Professor Anthony Bennett
(he/him)
- Available for postgraduate supervision
Teams and roles for Anthony Bennett
Professor
Overview
I work on semiconductor nano-optics, quantum physics and photonics. If you are interested in these topics, or working with us, please get in touch!
More information can be found on the group webpage.
Publication
2025
- Guo, Y. et al., 2025. Femtosecond laser-written nanoablations containing bright antibunched emitters on gallium nitride. ACS Photonics 12 (10), pp.5716–5722. (10.1021/acsphotonics.5c01506)
- Guo, Y. et al. 2025. Enhanced quantum magnetometry with a femtosecond laser-written integrated photonic diamond chip [Letter]. Nano Letters 25 (20), pp.8096-8102. (10.1021/acs.nanolett.5c00148)
- Guo, Y. et al. 2025. Quantum micro–nanodevices fabricated in diamond by femtosecond laser and ion irradiation. In: Agio, M. and Castelletto, S. eds. Nanophotonics with Diamond and Silicon Carbide for Quantum Technologies. Elsevier. , pp.47-75. (10.1016/B978-0-443-13717-4.00004-9)
- Jordan, M. , Langbein, W. and Bennett, A. J. 2025. The origin and influence of non-cavity modes in a micropillar Bragg microcavity. Scientific Reports 15 (1) 38202. (10.1038/s41598-025-22089-w)
- Liu, R. et al. 2025. Sputtered AlN/Al2O3 distributed Bragg reflectors on amorphous glass. Optical Materials 167 117332. (10.1016/j.optmat.2025.117332)
- Murphy, L. R. et al., 2025. Continuously tunable frequency conversion in germanium doped photonic crystal fiber pumped near degeneracy. Presented at: 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) Munich, Germany 23-27 June 2025. 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE(10.1109/cleo/europe-eqec65582.2025.11109538)
- Shahbazi, S. et al., 2025. Vector magnetometry using shallow implanted NV centers in diamond with waveguide-assisted dipole excitation and readout. APL Photonics 10 (2) 021301. (10.1063/5.0231203)
2024
- Alam, M. S. et al., 2024. Determining strain components in a diamond waveguide from zero-field optically detected magnetic resonance spectra of negatively charged nitrogen-vacancy-center ensembles. Physical Review Applied 22 (2) 024055. (10.1103/PhysRevApplied.22.024055)
- Cannon, J. K. et al. 2024. Room temperature quantum emitters in aluminum nitride epilayers on silicon. Applied Physics Letters 124 (24) 244001. (10.1063/5.0207744)
- Clark, R. N. et al. 2024. Measuring photon correlation using imperfect detectors. Physical Review Applied 22 (6) 064067. (10.1103/PhysRevApplied.22.064067)
- Guo, Y. et al. 2024. Emission dynamics of optically driven aluminum nitride quantum emitters. Physical Review B 110 014109. (10.1103/PhysRevB.110.014109)
- Guo, Y. et al. 2024. Laser-written waveguide-integrated coherent spins in diamond. APL Photonics 9 (7) 076103. (10.1063/5.0209294)
- Jordan, M. et al. 2024. Probing Purcell enhancement and photon collection efficiency of InAs quantum dots at nodes of the cavity electric field. Physical Review Research 6 (2) L022004. (10.1103/PhysRevResearch.6.L022004)
- Jordan, M. et al. 2024. Quantum dot micropillar cavities with SiO2 hard mask microlenses. Presented at: SPIE OPTO, 2024 27 January - 01 February 2024. Proceedings SPIE 12896, Photonic and Phononic Properties of Engineered Nanostructures XIV. SPIE. (10.1117/12.3005342)
- Murphy, L. R. et al., 2024. Tunable frequency conversion in doped photonic crystal fiber pumped near degeneracy. Optica 11 (11), pp.1490-1496. (10.1364/OPTICA.537442)
- Murphy, L. R. et al., 2024. Tunable near-degenerate frequency conversion using doped photonic crystal fibre. Presented at: 24th International Conference on Transparent Optical Networks (ICTON) Bari, Italy 14-18 July 2024. 2024 24th International Conference on Transparent Optical Networks (ICTON). IEEE. , pp.1-4. (10.1109/ICTON62926.2024.10647265)
- Nieto Hernández, E. et al., 2024. Fabrication of quantum emitters in aluminum nitride by Al-ion implantation and thermal annealing. Applied Physics Letters 124 (12) 124003. (10.1063/5.0185534)
- Yağcı, H. et al. 2024. Tracking the creation of single photon emitters in AlN by implantation and annealing. Optical Materials 156 115967. (10.1016/j.optmat.2024.115967)
2023
- Androvitsaneas, P. et al. 2023. Direct-write projection lithography of quantum dot micropillar single photon sources. [Online].arXiv. Available at: https://doi.org/10.48550/arXiv.2304.00141.
