Professor Stephen Barker
Teams and roles for Stephen Barker
Professor in Earth Science
Publication
2025
- Barker, S. et al. 2025. Distinct roles for precession, obliquity, and eccentricity in Pleistocene 100-kyr glacial cycles. Science 387 (6737) eadp3491. (10.1126/science.adp3491)
- Gao, Y. et al., 2025. Provenance analysis of late Pleistocene sediment from IODP site U1477 reveals climate and river basin dynamics in the Zambezi river catchment. Gondwana Research 146 , pp.25-38. (10.1016/j.gr.2025.05.012)
- Rigalleau, V. et al., 2025. 790,000 years of millennial-scale Cape Horn Current variability and interhemispheric linkages.. Nature Communications 16 (1) 3105. (10.1038/s41467-025-58458-2)
- Starr, A. et al., 2025. Shifting Antarctic Circumpolar Current south of Africa over the past 1.9 million years. Science Advances 11 (1) eadp1692. (10.1126/sciadv.adp1692)
- Yang, Z. et al. 2025. Major sea level fall during the Pliocene M2 glaciation. Nature Communications 16 7641. (10.1038/s41467-025-62446-x)
2024
- Wunderling, N. et al., 2024. Climate tipping point interactions and cascades: a review. Earth System Dynamics 15 (1), pp.41-74. (10.5194/esd-15-41-2024)
- Xu, C. et al., 2024. A rapid, simple, and low-blank pumped ion-exchange column chromatography technique for boron purification from carbonate and seawater matrices. Geochemistry, Geophysics, Geosystems 25 (2) e2023GC011228. (10.1029/2023gc011228)
2023
- Barker, S. and Knorr, G. 2023. A systematic role for extreme ocean-atmosphere oscillations in the development of glacial conditions since the Mid Pleistocene transition. Paleoceanography and Paleoclimatology 38 (12) e2023PA004690. (10.1029/2023PA004690)
- Bromley, G. et al., 2023. Lateglacial shifts in seasonality reconcile conflicting North Atlantic temperature signals. Journal of Geophysical Research. Earth Surface 128 (1) e2022JF006951. (10.1029/2022JF006951)
- Nuber, S. et al. 2023. Indian Ocean salinity build-up primes deglacial ocean circulation recovery. Nature 617 , pp.306-311. (10.1038/s41586-023-05866-3)
- You, D. et al., 2023. Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea. Communications Earth & Environment 4 (1) 81. (10.1038/s43247-023-00743-3)
2022
- Barker, S. et al. 2022. Persistent influence of precession on northern ice sheet variability since the early Pleistocene. Science 376 (6596), pp.961-967. (10.1126/science.abm4033)
- Menking, J. A. et al., 2022. Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4. Nature Communications 13 (1) 5443. (10.1038/s41467-022-33166-3)
- Sun, Y. et al., 2022. Ice sheet decline and rising atmospheric CO2 control AMOC sensitivity to deglacial meltwater discharge. Global and Planetary Change 210 103755. (10.1016/j.gloplacha.2022.103755)
2021
- Barker, S. and Knorr, G. 2021. Millennial scale feedbacks determine the shape and rapidity of glacial termination. Nature Communications 12 2273. (10.1038/s41467-021-22388-6)
- Barker, S. et al. 2021. Strengthening Atlantic inflow across the mid-pleistocene transition. Paleoceanography and Paleoclimatology 36 (4) e2020PA004200. (10.1029/2020PA004200)
- Cartagena-Sierra, A. et al., 2021. Latitudinal migrations of the subtropical front at the Agulhas Plateau through the mid-Pleistocene Transition. Paleoceanography and Paleoclimatology 36 (7) e2020PA004084. (10.1029/2020PA004084)
- Doughty, A. M. et al., 2021. A maximum in global glacier extent during MIS 4. Quaternary Science Reviews 261 106948. (10.1016/j.quascirev.2021.106948)
- Knorr, G. et al., 2021. A salty deep ocean as a prerequisite for glacial termination. Nature Geoscience 14 (12), pp.930–936. (10.1038/s41561-021-00857-3)
- Starr, A. et al. 2021. Antarctic icebergs reorganise ocean circulation during pleistocene glacials. Nature 589 , pp.236-241. (10.1038/s41586-020-03094-7)
- van der Lubbe, H. J. L. et al. 2021. Indo-Pacific Walker circulation drove Pleistocene African aridification. Nature 598 (7882), pp.618-623. (10.1038/s41586-021-03896-3)
- Zhang, X. et al., 2021. Direct astronomical influence on abrupt climate variability. Nature Geoscience 14 , pp.819–826. (10.1038/s41561-021-00846-6)
2020
- Babin, D. P. et al., 2020. Data report: X-ray fluorescence core scanning of IODP Site U1474 sediments, Natal Valley, southwest Indian Ocean, Expedition 361. 361 (10.14379/iodp.proc.361.201.2020)
