Dr Craig Boote
- Media commentator
- Available for postgraduate supervision
Teams and roles for Craig Boote
Reader, Deputy Director of Postgraduate Research
Overview
Research Overview
My main research interests are the biophysical properties and structural biology of the cornea and sclera. I am using x-ray scattering and microscopic imaging to investigate the factors that govern corneal transparency and refractive status, and their compromise in disease and surgery. I am also researching the structural biology and biomechanical function of the sclera and optic nerve head, and investigating their role in the development of glaucoma.
Teaching Overview
I am lecturer and module leader for the BSc Optometric Physics (OP0204) and Research & Study Skills (OP1204) modules. I also contribute teaching to the BSc Geometrical & Visual Optics (OP1203) module.
Publication
2025
- Bell, J. et al. 2025. Hierarchical biomechanical characterisation of riboflavin-UVA crosslinking and decorin treatment in the porcine cornea. Frontiers in Bioengineering and Biotechnology 13 1603679. (10.3389/fbioe.2025.1603679)
- Fung, A. A. et al., 2025. Label-free multimodal optical biopsy reveals biomolecular and morphological features of diabetic kidney tissue in 2D and 3D. Nature Communications 16 (1) 4509. (10.1038/s41467-025-59163-w)
- Ma, Q. et al. 2025. Ultrastructural aspects of corneal functional recovery in rats following intrastromal keratocyte injection. Investigative Ophthalmology & Visual Science 66 (2) 45. (10.1167/iovs.66.2.45)
- Wang, X. et al. 2025. The correlation between myopia severity and stress-strain index (SSI) using the Corneal Visualization Scheimpflug Technology (Corvis ST). Scientific Reports 15 (1) 40103. (10.1038/s41598-025-23834-x)
2024
- Riau, A. K. et al., 2024. Impact of keratocyte differentiation on corneal opacity resolution and visual function recovery in male rats. Nature Communications 15 (1) 4959. (10.1038/s41467-024-49008-3)
2023
- Boote, C. , Ma, Q. and Goh, K. L. 2023. Age-dependent mechanical properties of tail tendons in wild-type and mimecan gene-knockout mice - A preliminary study. Journal of the Mechanical Behavior of Biomedical Materials 139 105672. (10.1016/j.jmbbm.2023.105672)
- Boote, C. et al. 2023. Towards corneal structure mapping in the living eye using a combined X-ray scattering, biomedical imaging and machine learning approach. Project Report.[Online].SPring-8/SACLA Research Report: Japan Synchrotron Radiation Research Institute. Available at: https://doi.org/10.18957/rr.11.1.37.
- Towler, J. et al., 2023. Typical localised element-specific finite element anterior eye model. Heliyon 9 (4) E13944. (10.1016/j.heliyon.2023.e13944)
2022
- Markov, P. et al. 2022. Delayed reorganisation of F-actin cytoskeleton and reversible chromatin condensation in scleral fibroblasts under simulated pathological strain. Biochemistry and Biophysics Reports 32 101338.