- Androvitsaneas, P. et al. 2023. Direct-write projection lithography of quantum dot micropillar single photon sources. Applied Physics Letters 123 094001. (10.1063/5.0155968)
- Cannon, J. K. et al. 2023. Polarization study of single color centers in aluminum nitride. Applied Physics Letters 122 (17) 172104. (10.1063/5.0145542)
- Cannon, J. K. et al. 2023. Colour centres in aluminium nitride are bright, room-temperature quantum light sources. Presented at: 23rd International Conference on Transparent Optical Networks ICTON 2023 Bucharest, Romania 2-6 July 2023. Published in: Jaworski, M. and Marciniak, M. eds. Proceedings of 23rd International Conference on Transparent Optical Networks. , pp.1-2. (10.1109/ICTON59386.2023.10207363)
- Hekmati, R. et al. 2023. Bullseye dielectric cavities for photon collection from a surface-mounted quantum-light-emitter. Scientific Reports 13 (1) 5316. (10.1038/s41598-023-32359-0)
- Maynard, C. et al. 2023. Suspended triangular waveguides and serrated photonic crystal nanobeam cavities. Presented at: 2023 Conference on Lasers and Electro-Optics (CLEO) San Jose, CA, United States 07-12 May 2023. Proceedings 2023 Conference on Lasers and Electro-Optics (CLEO). IEEE. , pp.1-2. (10.1364/CLEO_AT.2023.JW2A.143)
- Ramsay, A. J. et al., 2023. Coherence protection of spin qubits in hexagonal boron nitride. Nature Communications 14 (1) 461. (10.1038/s41467-023-36196-7)
2022
- Bishop, S. G. et al. 2022. Evanescent-field assisted photon collection from quantum emitters under a solid immersion lens. New Journal of Physics 24 103027. (10.1088/1367-2630/ac9697)
- Bishop, S. G. et al. 2022. Enhanced light collection from a gallium nitride color center using a near index-matched solid immersion lens. Applied Physics Letters 120 114001. (10.1063/5.0085257)
- Dangel, C. et al., 2022. Two-photon interference of single photons from dissimilar sources. Physical Review Applied 18 (5) 054005. (10.1103/PhysRevApplied.18.054005)
- Giakoumaki, A. N. et al., 2022. Quantum technologies in diamond enabled by laser processing. Applied Physics Letters 120 (2) 020502. (10.1063/5.0080348)
- Hadden, J. P. et al. 2022. Design of free-space couplers for suspended triangular nano-beam waveguides. Journal of Physics D: Applied Physics 55 (47) 474002. (10.1088/1361-6463/ac941e)
2021
- Bennett, A. 2021. Electrical control of semiconductor quantum dot single photon sources. In: Frontiers of Nanoscience. Vol. 21, Elsevier. , pp.295-317. (10.1016/B978-0-12-822083-2.00013-7)
- Gong, Y. et al. 2021. Tailoring topological edge states with photonic crystal nanobeam cavities. Scientific Reports 11 1055. (10.1038/s41598-020-79915-6)
2020
- Benyoucef, M. et al., 2020. Photonic quantum technologies. Advanced Quantum Technologies 3 (2) 2000007. (10.1002/qute.202000007)
- Bishop, S. et al. 2020. Room-temperature quantum emitter in aluminum nitride. ACS Photonics 7 (7), pp.1636-1641. (10.1021/acsphotonics.0c00528)
- Gong, Y. et al. 2020. Topological insulator laser using valley-hall photonic crystals. ACS Photonics 7 (8), pp.2089-2097. (10.1021/acsphotonics.0c00521)
- Gough, G. P. et al., 2020. Faraday-cage-assisted etching of suspended gallium nitride nanostructures. AIP Advances 10 (5) 055319. (10.1063/5.0007947)
2019
- Lee, J. P. et al., 2019. A quantum dot as a source of time-bin entangled multi-photon states. Quantum Science and Technology 4 (2) 025011. (10.1088/2058-9565/ab0a9b)
- Wells, L. et al., 2019. Photon phase shift at the few-photon level and optical switching by a quantum dot in a microcavity. Physical Review Applied 11 (6), pp.-. 061001. (10.1103/PhysRevApplied.11.061001)
2018
- Ellis, D. J. P. et al., 2018. Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit. Applied Physics Letters 112 (21) 211104. (10.1063/1.5028339)