- Just, J. et al., 2020. Data report: evaluation of shipboard magnetostratigraphy by alternating field demagnetization of discrete samples, Expedition 361, Site U1475. Proceedings of the International Ocean Discovery Program 361 (10.14379/iodp.proc.361.202.2020)
- Simon, M. H. et al., 2020. A late Pleistocene dataset of Agulhas Current variability. Scientific Data 7 (1) 385. (10.1038/s41597-020-00689-7)
2019
- Barker, S. 2019. A tribute to Wally Broecker. Eos, Transactions American Geophysical Union 100 (10.1029/2019EO121001)
- Barker, S. et al. 2019. Early interglacial legacy of deglacial climate instability. Paleoceanography and Paleoclimatology 34 (8), pp.1455-1475. (10.1029/2019PA003661)
- Menking, J. A. et al., 2019. Spatial pattern of accumulation at Taylor Dome during Marine Isotope Stage 4: stratigraphic constraints from Taylor Glacier. Climate of the Past 15 (4), pp.1537-1556. (10.5194/cp-15-1537-2019)
- Menking, J. A. et al., 2019. Spatial pattern of accumulation at Taylor Dome during the last glacial inception: stratigraphic constraints from Taylor Glacier. Climate of the Past Discussions 15 , pp.1537-1556. (10.5194/cp-2018-53)
- Wilson, J. D. et al., 2019. Sensitivity of atmospheric CO2 to regional variability in particulate organic matter re-mineralization depths. Biogeosciences Discussions 16 , pp.2923-2936. (10.5194/bg-16-2923-2019)
- Wilson, J. D. et al. 2019. Sensitivity of atmospheric CO2 to regional variability in particulate organic matter remineralization depths. Biogeosciences 16 (14), pp.2923-2936. (10.5194/bg-16-2923-2019)
2018
- Boscolo-Galazzo, F. et al. 2018. Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change?. Global and Planetary Change 170 , pp.201-212. (10.1016/j.gloplacha.2018.08.017)
- Hodell, D. et al., 2018. Chemistry of oceans past and present: a special issue in tribute to Harry Elderfield, FRS (1943-2016). Geochimica et Cosmochimica Acta 236 , pp.1-4. (10.1016/j.gca.2018.06.001)
- Köhler, P. et al., 2018. The effect of obliquity-driven changes on paleoclimate sensitivity during the late Pleistocene. Geophysical Research Letters 45 (13), pp.6661-6671. (10.1029/2018GL077717)
- Pedro, J. B. et al., 2018. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quaternary Science Reviews 192 , pp.27-46. (10.1016/j.quascirev.2018.05.005)
- Tangunan, D. N. et al. 2018. The last 1 million years of the extinct genus Discoaster: Plio–Pleistocene environment and productivity at Site U1476 (Mozambique Channel). Palaeogeography, Palaeoclimatology, Palaeoecology 505 , pp.187-197. (10.1016/j.palaeo.2018.05.043)
2017
- Deaney, E. L. , Barker, S. and Van de Flierdt, T. 2017. Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO2 change. Nature Communications 8 14595. (10.1038/NCOMMS14595)
- Hasenclever, J. et al., 2017. Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing. Nature Communications 8 15867. (10.1038/ncomms15867)
- Zhang, X. et al. 2017. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nature Geoscience 10 , pp.518-523. (10.1038/ngeo2974)
2016
- Barker, S. 2016. Dissolution of deep-sea carbonates. In: Elias, S. A. ed. Reference Module in Earth Systems and Environmental Sciences. Elsevier(10.1016/B978-0-12-409548-9.09717-7)
- Barker, S. and Knorr, G. 2016. A paleo-perspective on the AMOC as a tipping element. PAGES Magazine 24 (1), pp.14-15.
- Diz, P. and Barker, S. 2016. Approaches and constraints to the reconstruction of palaeoproductivity from Cape Basin abyssal benthic foraminifera (South Atlantic). Journal of Micropalaeontology 35 , pp.195-204. (10.1144/jmpaleo2015-045)
- Hoogakker, B. A. A. , Thornalley, D. J. R. and Barker, S. 2016. Millennial changes in North Atlantic oxygen concentrations. Biogeosciences Discussions 12 (15), pp.12947-12973. (10.5194/bgd-12-12947-2015)
- Hoogakker, B. A. A. , Thornalley, D. J. R. and Barker, S. 2016. Millennial changes in North Atlantic oxygen concentrations. Biogeosciences 13 (1), pp.211-221. (10.5194/bg-13-211-2016)
- Yu, J. et al., 2016. Sequestration of carbon in the deep Atlantic during the last glaciation. Nature Geoscience 9 (4), pp.319-324. (10.1038/ngeo2657)
2015
- Barker, S. et al. 2015. Icebergs not the trigger for North Atlantic cold events. Nature 520 (7547), pp.333-336. (10.1038/nature14330)
- Diz, P. and Barker, S. 2015. Linkages between rapid climate variability and deep-sea benthic foraminifera in the deep Subantarctic South Atlantic during the last 95 kyr. Paleoceanography 30 (6), pp.601-611. (10.1002/2015PA002784)