2021
- Cheong, H. et al., 2021. OCT-GAN: single step shadow and noise removal from optical coherence tomography images of the human optic nerve head. Biomedical Optics Express 12 (3), pp.1482-1498. (10.1364/BOE.412156)
- Markov, P. et al. 2021. 3D immuno-confocal image reconstruction of fibroblast cytoskeleton and nucleus architecture. Journal of Biophotonics 14 (1) e202000202. (10.1002/jbio.202000202)
- Pham, T. H. et al., 2021. Deep learning algorithms to isolate and quantify the structures of the anterior segment in optical coherence tomography images. British Journal of Ophthalmology 105 (9), pp.1231-1237. (10.1136/bjophthalmol-2019-315723)
- Tun, T. A. et al., 2021. Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study. British Journal of Ophthalmology 105 (3), pp.367-373. (10.1136/bjophthalmol-2020-315840)
- Zhou, D. et al., 2021. Fibril density reduction in keratoconic corneas. Journal of the Royal Society Interface 18 (175) 20200900. (10.1098/rsif.2020.0900)
2020
- Boote, C. et al. 2020. Scleral structure and biomechanics. Progress in Retinal and Eye Research 74 100773. (10.1016/j.preteyeres.2019.100773)
- Cheong, H. et al., 2020. DeshadowGAN: a deep learning approach to remove shadows from optical coherence tomography images. Translational Vision Science & Technology 9 (2) 23. (10.1167/tvst.9.2.23)
- Chuangsuwanich, T. et al., 2020. Morphometric, hemodynamic, and biomechanical factors influencing blood flow and oxygen concentration in the human lamina cribrosa. Investigative Ophthalmology & Visual Science 61 (4) 3. (10.1167/iovs.61.4.3)
- Devalla, S. K. et al., 2020. Glaucoma management in the era of artificial intelligence. British Journal of Ophthalmology 104 (3), pp.301-311. (10.1136/bjophthalmol-2019-315016)
- Jin, Y. et al., 2020. Effect of changing heart rate on the ocular pulse and dynamic biomechanical behavior of the optic nerve head. Investigative Ophthalmology & Visual Science 61 (4) 27. (10.1167/iovs.61.4.27)
- Tan, R. K. Y. et al., 2020. Performance of a temperature-controlled shape-memory pupil expander for cataract surgery.. Journal of Cataract and Refractive Surgery 46 (1), pp.116-124. (10.1016/j.jcrs.2019.08.042)
- Zhang, L. et al., 2020. In vivo measurements of prelamina and lamina cribrosa biomechanical properties in humans. Investigative Ophthalmology & Visual Science 61 (3) 27. (10.1167/iovs.61.3.27)
2019
- Chuangsuwanich, T. et al., 2019. Morphometric, hemodynamic and biomechanical factors influencing blood flow and oxygen concentration in the human lamina cribrosa. Presented at: 2019 ARVO Annual Meeting Vancouver, B.C., Canada 28 April - 2 May 2019. ARVO Annual Meeting Abstract Issue 2019. Vol. 60.Investigative Ophthalmology and Visial Science. , pp.1785.
- Markov, P. et al. 2019. Building a cell-specific cytoskeletal finite element model of scleral fibroblasts. Presented at: 25th Congress of the European Society of Biomechanics (ESB 2019) Vienna, Austria 7-10 July 2019. , pp.-.
- Markov, P. et al. 2019. Effects of mechanical load on cytoskeletal protein arrangement in scleral fibroblasts. Presented at: The Association for Research in Vision and Ophthalmology Annual Meeting Vancouver, BC, Canada 28 April -- 2 May 2019.
- Pijanka, J. K. et al., 2019. Quantification of collagen fiber structure using second harmonic generation imaging and two‐dimensional discrete Fourier transform analysis: application to the human optic nerve head. Journal of Biophotonics 12 (5) e201800376. (10.1002/jbio.201800376)
- Tan, R. K. et al., 2019. Permeability of the porcine iris stroma. Experimental Eye Research 181 , pp.190-196. (10.1016/j.exer.2019.02.005)
- Zhou, D. et al., 2019. Analysis of X-ray scattering microstructure data for implementation in numerical simulations of ocular biomechanical behaviour. PLoS ONE 14 (4), pp.-. e0214770. (10.1371/journal.pone.0214770)
2018
- Markov, P. et al. 2018. Bulk changes in posterior scleral collagen microstructure in human high myopia. Molecular Vision 24 , pp.818-833.
