience 128 (4), pp.504-522. (10.1037/a0037055)
- Poirier, G. L. et al. 2011. Early-onset dysfunction of retrosplenial cortex precedes overt amyloid plaque formation in Tg2576 mice. Neuroscience 174 , pp.71-83. (10.1016/j.neuroscience.2010.11.025)
- Poirier, G. L. et al. 2008. Anterior thalamic lesions produce chronic and profuse transcriptional deregulation in retrosplenial cortex: A model of retrosplenial hypoactivity and covert pathology. Thalamus and Related Systems 4 (1), pp.59-77.
- Poirier, G. L. , Amin, E. and Aggleton, J. P. 2008. Qualitatively different hippocampal subfield engagement emerges with mastery of a spatial memory task by rats. The Journal of Neuroscience 28 (5), pp.1034-1045. (10.1523/JNEUROSCI.4607-07.2008)
- Powell, A. et al. 2018. Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat. Brain and Neuroscience Advances 2 , pp.1-15. (10.1177/2398212818811235)
- Powell, A. L. et al. 2017. The retrosplenial cortex and object recency memory in the rat. European Journal of Neuroscience 45 (11), pp.1451-1464. (10.1111/ejn.13577)
- Yanakieva, S. et al. 2024. Disrupting direct inputs from the dorsal subiculum to the granular retrosplenial cortex impairs flexible spatial memory in the rat. European Journal of Neuroscience 59 (10), pp.2715-2731. (10.1111/ejn.16303)
- Yanakieva, S. et al. 2022. Collateral rostral thalamic projections to prelimbic, infralimbic, anterior cingulate and retrosplenial cortices in the rat brain. European Journal of Neuroscience 56 (10), pp.5869-5887. (10.1111/ejn.15819)
Research
Research topics and related papers
MRC Programme 2003 to 2008: The study of neural substrates of recognition memory and episodic memory using a broad range of techniques that span from the behavioural level through system level measures of the influence of lesions and pharmacological manipulations of neural activity (measured electrophysiologically and through immunocytochemical imaging).
ART Grant: Cingulate Cortex hypoactivity and its contribution to dementia by using transgenic mice that display specific components of Alzheimer pathology. We are examining the relationship between cingulate hypoactivity anterior thalamic pathology, amyloid and tau. The goal is to reveal the likely sequence of events that lead to cingulate hypoactivity and dysfunction and so produce the earliest metabolic changes in the diseases. This information will ultimately be used to test ways of halting these cingulated changes.
Funding
MRC Programme grant The study of neural substrates of recognition memory and episodic memory
ART Grant Cingulate cortex hypoactivity and its contribution to Dementia