- Jonkers, L. et al. 2015. Correcting for the influence of ice-rafted detritus on grain size-based paleocurrent speed estimates. Paleoceanography 30 (10), pp.1347-1357. (10.1002/2015PA002830)
- Moffa-Sanchez, P. et al., 2015. Changes in the strength of the Nordic Seas Overflows over the past 3000 years. Quaternary Science Reviews 123 , pp.134-143. (10.1016/j.quascirev.2015.06.007)
- Schaefer, J. M. et al., 2015. The Southern Glacial Maximum 65,000 years ago and its unfinished termination. Quaternary Science Reviews 114 , pp.52-60. (10.1016/j.quascirev.2015.02.009)
- Simon, M. H. et al. 2015. Salt exchange in the Indian-Atlantic Ocean Gateway since the LGM: A compensating effect between Agulhas Current changes and salinity variations?. Paleoceanography 30 (10)(10.1002/2015PA002842)
- Simon, M. H. et al. 2015. Eastern South African hydroclimate over the past 270,000 years. Scientific Reports 5 , pp.18153. (10.1038/srep18153)
- Thornalley, D. J. R. et al., 2015. A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period. Science 349 (6249), pp.706-710. (10.1126/science.aaa9554)
- Wilson, J. D. , Ridgwell, A. and Barker, S. 2015. Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?. Biogeosciences 12 (18), pp.5547-5562. (10.5194/bg-12-5547-2015)
- Wilson, J. D. , Ridgwell, A. and Barker, S. 2015. Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?. Biogeosciences Discussions 12 (6), pp.4557-4593. (10.5194/bgd-12-4557-2015)
2014
- Anderson, R. F. et al., 2014. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372 (2019) 20130054. (10.1098/rsta.2013.0054)
- Barker, S. and Diz, P. 2014. Timing of the descent into the last ice age determined by the bipolar seesaw. Paleoceanography 29 (6), pp.489-507. (10.1002/2014PA002623)
- Moffa Sanchez, P. et al. 2014. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nature Geoscience 7 , pp.275-278. (10.1038/ngeo2094)
- Moffa Sanchez, P. et al. 2014. Surface changes in the Eastern Labrador Sea around the onset of the Little Ice Age. Paleoceanography and Paleoclimatology 29 (3), pp.160-175. (10.1002/2013PA002523)
2013
- Griffiths, J. D. et al. 2013. Evidence of silicic acid leakage to the tropical Atlantic via Antarctic intermediate water during marine isotope stage 4. Paleoceanography 28 (2), pp.307-318. (10.1002/palo.20030)
- Simon, M. H. et al. 2013. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian-Atlantic Ocean gateway. Earth and Planetary Science Letters 383 , pp.101-112. (10.1016/j.epsl.2013.09.035)
- Skinner, L. C. et al., 2013. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 41 (6), pp.667-670. (10.1130/G34133.1)
- Thornalley, D. J. R. et al., 2013. Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions. Paleoceanography 28 (2), pp.253-262. (10.1002/palo.20025)
- Ziegler, M. et al. 2013. Development of Middle Stone Age innovation linked to rapid climate change. Nature Communications 4 1905. (10.1038/ncomms2897)
2012
- Barker, S. and Ridgwell, A. 2012. Ocean Acidification. Nature Education Knowledge 3 (10) 21.
- Honisch, B. et al., 2012. The Geological Record of Ocean Acidification. Science 335 (6072), pp.1058-1063. (10.1126/science.1208277)
- Parrenin, F. et al., 2012. On the gas-ice depth difference (Δdepth) along the EPICA Dome C ice core. Climate of the Past Discussions 8 (2), pp.1089-1131. (10.5194/cpd-8-1089-2012)
- Parrenin, F. et al., 2012. On the gas-ice depth difference (Δdepth) along the EPICA Dome C ice core. Climate of the Past 8 (4), pp.1239-1255. (10.5194/cp-8-1239-2012)
- Sexton, P. F. and Barker, S. 2012. Onset of 'Pacific-style' deep-sea sedimentary carbonate cycles at the mid-Pleistocene transition. Earth and Planetary Science Letters 321-22 , pp.81-94. (10.1016/j.epsl.2011.12.043)
- Wilson, J. D. , Barker, S. and Ridgwell, A. 2012. Assessment of the spatial variability in particulate organic matter and mineral sinking fluxes in the ocean interior: Implications for the ballast hypothesis. Global Biogeochemical Cycles 26 (4) GB4011. (10.1029/2012GB004398)
2011
- Barker, S. et al. 2011. 800,000 years of abrupt climate variability. Science 334 (6054), pp.347-351. (10.1126/science.1203580)
- Thornalley, D. J. R. et al. 2011. The deglacial evolution of North Atlantic deep convection. Science 331 (6014), pp.202-205. (10.1126/science.1196812)
2010
- Barker, S. et al. 2010. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geoscience 3 (8), pp.567-571. (10.1038/NGEO921)