- Lee, J. P. et al., 2018. Multi-dimensional photonic states from a quantum dot. Quantum Science and Technology 3 (2), pp.-. 024008. (10.1088/2058-9565/aaa7b7)
- Lee, J. et al., 2018. Controllable photonic time-bin qubits from a quantum dot. Physical Review X 8 (2) 021078. (10.1103/PhysRevX.8.021078)
2017
- Lee, J. P. et al., 2017. Electrically driven and electrically tunable quantum light sources. Applied Physics Letters 110 (7) 071102. (10.1063/1.4976197)
- Skiba-Szymanska, J. et al., 2017. Universal growth scheme for quantum dots with low fine-structure splitting at various emission wavelengths. Physical Review Applied 8 (1) 014013. (10.1103/PhysRevApplied.8.014013)
- Villa, B. et al., 2017. Surface acoustic wave modulation of a coherently driven quantum dot in a pillar microcavity. Applied Physics Letters 111 (1), pp.-. 011103. (dx.doi.org/10.1063/1.4990966)
2016
- Bennett, A. J. et al. 2016. A semiconductor photon-sorter. Nature Nanotechnology 11 (10), pp.857-860. (10.1038/nnano.2016.113)
- Bennett, A. J. et al. 2016. Cavity-enhanced coherent light scattering from a quantum dot. Science Advances 2 (4) e1501256. (10.1126/sciadv.1501256)
- Kalliakos, S. et al., 2016. Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot. Applied Physics Letters 109 (15) 151112. (10.1063/1.4964888)
- Lee, J. P. et al., 2016. Ramsey interference in a multilevel quantum system. Physical Review B 93 (8) 085407. (10.1103/PhysRevB.93.085407)
- Waeber, A. M. et al., 2016. Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance spectroscopy. Nature Physics 12 (7), pp.688-693. (10.1038/nphys3686)
2015
- Bennett, A. et al. 2015. Combining fast electrical control and resonant excitation to create a wavelength-tunable and coherent quantum-dot light source. Presented at: SPIE OPTO San Francisco, CA, USA 7-12 February 2015. Published in: Huffaker, D. L. and Eisele, E. eds. Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XII. Proceedings of SPIE Vol. 9373. SPIE. (10.1117/12.2076271)
- Cao, Y. et al., 2015. Polarization-correlated photons from a positively charged quantum dot. Physical Review B 92 (8) 081302(R). (10.1103/PhysRevB.92.081302)
- Murray, E. et al., 2015. Quantum photonics hybrid integration platform. Applied Physics Letters 107 (17) 171108. (10.1063/1.4935029)
- Sharma, M. et al., 2015. Density dependent composition of InAs quantum dots extracted from grazing incidence x-ray diffraction measurements. Scientific Reports 5 15732. (10.1038/srep15732)
2014
- Ward, M. B. et al., 2014. Coherent dynamics of a telecom-wavelength entangled photon source. Nature Communications 5 3316. (10.1038/ncomms4316)
2013
- Nilsson, J. et al., 2013. Quantum teleportation using a light-emitting diode. Nature Photonics 7 (4), pp.311-315. (10.1038/nphoton.2013.10)
- Stevenson, R. M. et al., 2013. Quantum teleportation of laser-generated photons with an entangled-light-emitting diode. Nature Communications 4 2859. (10.1038/ncomms3859)
2012
- Stevenson, R. M. et al., 2012. Indistinguishable entangled photons generated by a light-emitting diode. Physical Review Letters 108 (4) 040503. (10.1103/PhysRevLett.108.040503)
2010
- Bennett, A. et al. 2010. Giant Stark effect in the emission of single semiconductor quantum dots. Applied Physics Letters 97 (3) 031104. (10.1063/1.3460912)
- Bennett, A. et al. 2010. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nature Physics 6 (12), pp.947-950. (10.1038/nphys1780)
- Patel, R. B. et al., 2010. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photonics 4 (9), pp.632-635. (10.1038/nphoton.2010.161)
2009
- Bennett, A. et al. 2009. Interference of dissimilar photon sources. Nature Physics 5 (10), pp.715-717. (10.1038/nphys1373)
- Dixon, A. R. et al., 2009. Ultrashort dead time of photon-counting InGaAs avalanche photodiodes. Applied Physics Letters 94 (23) 231113. (10.1063/1.3151864)
2008