- Morgan, S. et al. 2018. Microwave treatment of the cornea leads to localised disruption of the extracellular matrix. Scientific Reports 8 13742. (10.1038/s41598-018-32110-0)
2017
- Abass, A. et al., 2017. SAXS4COLL: an integrated software tool for analysing fibrous collagen-based tissues. Journal of Applied Crystallography 50 , pp.1235-1240. (10.1107/S1600576717007877)
- Hayes, S. et al. 2017. The structural response of the cornea to changes in stromal hydration. Interface 14 (131)(10.1098/rsif.2017.0062)
2016
- Boote, C. et al. 2016. Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation. Molecular Vision 22 , pp.503-517.
2015
- Coudrillier, B. et al., 2015. Effects of age and diabetes on scleral stiffness. Journal of Biomechanical Engineering 137 (7), pp.1-10. BIO-14-1565. (10.1115/1.4029986)
- Coudrillier, B. et al., 2015. Collagen structure and mechanical properties of the human sclera: Analysis for the effects of age. Journal of Biomechanical Engineering 137 (4) BIO-14-1028. (10.1115/1.4029430)
- Coudrillier, B. et al., 2015. Glaucoma-related changes in the mechanical properties and collagen micro-architecture of the human sclera. PLoS ONE 10 (7) e0131396. (10.1371/journal.pone.0131396)
- Pijanka, J. K. et al., 2015. Depth-dependent changes in collagen organization in the hman peripapillary sclera. PLoS ONE 10 (2) e0118648. (10.1371/journal.pone.0118648)
- Quantock, A. J. et al. 2015. From nano to macro: Studying the hierarchical structure of the corneal extracellular matrix. Experimental Eye Research 133 , pp.81-99. (10.1016/j.exer.2014.07.018)
- Whitford, C. et al., 2015. Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density. Journal of the Mechanical Behavior of Biomedical Materials 42 , pp.76-87. (10.1016/j.jmbbm.2014.11.006)
2014
- Geraghty, B. et al., 2014. Age-related variation in the biomechanical and structural properties of the corneo-scleral tunic. In: Derby, B. and Akhtar, R. eds. Mechanical Properties of Aging Soft Tissues. Engineering Materials and Processes Springer. , pp.207-235. (10.1007/978-3-319-03970-1_9)
- Pijanka, J. K. et al. 2014. Changes in scleral collagen organization in murine chronic experimental glaucoma. Investigative Ophthalmology & Visual Science 55 (10), pp.6554-6564. (10.1167/iovs.14-15047)
- Whitford, C. et al., 2014. Modelo biomecanico de la cornea humana considerano la variacion regional de la anisotropia, la densidad y la cohesion interlaminar de las fibrillas de collageno. In: del Buey Sayas, M. A. and Martez, C. P. eds. Biomecanica y Arquitectura Corneal. Barcelona: Elsevier. , pp.343-357.
2013
- Boote, C. et al. 2013. Quantification of Collagen Ultrastructure after Penetrating Keratoplasty - Implications for Corneal Biomechanics. PLoS ONE 8 (7) e68166. (10.1371/journal.pone.0068166)
- Coudrillier, B. et al., 2013. Scleral anisotropy and its effects on the mechanical response of the optic nerve head. Biomechanics and Modeling in Mechanobiology 12 (5), pp.941-963. (10.1007/s10237-012-0455-y)
- Hayes, S. et al. 2013. The effect of Riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS ONE 8 (1) e52860. (10.1371/journal.pone.0052860)
- Morgan, S. R. et al. 2013. An X-Ray scattering study into the structural basis of corneal refractive function in an Avian Model. Biophysical Journal 104 (12), pp.2586-2594. (10.1016/j.bpj.2013.04.053)
- Pijanka, J. K. et al. 2013. A wide-angle X-ray fibre diffraction method for quantifying collagen orientation across large tissue areas: application to the human eyeball coat. Journal of Applied Crystallography 46 (5), pp.1481-1489. (10.1107/S0021889813022358)
2012
- Boote, C. et al. 2012. Quantitative assessment of ultrastructure and light scatter in mouse corneal debridement wounds. Investigative Ophthalmology and Visual Science 53 (6), pp.2786-2795. (10.1167/iovs.11-9305)