- Elderfield, H. et al., 2010. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quaternary Science Reviews 29 (1-2), pp.160-169. (10.1016/j.quascirev.2009.07.013)
- Hall, I. R. et al. 2010. Surface and deep ocean coupling in the subpolar North Atlantic during the last 230 years. Paleoceanography 25 (2) PA2101. (10.1029/2009PA001886)
- Johnstone, H. J. H. et al., 2010. Inside story: An X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera. Marine Micropaleontology 77 (1-2), pp.58-70. (10.1016/j.marmicro.2010.07.004)
- Skinner, L. C. et al., 2010. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328 (5982), pp.1147-1151. (10.1126/science.1183627)
2009
- Barker, S. et al. 2009. Enhanced Atlantic Merdional Overturning Circulation during pronounced interstadials. Geochimica Et Cosmochimica Acta 73 (13s), pp.A90-A90. (10.1016/j.gca.2009.05.002)
- Barker, S. et al. 2009. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457 (7233), pp.1097-1102. (10.1038/nature07770)
- Waelbroeck, C. et al., 2009. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience 2 (2), pp.127-132. (10.1038/ngeo411)
2008
- Barker, S. , Broecker, W. S. and Clark, E. 2008. A search for the glacial age C-14 depleted ocean reservoir. Geochimica Et Cosmochimica Acta 72 (12s), pp.A55-A55. (10.1016/j.gca.2008.05.005)
- Broecker, W. , Clark, E. and Barker, S. 2008. Near constancy of the Pacific Ocean surface to mid-depth radiocarbon-age difference over the last 20 kyr. Earth and Planetary Science Letters 274 (3-4), pp.322-326. (10.1016/j.epsl.2008.07.035)
2007
- Barker, S. et al. 2007. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone. Paleoceanography 22 (2) PA2205. (10.1029/2006PA001354)
- Barker, S. and Knorr, G. 2007. Antarctic climate signature in the Greenland ice core record. Proceedings of the National Academy of Sciences 104 (44), pp.17278-17282. (10.1073/pnas.0708494104)
- Broecker, W. and Barker, S. 2007. A 190‰ drop in atmosphere's Δ14C during the “Mystery Interval” (17.5 to 14.5 kyr). Earth and Planetary Science Letters 256 (1-2), pp.90-99. (10.1016/j.epsl.2007.01.015)
- Broecker, W. et al., 2007. Radiocarbon age of late glacial deep water from the equatorial Pacific. Paleoceanography 22 (2) PA2206. (10.1029/2006PA001359)
- Broecker, W. S. and Barker, S. 2007. Reply to comment by L. D. Stott on "Anomalous radiocarbon ages for foraminifera shells": A correction to the western tropical Pacific MD9821-81 record. Paleoceanography 22 (1) PA1212. (10.1029/2006PA001393)
- Rickaby, R. E. M. et al., 2007. Coccolith chemistry reveals secular variations in the global ocean carbon cycle?. Earth and Planetary Science Letters 253 (1-2), pp.83-95. (10.1016/j.epsl.2006.10.016)
- Schiebel, R. et al., 2007. Planktic foraminiferal dissolution in the twilight zone. Deep-Sea Research. Part II.Topical studies in oceanography 54 (5-7), pp.676-686. (10.1016/j.dsr2.2007.01.009)
2006
- Barker, S. et al. 2006. Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11. Quaternary Science Reviews 25 (23-24), pp.3278-3293. (10.1016/j.quascirev.2006.07.018)
- Broecker, W. et al., 2006. Anomalous radiocarbon ages for foraminifera shells. Paleoceanography 21 PA2008. (10.1029/2005PA001212)
2005
- Barker, S. 2005. The ‘flickering switch’ of late Pleistocene climate change revisited. Geophysical Research Letters 32 (24) L24703. (10.1029/2005GL024486)
- Barker, S. et al. 2005. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews 24 (7-9), pp.821-834. (10.1016/j.quascirev.2004.07.016)
- Greaves, M. et al., 2005. Accuracy, standardization, and interlaboratory calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry Geophysics Geosystems 6 (2) Q02D13. (10.1029/2004GC000790)
2004
- Barker, S. , Kiefer, T. and Elderfield, H. 2004. Temporal changes in North Atlantic circulation constrained by planktonic foraminiferal shell weights. Paleoceanography 19 (3) PA3008. (10.1029/2004PA001004)
- Broecker, W. et al., 2004. Ventilation of the Glacial deep Pacific Ocean. Science 306 (5699), pp.1169-1172. (10.1126/science.1102293)
- Rosenthal, Y. et al., 2004. Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research. Geochemistry Geophysics Geosystems 5 (4) Q04D09. (10.1029/2003GC000650)
2003
- Barker, S. , Greaves, M. and Elderfield, H. 2003. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry Geophysics Geosystems 4 (9), pp.1-20. (10.1029/2003GC000559)