- Patel, R. B. et al., 2008. Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot. Physical Review Letters 100 (20) 207405. (10.1103/PhysRevLett.100.207405)
- Stevenson, R. M. et al., 2008. Evolution of entanglement between distinguishable light states. Physical Review Letters 101 (17) 170501. (10.1103/PhysRevLett.101.170501)
2007
- Hudson, A. J. et al., 2007. Coherence of an entangled exciton-photon state. Physical Review Letters 99 (26) 266802. (10.1103/PhysRevLett.99.266802)
- Ward, M. B. et al., 2007. Electrically driven telecommunication wavelength single-photon source. Applied Physics Letters 90 (6) 063512. (10.1063/1.2472172)
2005
- Bennett, A. et al. 2005. High performance single photon sources from photolithographically defined pillar microcavities. Optics Express 13 (1), pp.50-55. (10.1364/OPEX.13.000050)
- Bennett, A. et al. 2005. Microcavity single-photon-emitting diode. Applied Physics Letters 86 (18) 181102. (10.1063/1.1921332)
Articles
- Alam, M. S. et al., 2024. Determining strain components in a diamond waveguide from zero-field optically detected magnetic resonance spectra of negatively charged nitrogen-vacancy-center ensembles. Physical Review Applied 22 (2) 024055. (10.1103/PhysRevApplied.22.024055)
- Androvitsaneas, P. et al. 2023. Direct-write projection lithography of quantum dot micropillar single photon sources. Applied Physics Letters 123 094001. (10.1063/5.0155968)
- Bennett, A. J. et al. 2016. A semiconductor photon-sorter. Nature Nanotechnology 11 (10), pp.857-860. (10.1038/nnano.2016.113)
- Bennett, A. et al. 2009. Interference of dissimilar photon sources. Nature Physics 5 (10), pp.715-717. (10.1038/nphys1373)
- Bennett, A. et al. 2010. Giant Stark effect in the emission of single semiconductor quantum dots. Applied Physics Letters 97 (3) 031104. (10.1063/1.3460912)
- Bennett, A. et al. 2010. Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nature Physics 6 (12), pp.947-950. (10.1038/nphys1780)
- Bennett, A. et al. 2005. High performance single photon sources from photolithographically defined pillar microcavities. Optics Express 13 (1), pp.50-55. (10.1364/OPEX.13.000050)
- Bennett, A. et al. 2005. Microcavity single-photon-emitting diode. Applied Physics Letters 86 (18) 181102. (10.1063/1.1921332)
- Bennett, A. J. et al. 2016. Cavity-enhanced coherent light scattering from a quantum dot. Science Advances 2 (4) e1501256. (10.1126/sciadv.1501256)
- Benyoucef, M. et al., 2020. Photonic quantum technologies. Advanced Quantum Technologies 3 (2) 2000007. (10.1002/qute.202000007)
- Bishop, S. G. et al. 2022. Evanescent-field assisted photon collection from quantum emitters under a solid immersion lens. New Journal of Physics 24 103027. (10.1088/1367-2630/ac9697)
- Bishop, S. G. et al. 2022. Enhanced light collection from a gallium nitride color center using a near index-matched solid immersion lens. Applied Physics Letters 120 114001. (10.1063/5.0085257)
- Bishop, S. et al. 2020. Room-temperature quantum emitter in aluminum nitride. ACS Photonics 7 (7), pp.1636-1641. (10.1021/acsphotonics.0c00528)
- Cannon, J. K. et al. 2023. Polarization study of single color centers in aluminum nitride. Applied Physics Letters 122 (17) 172104. (10.1063/5.0145542)
- Cannon, J. K. et al. 2024. Room temperature quantum emitters in aluminum nitride epilayers on silicon. Applied Physics Letters 124 (24) 244001. (10.1063/5.0207744)
- Cao, Y. et al., 2015. Polarization-correlated photons from a positively charged quantum dot. Physical Review B 92 (8) 081302(R). (10.1103/PhysRevB.92.081302)
- Clark, R. N. et al. 2024. Measuring photon correlation using imperfect detectors. Physical Review Applied 22 (6) 064067. (10.1103/PhysRevApplied.22.064067)
- Dangel, C. et al., 2022. Two-photon interference of single photons from dissimilar sources. Physical Review Applied 18 (5) 054005. (10.1103/PhysRevApplied.18.054005)