- Coudrillier, B. , Boote, C. and Nguyen, T. D. 2012. Effects of the scleral collagen structure on the biomechanical response of the optic nerve head. Presented at: ASME 2012 Summer Bioengineering Conference Fajardo, Puerto Rico 20-23 June 2012. Proceedings of the ASME Summer Bioengineering Conference--2012 : presented at ASME 2012 Summer Bioengineering Conference, June 20-23, 2012, Fajardo, Puerto Rico. New York, N.Y.: ASME. , pp.513-514. (10.1115/SBC2012-80540)
- Hayes, S. et al. 2012. Depth Profile Study of Abnormal Collagen Orientation in Keratoconus Corneas. Archives of Ophthalmology 130 (2), pp.251-252. (10.1001/archopthalmol.2011.1467)
- Pijanka, J. K. et al. 2012. Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human scleras. Investigative Ophthalmology & Visual Science 53 (9), pp.5258-5270. (10.1167/iovs.12-9705)
2011
- Boote, C. et al. 2011. The influence of lamellar orientation on corneal material behavior: biomechanical and dtructural changes in an avian corneal disorder. Investigative Ophthalmology & Visual Science 52 (3), pp.1243-1251. (10.1167/iovs.10-5962)
- Boote, C. et al. 2011. Quantification of collagen organization in the peripheral human cornea at micron-scale resolution. Biophysical Journal 101 (1), pp.33-42. (10.1016/j.bpj.2011.05.029)
- Coudrillier, B. , Boote, C. and Nguyen, T. D. 2011. Modeling the effect of the experimentally-derived collagen structure on the mechanical anisotropy of the human sclera. Presented at: ASME Summer Bioengineering Conference 2011 Farmington, PA, USA 22-25 June 2011. Proceedings of the ASME Summer Bioengineering Conference--2011 : presented at 2010 ASME Summer Bioengineering Conference, June 22-25, 2011, Farmington, Pennsylvania, USA. New York, N.Y.: ASME. , pp.419-420. (10.1115/SBC2011-53272)
- Hayes, S. et al. 2011. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma. PLoS ONE 6 (8) e22405. (10.1371/journal.pone.0022405)
- Hayes, S. et al. 2011. The effect of vitamin C deficiency and chronic ultraviolet-B exposure on corneal ultrastructure: a preliminary investigation. Molecular Vision 17 , pp.3107-3115.
- Kamma-Lorger, C. S. et al., 2011. FTIR has the potential to detect stem cells in the bovine corneal stroma. Journal of Physical Chemistry and Biophysics 1 (1) 10000103.
- Koudouna, E. et al. 2011. Preliminary electron microscopical studies of connective tissue in the human lamina cribrosa [Abstract]. International Journal of Experimental Pathology 92 (6), pp.A26. (10.1111/j.1365-2613.2011.00780.x)
2010
- Kamma-Lorger, C. S. et al. 2010. Collagen and mature elastic fibre organisation as a function of depth in the human cornea and limbus. Journal of Structural Biology 169 (3), pp.424-430. (10.1016/j.jsb.2009.11.004)
- Palka, B. P. et al. 2010. Structural Collagen Alterations in Macular Corneal Dystrophy Occur Mainly in the Posterior Stroma. Current Eye Research 35 (7), pp.580-586. (10.3109/02713681003760150)
- Sheppard, J. et al. 2010. Changes in corneal collagen architecture during mouse postnatal development. Investigative Ophthalmology & Visual Science 51 (6), pp.2936-2942. (10.1167/iovs.09-4612)
2009
- Boote, C. et al. 2009. Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. Journal of Structural Biology 166 (2), pp.195-204. (10.1016/j.jsb.2009.01.009)
- Hayes, S. et al. 2009. A structural investigation of corneal graft failure in suspected recurrent keratoconus. Eye 24 (4), pp.728-734. (10.1038/eye.2009.159)
- Kamma-Lorger, C. S. et al. 2009. Collagen ultrastructural changes during stromal wound healing in organ cultured bovine corneas. Experimental Eye Research 88 (5), pp.953-959. (10.1016/j.exer.2008.12.005)
- Kamma-Lorger, C. S. et al. 2009. Effects on collagen orientation in the cornea after trephine injury. Molecular Vision 15 , pp.378-385.