- Barker, S. , Higgins, J. A. and Elderfield, H. 2003. The future of the carbon cycle: review, calcification response, ballast and feedback on atmospheric CO2. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences 361 (1810), pp.1977-1999. (10.1098/rsta.2003.1238)
2002
- Barker, S. and Elderfield, H. 2002. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297 (5582), pp.833-836. (10.1126/science.1072815)
Articles
- Anderson, R. F. et al., 2014. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372 (2019) 20130054. (10.1098/rsta.2013.0054)
- Babin, D. P. et al., 2020. Data report: X-ray fluorescence core scanning of IODP Site U1474 sediments, Natal Valley, southwest Indian Ocean, Expedition 361. 361 (10.14379/iodp.proc.361.201.2020)
- Barker, S. 2019. A tribute to Wally Broecker. Eos, Transactions American Geophysical Union 100 (10.1029/2019EO121001)
- Barker, S. 2005. The ‘flickering switch’ of late Pleistocene climate change revisited. Geophysical Research Letters 32 (24) L24703. (10.1029/2005GL024486)
- Barker, S. et al. 2006. Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11. Quaternary Science Reviews 25 (23-24), pp.3278-3293. (10.1016/j.quascirev.2006.07.018)
- Barker, S. et al. 2007. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone. Paleoceanography 22 (2) PA2205. (10.1029/2006PA001354)
- Barker, S. , Broecker, W. S. and Clark, E. 2008. A search for the glacial age C-14 depleted ocean reservoir. Geochimica Et Cosmochimica Acta 72 (12s), pp.A55-A55. (10.1016/j.gca.2008.05.005)
- Barker, S. et al. 2005. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews 24 (7-9), pp.821-834. (10.1016/j.quascirev.2004.07.016)
- Barker, S. et al. 2015. Icebergs not the trigger for North Atlantic cold events. Nature 520 (7547), pp.333-336. (10.1038/nature14330)
- Barker, S. and Diz, P. 2014. Timing of the descent into the last ice age determined by the bipolar seesaw. Paleoceanography 29 (6), pp.489-507. (10.1002/2014PA002623)
- Barker, S. et al. 2009. Enhanced Atlantic Merdional Overturning Circulation during pronounced interstadials. Geochimica Et Cosmochimica Acta 73 (13s), pp.A90-A90. (10.1016/j.gca.2009.05.002)
- Barker, S. et al. 2009. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457 (7233), pp.1097-1102. (10.1038/nature07770)
- Barker, S. and Elderfield, H. 2002. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297 (5582), pp.833-836. (10.1126/science.1072815)
- Barker, S. , Greaves, M. and Elderfield, H. 2003. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry Geophysics Geosystems 4 (9), pp.1-20. (10.1029/2003GC000559)
- Barker, S. , Higgins, J. A. and Elderfield, H. 2003. The future of the carbon cycle: review, calcification response, ballast and feedback on atmospheric CO2. Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences 361 (1810), pp.1977-1999. (10.1098/rsta.2003.1238)
- Barker, S. , Kiefer, T. and Elderfield, H. 2004. Temporal changes in North Atlantic circulation constrained by planktonic foraminiferal shell weights. Paleoceanography 19 (3) PA3008. (10.1029/2004PA001004)
- Barker, S. and Knorr, G. 2016. A paleo-perspective on the AMOC as a tipping element. PAGES Magazine 24 (1), pp.14-15.
- Barker, S. and Knorr, G. 2023. A systematic role for extreme ocean-atmosphere oscillations in the development of glacial conditions since the Mid Pleistocene transition. Paleoceanography and Paleoclimatology 38 (12) e2023PA004690. (10.1029/2023PA004690)
- Barker, S. and Knorr, G. 2007. Antarctic climate signature in the Greenland ice core record. Proceedings of the National Academy of Sciences 104 (44), pp.17278-17282. (10.1073/pnas.0708494104)
- Barker, S. and Knorr, G. 2021. Millennial scale feedbacks determine the shape and rapidity of glacial termination. Nature Communications 12 2273. (10.1038/s41467-021-22388-6)
- Barker, S. et al. 2019. Early interglacial legacy of deglacial climate instability. Paleoceanography and Paleoclimatology 34 (8), pp.1455-1475. (10.1029/2019PA003661)
- Barker, S. et al. 2011. 800,000 years of abrupt climate variability. Science 334 (6054), pp.347-351. (10.1126/science.1203580)
- Barker, S. et al. 2010. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geoscience 3 (8), pp.567-571. (10.1038/NGEO921)
- Barker, S. et al. 2025. Distinct roles for precession, obliquity, and eccentricity in Pleistocene 100-kyr glacial cycles. Science 387 (6737) eadp3491. (10.1126/science.adp3491)
- Barker, S. and Ridgwell, A. 2012. Ocean Acidification. Nature Education Knowledge 3 (10) 21.