- Dixon, A. R. et al., 2009. Ultrashort dead time of photon-counting InGaAs avalanche photodiodes. Applied Physics Letters 94 (23) 231113. (10.1063/1.3151864)
- Ellis, D. J. P. et al., 2018. Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit. Applied Physics Letters 112 (21) 211104. (10.1063/1.5028339)
- Giakoumaki, A. N. et al., 2022. Quantum technologies in diamond enabled by laser processing. Applied Physics Letters 120 (2) 020502. (10.1063/5.0080348)
- Gong, Y. et al. 2021. Tailoring topological edge states with photonic crystal nanobeam cavities. Scientific Reports 11 1055. (10.1038/s41598-020-79915-6)
- Gong, Y. et al. 2020. Topological insulator laser using valley-hall photonic crystals. ACS Photonics 7 (8), pp.2089-2097. (10.1021/acsphotonics.0c00521)
- Gough, G. P. et al., 2020. Faraday-cage-assisted etching of suspended gallium nitride nanostructures. AIP Advances 10 (5) 055319. (10.1063/5.0007947)
- Guo, Y. et al., 2025. Femtosecond laser-written nanoablations containing bright antibunched emitters on gallium nitride. ACS Photonics 12 (10), pp.5716–5722. (10.1021/acsphotonics.5c01506)
- Guo, Y. et al. 2025. Enhanced quantum magnetometry with a femtosecond laser-written integrated photonic diamond chip [Letter]. Nano Letters 25 (20), pp.8096-8102. (10.1021/acs.nanolett.5c00148)
- Guo, Y. et al. 2024. Emission dynamics of optically driven aluminum nitride quantum emitters. Physical Review B 110 014109. (10.1103/PhysRevB.110.014109)
- Guo, Y. et al. 2024. Laser-written waveguide-integrated coherent spins in diamond. APL Photonics 9 (7) 076103. (10.1063/5.0209294)
- Hadden, J. P. et al. 2022. Design of free-space couplers for suspended triangular nano-beam waveguides. Journal of Physics D: Applied Physics 55 (47) 474002. (10.1088/1361-6463/ac941e)
- Hekmati, R. et al. 2023. Bullseye dielectric cavities for photon collection from a surface-mounted quantum-light-emitter. Scientific Reports 13 (1) 5316. (10.1038/s41598-023-32359-0)
- Hudson, A. J. et al., 2007. Coherence of an entangled exciton-photon state. Physical Review Letters 99 (26) 266802. (10.1103/PhysRevLett.99.266802)
- Jordan, M. et al. 2024. Probing Purcell enhancement and photon collection efficiency of InAs quantum dots at nodes of the cavity electric field. Physical Review Research 6 (2) L022004. (10.1103/PhysRevResearch.6.L022004)
- Jordan, M. , Langbein, W. and Bennett, A. J. 2025. The origin and influence of non-cavity modes in a micropillar Bragg microcavity. Scientific Reports 15 (1) 38202. (10.1038/s41598-025-22089-w)
- Kalliakos, S. et al., 2016. Enhanced indistinguishability of in-plane single photons by resonance fluorescence on an integrated quantum dot. Applied Physics Letters 109 (15) 151112. (10.1063/1.4964888)
- Lee, J. P. et al., 2018. Multi-dimensional photonic states from a quantum dot. Quantum Science and Technology 3 (2), pp.-. 024008. (10.1088/2058-9565/aaa7b7)
- Lee, J. P. et al., 2016. Ramsey interference in a multilevel quantum system. Physical Review B 93 (8) 085407. (10.1103/PhysRevB.93.085407)
- Lee, J. P. et al., 2017. Electrically driven and electrically tunable quantum light sources. Applied Physics Letters 110 (7) 071102. (10.1063/1.4976197)
- Lee, J. P. et al., 2019. A quantum dot as a source of time-bin entangled multi-photon states. Quantum Science and Technology 4 (2) 025011. (10.1088/2058-9565/ab0a9b)
- Lee, J. et al., 2018. Controllable photonic time-bin qubits from a quantum dot. Physical Review X 8 (2) 021078. (10.1103/PhysRevX.8.021078)
- Liu, R. et al. 2025. Sputtered AlN/Al2O3 distributed Bragg reflectors on amorphous glass. Optical Materials 167 117332. (10.1016/j.optmat.2025.117332)
- Murphy, L. R. et al., 2024. Tunable frequency conversion in doped photonic crystal fiber pumped near degeneracy. Optica 11 (11), pp.1490-1496. (10.1364/OPTICA.537442)