- Barker, S. et al. 2022. Persistent influence of precession on northern ice sheet variability since the early Pleistocene. Science 376 (6596), pp.961-967. (10.1126/science.abm4033)
- Barker, S. et al. 2021. Strengthening Atlantic inflow across the mid-pleistocene transition. Paleoceanography and Paleoclimatology 36 (4) e2020PA004200. (10.1029/2020PA004200)
- Boscolo-Galazzo, F. et al. 2018. Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change?. Global and Planetary Change 170 , pp.201-212. (10.1016/j.gloplacha.2018.08.017)
- Broecker, W. and Barker, S. 2007. A 190‰ drop in atmosphere's Δ14C during the “Mystery Interval” (17.5 to 14.5 kyr). Earth and Planetary Science Letters 256 (1-2), pp.90-99. (10.1016/j.epsl.2007.01.015)
- Broecker, W. , Clark, E. and Barker, S. 2008. Near constancy of the Pacific Ocean surface to mid-depth radiocarbon-age difference over the last 20 kyr. Earth and Planetary Science Letters 274 (3-4), pp.322-326. (10.1016/j.epsl.2008.07.035)
- Broecker, W. et al., 2007. Radiocarbon age of late glacial deep water from the equatorial Pacific. Paleoceanography 22 (2) PA2206. (10.1029/2006PA001359)
- Broecker, W. S. and Barker, S. 2007. Reply to comment by L. D. Stott on "Anomalous radiocarbon ages for foraminifera shells": A correction to the western tropical Pacific MD9821-81 record. Paleoceanography 22 (1) PA1212. (10.1029/2006PA001393)
- Broecker, W. et al., 2006. Anomalous radiocarbon ages for foraminifera shells. Paleoceanography 21 PA2008. (10.1029/2005PA001212)
- Broecker, W. et al., 2004. Ventilation of the Glacial deep Pacific Ocean. Science 306 (5699), pp.1169-1172. (10.1126/science.1102293)
- Bromley, G. et al., 2023. Lateglacial shifts in seasonality reconcile conflicting North Atlantic temperature signals. Journal of Geophysical Research. Earth Surface 128 (1) e2022JF006951. (10.1029/2022JF006951)
- Cartagena-Sierra, A. et al., 2021. Latitudinal migrations of the subtropical front at the Agulhas Plateau through the mid-Pleistocene Transition. Paleoceanography and Paleoclimatology 36 (7) e2020PA004084. (10.1029/2020PA004084)
- Deaney, E. L. , Barker, S. and Van de Flierdt, T. 2017. Timing and nature of AMOC recovery across Termination 2 and magnitude of deglacial CO2 change. Nature Communications 8 14595. (10.1038/NCOMMS14595)
- Diz, P. and Barker, S. 2016. Approaches and constraints to the reconstruction of palaeoproductivity from Cape Basin abyssal benthic foraminifera (South Atlantic). Journal of Micropalaeontology 35 , pp.195-204. (10.1144/jmpaleo2015-045)
- Diz, P. and Barker, S. 2015. Linkages between rapid climate variability and deep-sea benthic foraminifera in the deep Subantarctic South Atlantic during the last 95 kyr. Paleoceanography 30 (6), pp.601-611. (10.1002/2015PA002784)
- Doughty, A. M. et al., 2021. A maximum in global glacier extent during MIS 4. Quaternary Science Reviews 261 106948. (10.1016/j.quascirev.2021.106948)
- Elderfield, H. et al., 2010. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quaternary Science Reviews 29 (1-2), pp.160-169. (10.1016/j.quascirev.2009.07.013)
- Gao, Y. et al., 2025. Provenance analysis of late Pleistocene sediment from IODP site U1477 reveals climate and river basin dynamics in the Zambezi river catchment. Gondwana Research 146 , pp.25-38. (10.1016/j.gr.2025.05.012)
- Greaves, M. et al., 2005. Accuracy, standardization, and interlaboratory calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry Geophysics Geosystems 6 (2) Q02D13. (10.1029/2004GC000790)
- Griffiths, J. D. et al. 2013. Evidence of silicic acid leakage to the tropical Atlantic via Antarctic intermediate water during marine isotope stage 4. Paleoceanography 28 (2), pp.307-318. (10.1002/palo.20030)
- Hall, I. R. et al. 2010. Surface and deep ocean coupling in the subpolar North Atlantic during the last 230 years. Paleoceanography 25 (2) PA2101. (10.1029/2009PA001886)
- Hasenclever, J. et al., 2017. Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing. Nature Communications 8 15867. (10.1038/ncomms15867)
- Hodell, D. et al., 2018. Chemistry of oceans past and present: a special issue in tribute to Harry Elderfield, FRS (1943-2016). Geochimica et Cosmochimica Acta 236 , pp.1-4. (10.1016/j.gca.2018.06.001)
- Honisch, B. et al., 2012. The Geological Record of Ocean Acidification. Science 335 (6072), pp.1058-1063. (10.1126/science.1208277)
- Hoogakker, B. A. A. , Thornalley, D. J. R. and Barker, S. 2016. Millennial changes in North Atlantic oxygen concentrations. Biogeosciences Discussions 12 (15), pp.12947-12973. (10.5194/bgd-12-12947-2015)
- Hoogakker, B. A. A. , Thornalley, D. J. R. and Barker, S. 2016. Millennial changes in North Atlantic oxygen concentrations. Biogeosciences 13 (1), pp.211-221. (10.5194/bg-13-211-2016)
- Johnstone, H. J. H. et al., 2010. Inside story: An X-ray computed tomography method for assessing dissolution in the tests of planktonic foraminifera. Marine Micropaleontology 77 (1-2), pp.58-70. (10.1016/j.marmicro.2010.07.004)
- Jonkers, L. et al. 2015. Correcting for the influence of ice-rafted detritus on grain size-based paleocurrent speed estimates. Paleoceanography 30 (10), pp.1347-1357. (10.1002/2015PA002830)
- Just, J. et al., 2020. Data report: evaluation of shipboard magnetostratigraphy by alternating field demagnetization of discrete samples, Expedition 361, Site U1475. Proceedings of the International Ocean Discovery Program 361 (10.14379/iodp.proc.361.202.2020)
- Knorr, G. et al., 2021. A salty deep ocean as a prerequisite for glacial termination. Nature Geoscience 14 (12), pp.930–936. (10.1038/s41561-021-00857-3)
- Köhler, P. et al., 2018. The effect of obliquity-driven changes on paleoclimate sensitivity during the late Pleistocene. Geophysical Research Letters 45 (13), pp.6661-6671. (10.1029/2018GL077717)
- Menking, J. A. et al., 2019. Spatial pattern of accumulation at Taylor Dome during Marine Isotope Stage 4: stratigraphic constraints from Taylor Glacier. Climate of the Past 15 (4), pp.1537-1556. (10.5194/cp-15-1537-2019)
- Menking, J. A. et al., 2019. Spatial pattern of accumulation at Taylor Dome during the last glacial inception: stratigraphic constraints from Taylor Glacier. Climate of the Past Discussions 15 , pp.1537-1556. (10.5194/cp-2018-53)
- Menking, J. A. et al., 2022. Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4. Nature Communications 13 (1) 5443. (10.1038/s41467-022-33166-3)
- Moffa Sanchez, P. et al. 2014. Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nature Geoscience 7 , pp.275-278. (10.1038/ngeo2094)
- Moffa Sanchez, P. et al. 2014. Surface changes in the Eastern Labrador Sea around the onset of the Little Ice Age. Paleoceanography and Paleoclimatology 29 (3), pp.160-175. (10.1002/2013PA002523)
- Moffa-Sanchez, P. et al., 2015. Changes in the strength of the Nordic Seas Overflows over the past 3000 years. Quaternary Science Reviews 123 , pp.134-143. (10.1016/j.quascirev.2015.06.007)
- Nuber, S. et al. 2023. Indian Ocean salinity build-up primes deglacial ocean circulation recovery. Nature 617 , pp.306-311. (10.1038/s41586-023-05866-3)
- Parrenin, F. et al., 2012. On the gas-ice depth difference (Δdepth) along the EPICA Dome C ice core. Climate of the Past Discussions 8 (2), pp.1089-1131. (10.5194/cpd-8-1089-2012)
- Parrenin, F. et al., 2012. On the gas-ice depth difference (Δdepth) along the EPICA Dome C ice core. Climate of the Past 8 (4), pp.1239-1255. (10.5194/cp-8-1239-2012)
- Pedro, J. B. et al., 2018. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quaternary Science Reviews 192 , pp.27-46. (10.1016/j.quascirev.2018.05.005)
- Rickaby, R. E. M. et al., 2007. Coccolith chemistry reveals secular variations in the global ocean carbon cycle?. Earth and Planetary Science Letters 253 (1-2), pp.83-95. (10.1016/j.epsl.2006.10.016)
- Rigalleau, V. et al., 2025. 790,000 years of millennial-scale Cape Horn Current variability and interhemispheric linkages.. Nature Communications 16 (1) 3105. (10.1038/s41467-025-58458-2)
- Rosenthal, Y. et al., 2004. Interlaboratory comparison study of Mg/Ca and Sr/Ca measurements in planktonic foraminifera for paleoceanographic research. Geochemistry Geophysics Geosystems 5 (4) Q04D09. (10.1029/2003GC000650)
- Schaefer, J. M. et al., 2015. The Southern Glacial Maximum 65,000 years ago and its unfinished termination. Quaternary Science Reviews 114 , pp.52-60. (10.1016/j.quascirev.2015.02.009)
- Schiebel, R. et al., 2007. Planktic foraminiferal dissolution in the twilight zone. Deep-Sea Research. Part II.Topical studies in oceanography 54 (5-7), pp.676-686. (10.1016/j.dsr2.2007.01.009)
- Sexton, P. F. and Barker, S. 2012. Onset of 'Pacific-style' deep-sea sedimentary carbonate cycles at the mid-Pleistocene transition. Earth and Planetary Science Letters 321-22 , pp.81-94. (10.1016/j.epsl.2011.12.043)
- Simon, M. H. et al. 2013. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian-Atlantic Ocean gateway. Earth and Planetary Science Letters 383 , pp.101-112. (10.1016/j.epsl.2013.09.035)
- Simon, M. H. et al. 2015. Salt exchange in the Indian-Atlantic Ocean Gateway since the LGM: A compensating effect between Agulhas Current changes and salinity variations?. Paleoceanography 30 (10)(10.1002/2015PA002842)
- Simon, M. H. et al., 2020. A late Pleistocene dataset of Agulhas Current variability. Scientific Data 7 (1) 385. (10.1038/s41597-020-00689-7)