- Murray, E. et al., 2015. Quantum photonics hybrid integration platform. Applied Physics Letters 107 (17) 171108. (10.1063/1.4935029)
- Nieto Hernández, E. et al., 2024. Fabrication of quantum emitters in aluminum nitride by Al-ion implantation and thermal annealing. Applied Physics Letters 124 (12) 124003. (10.1063/5.0185534)
- Nilsson, J. et al., 2013. Quantum teleportation using a light-emitting diode. Nature Photonics 7 (4), pp.311-315. (10.1038/nphoton.2013.10)
- Patel, R. B. et al., 2008. Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot. Physical Review Letters 100 (20) 207405. (10.1103/PhysRevLett.100.207405)
- Patel, R. B. et al., 2010. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photonics 4 (9), pp.632-635. (10.1038/nphoton.2010.161)
- Ramsay, A. J. et al., 2023. Coherence protection of spin qubits in hexagonal boron nitride. Nature Communications 14 (1) 461. (10.1038/s41467-023-36196-7)
- Shahbazi, S. et al., 2025. Vector magnetometry using shallow implanted NV centers in diamond with waveguide-assisted dipole excitation and readout. APL Photonics 10 (2) 021301. (10.1063/5.0231203)
- Sharma, M. et al., 2015. Density dependent composition of InAs quantum dots extracted from grazing incidence x-ray diffraction measurements. Scientific Reports 5 15732. (10.1038/srep15732)
- Skiba-Szymanska, J. et al., 2017. Universal growth scheme for quantum dots with low fine-structure splitting at various emission wavelengths. Physical Review Applied 8 (1) 014013. (10.1103/PhysRevApplied.8.014013)
- Stevenson, R. M. et al., 2013. Quantum teleportation of laser-generated photons with an entangled-light-emitting diode. Nature Communications 4 2859. (10.1038/ncomms3859)
- Stevenson, R. M. et al., 2012. Indistinguishable entangled photons generated by a light-emitting diode. Physical Review Letters 108 (4) 040503. (10.1103/PhysRevLett.108.040503)
- Stevenson, R. M. et al., 2008. Evolution of entanglement between distinguishable light states. Physical Review Letters 101 (17) 170501. (10.1103/PhysRevLett.101.170501)
- Villa, B. et al., 2017. Surface acoustic wave modulation of a coherently driven quantum dot in a pillar microcavity. Applied Physics Letters 111 (1), pp.-. 011103. (dx.doi.org/10.1063/1.4990966)
- Waeber, A. M. et al., 2016. Few-second-long correlation times in a quantum dot nuclear spin bath probed by frequency-comb nuclear magnetic resonance spectroscopy. Nature Physics 12 (7), pp.688-693. (10.1038/nphys3686)
- Ward, M. B. et al., 2014. Coherent dynamics of a telecom-wavelength entangled photon source. Nature Communications 5 3316. (10.1038/ncomms4316)
- Ward, M. B. et al., 2007. Electrically driven telecommunication wavelength single-photon source. Applied Physics Letters 90 (6) 063512. (10.1063/1.2472172)
- Wells, L. et al., 2019. Photon phase shift at the few-photon level and optical switching by a quantum dot in a microcavity. Physical Review Applied 11 (6), pp.-. 061001. (10.1103/PhysRevApplied.11.061001)
- Yağcı, H. et al. 2024. Tracking the creation of single photon emitters in AlN by implantation and annealing. Optical Materials 156 115967. (10.1016/j.optmat.2024.115967)
Book sections
- Bennett, A. 2021. Electrical control of semiconductor quantum dot single photon sources. In: Frontiers of Nanoscience. Vol. 21, Elsevier. , pp.295-317. (10.1016/B978-0-12-822083-2.00013-7)
- Guo, Y. et al. 2025. Quantum micro–nanodevices fabricated in diamond by femtosecond laser and ion irradiation. In: Agio, M. and Castelletto, S. eds. Nanophotonics with Diamond and Silicon Carbide for Quantum Technologies. Elsevier. , pp.47-75. (10.1016/B978-0-443-13717-4.00004-9)
Conferences
- Bennett, A. et al. 2015. Combining fast electrical control and resonant excitation to create a wavelength-tunable and coherent quantum-dot light source. Presented at: SPIE OPTO San Francisco, CA, USA 7-12 February 2015. Published in: Huffaker, D. L. and Eisele, E. eds. Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XII. Proceedings of SPIE Vol. 9373. SPIE. (10.1117/12.2076271)
- Cannon, J. K. et al. 2023. Colour centres in aluminium nitride are bright, room-temperature quantum light sources. Presented at: 23rd International Conference on Transparent Optical Networks ICTON 2023 Bucharest, Romania 2-6 July 2023. Published in: Jaworski, M. and Marciniak, M. eds. Proceedings of 23rd International Conference on Transparent Optical Networks. , pp.1-2. (10.1109/ICTON59386.2023.10207363)
- Jordan, M. et al. 2024. Quantum dot micropillar cavities with SiO2 hard mask microlenses. Presented at: SPIE OPTO, 2024 27 January - 01 February 2024. Proceedings SPIE 12896, Photonic and Phononic Properties of Engineered Nanostructures XIV. SPIE. (10.1117/12.3005342)
- Maynard, C. et al. 2023. Suspended triangular waveguides and serrated photonic crystal nanobeam cavities. Presented at: 2023 Conference on Lasers and Electro-Optics (CLEO) San Jose, CA, United States 07-12 May 2023. Proceedings 2023 Conference on Lasers and Electro-Optics (CLEO). IEEE. , pp.1-2. (10.1364/CLEO_AT.2023.JW2A.143)
- Murphy, L. R. et al., 2025. Continuously tunable frequency conversion in germanium doped photonic crystal fiber pumped near degeneracy. Presented at: 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) Munich, Germany 23-27 June 2025. 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE(10.1109/cleo/europe-eqec65582.2025.11109538)
- Murphy, L. R. et al., 2024. Tunable near-degenerate frequency conversion using doped photonic crystal fibre. Presented at: 24th International Conference on Transparent Optical Networks (ICTON) Bari, Italy 14-18 July 2024. 2024 24th International Conference on Transparent Optical Networks (ICTON). IEEE. , pp.1-4. (10.1109/ICTON62926.2024.10647265)
Websites
- Androvitsaneas, P. et al. 2023. Direct-write projection lithography of quantum dot micropillar single photon sources. [Online].arXiv. Available at: https://doi.org/10.48550/arXiv.2304.00141.
Research
A full list of publications can be found on my Google Scholar page.
My research has been funded by the EU, the Royal Society, The Royce Institute, the Higher Education Funding Council for Wales, Innovate UK and the UK Engineering and Physical Sciences Research Council. I am a co-investigator on the UK's National Quantum Computing Hubs (2019-2025, 2024-2029), Compound Semiconductor Manufacturing Hub (2024-2031), the "GaN-O-Photonics" project (2024-2027) and hold an EPSRC Fellowship.
More information can be found on the group webpage.
Teaching
Lecturer in Optoelectronics ENT795
Masters Projects in Physics PXT999
Undergraduate projects in Physics PX3315
Biography
I joined Cardiff University in 2017. I work with the Institute for Compound Semiconductors, the Ser Cymru Advanced Materials group, the Condensed Matter and Photonics group (in the School of Physics and Astronomy) and Materials and Magnetics group (in the School of Engineering).
Previously I worked at Toshiba Research Europe Limited in Cambridge on semiconductor quantum technology, where I became Team Leader. My education was at Cambridge (MSci) and Imperial College (PhD) where I also worked as a post-doc on the Molecular Beam Epitaxy of III-V semiconductors.
Supervisions
I am interested in taking on students with enthusiasm. An interest in quantum optics is also useful.
Current supervision
Katie Eggleton
Alfie Broughton
Contact Details
+44 29208 75404
Translational Research Hub, Room 1.16, Maindy Road, Cathays, Cardiff, CF24 4HQ
Research themes
Specialisms
- Quantum technologies
- Quantum optics and quantum optomechanics
- Compound semiconductors