- Simon, M. H. et al. 2015. Eastern South African hydroclimate over the past 270,000 years. Scientific Reports 5 , pp.18153. (10.1038/srep18153)
- Skinner, L. C. et al., 2010. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328 (5982), pp.1147-1151. (10.1126/science.1183627)
- Skinner, L. C. et al., 2013. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 41 (6), pp.667-670. (10.1130/G34133.1)
- Starr, A. et al., 2025. Shifting Antarctic Circumpolar Current south of Africa over the past 1.9 million years. Science Advances 11 (1) eadp1692. (10.1126/sciadv.adp1692)
- Starr, A. et al. 2021. Antarctic icebergs reorganise ocean circulation during pleistocene glacials. Nature 589 , pp.236-241. (10.1038/s41586-020-03094-7)
- Sun, Y. et al., 2022. Ice sheet decline and rising atmospheric CO2 control AMOC sensitivity to deglacial meltwater discharge. Global and Planetary Change 210 103755. (10.1016/j.gloplacha.2022.103755)
- Tangunan, D. N. et al. 2018. The last 1 million years of the extinct genus Discoaster: Plio–Pleistocene environment and productivity at Site U1476 (Mozambique Channel). Palaeogeography, Palaeoclimatology, Palaeoecology 505 , pp.187-197. (10.1016/j.palaeo.2018.05.043)
- Thornalley, D. J. R. et al., 2015. A warm and poorly ventilated deep Arctic Mediterranean during the last glacial period. Science 349 (6249), pp.706-710. (10.1126/science.aaa9554)
- Thornalley, D. J. R. et al., 2013. Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions. Paleoceanography 28 (2), pp.253-262. (10.1002/palo.20025)
- Thornalley, D. J. R. et al. 2011. The deglacial evolution of North Atlantic deep convection. Science 331 (6014), pp.202-205. (10.1126/science.1196812)
- van der Lubbe, H. J. L. et al. 2021. Indo-Pacific Walker circulation drove Pleistocene African aridification. Nature 598 (7882), pp.618-623. (10.1038/s41586-021-03896-3)
- Waelbroeck, C. et al., 2009. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience 2 (2), pp.127-132. (10.1038/ngeo411)
- Wilson, J. D. , Ridgwell, A. and Barker, S. 2015. Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?. Biogeosciences 12 (18), pp.5547-5562. (10.5194/bg-12-5547-2015)
- Wilson, J. D. et al., 2019. Sensitivity of atmospheric CO2 to regional variability in particulate organic matter re-mineralization depths. Biogeosciences Discussions 16 , pp.2923-2936. (10.5194/bg-16-2923-2019)
- Wilson, J. D. et al. 2019. Sensitivity of atmospheric CO2 to regional variability in particulate organic matter remineralization depths. Biogeosciences 16 (14), pp.2923-2936. (10.5194/bg-16-2923-2019)
- Wilson, J. D. , Barker, S. and Ridgwell, A. 2012. Assessment of the spatial variability in particulate organic matter and mineral sinking fluxes in the ocean interior: Implications for the ballast hypothesis. Global Biogeochemical Cycles 26 (4) GB4011. (10.1029/2012GB004398)
- Wilson, J. D. , Ridgwell, A. and Barker, S. 2015. Can organic matter flux profiles be diagnosed using remineralisation rates derived from observed tracers and modelled ocean transport rates?. Biogeosciences Discussions 12 (6), pp.4557-4593. (10.5194/bgd-12-4557-2015)
- Wunderling, N. et al., 2024. Climate tipping point interactions and cascades: a review. Earth System Dynamics 15 (1), pp.41-74. (10.5194/esd-15-41-2024)
- Xu, C. et al., 2024. A rapid, simple, and low-blank pumped ion-exchange column chromatography technique for boron purification from carbonate and seawater matrices. Geochemistry, Geophysics, Geosystems 25 (2) e2023GC011228. (10.1029/2023gc011228)
- Yang, Z. et al. 2025. Major sea level fall during the Pliocene M2 glaciation. Nature Communications 16 7641. (10.1038/s41467-025-62446-x)
- You, D. et al., 2023. Last deglacial abrupt climate changes caused by meltwater pulses in the Labrador Sea. Communications Earth & Environment 4 (1) 81. (10.1038/s43247-023-00743-3)
- Yu, J. et al., 2016. Sequestration of carbon in the deep Atlantic during the last glaciation. Nature Geoscience 9 (4), pp.319-324. (10.1038/ngeo2657)
- Zhang, X. et al., 2021. Direct astronomical influence on abrupt climate variability. Nature Geoscience 14 , pp.819–826. (10.1038/s41561-021-00846-6)
- Zhang, X. et al. 2017. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nature Geoscience 10 , pp.518-523. (10.1038/ngeo2974)
- Ziegler, M. et al. 2013. Development of Middle Stone Age innovation linked to rapid climate change. Nature Communications 4 1905. (10.1038/ncomms2897)
Book sections
- Barker, S. 2016. Dissolution of deep-sea carbonates. In: Elias, S. A. ed. Reference Module in Earth Systems and Environmental Sciences. Elsevier(10.1016/B978-0-12-409548-9.09717-7)