- Meek, K. M. A. and Boote, C. 2009. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Progress in Retinal and Eye Research 28 (5), pp.369-392. (10.1016/j.preteyeres.2009.06.005)
- Young, R. D. et al. 2009. Stromal Edema in Klf4 Conditional Null Mouse Cornea Is Associated with Altered Collagen Fibril Organization and Reduced Proteoglycans. Investigative Ophthalmology & Visual Science 50 (9), pp.4155-4161. (10.1167/iovs.09-3561)
2008
- Boote, C. et al. 2008. Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype - An X-ray diffraction study. Journal of Structural Biology 161 (1), pp.1-8. (10.1016/j.jsb.2007.08.015)
2007
- Hayes, S. et al. 2007. Comparative Study of Fibrillar Collagen Arrangement in the Corneas of Primates and Other Mammals. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 290 (12), pp.1542-1550. (10.1002/ar.20613)
- Hayes, S. et al. 2007. A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and X-ray scattering techniques. Experimental Eye Research 84 (3), pp.423-434. (10.1016/j.exer.2006.10.014)
- Quantock, A. J. et al. 2007. Small-angle fibre diffraction studies of corneal matrix structure: a depth profiled investigation of the human eye-bank cornea. Journal of Applied Crystallography 40 (S1), pp.S335-S340. (10.1107/S0021889807005523)
2006
- Boote, C. et al. 2006. Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. Investigative Ophthalmology and Visual Science 47 (3), pp.901-908. (10.1167/iovs.05-0893)
- Pinsky, P. M. et al., 2006. Modeling the human cornea - a stromal tissue constitutive model based on measured collagen architecture [Abstract]. Journal of Biomechanics 39 (S1), pp.S386. (10.1016/S0021-9290(06)84558-6)
2005
- Boote, C. et al. 2005. Lamellar orientation in human cornea in relation to mechanical properties. Journal of Structural Biology 149 (1), pp.1-6. (10.1016/j.jsb.2004.08.009)
2004
- Boote, C. , Hayes, S. and Meek, K. M. A. 2004. Spatial mapping of collagen fibril organisation in primate cornea - an X-ray diffraction investigation. Journal of Structural Biology 146 (3), pp.359-367. (10.1016/j.jsb.2003.12.009)
- Meek, K. M. A. and Boote, C. 2004. The organization of collagen in the corneal stroma. Experimental Eye Research 78 (3), pp.503-512. (10.1016/j.exer.2003.07.003)
- Sturrock, E. J. et al., 2004. The effects of the biaxial stretching of leather on fibre orientation and tensile modulus. Journal of Materials Science 39 (7), pp.2481-2486. (10.1023/B:JMSC.0000020013.90114.92)
2003
- Boote, C. et al. 2003. Collagen fibrils appear more closely packed in the prepupillary cornea: Optical and biomechanical implications. Investigative Ophthalmology and Visual Science 44 (7), pp.2941-2948. (10.1167/iovs.03-0131)
- Boote, C. , Hayes, S. and Meek, K. M. A. 2003. Collagen organisation in adult and foetal marmoset cornea. Investigative Ophthalmology and Visual Science 44 (E-Abst)
- Boote, C. et al. 2003. Collagen fibrils appear more closely packed in the prepupilliary cornea: optical and biomechanical implications. Investigative Ophthalmology & Visual Science 44 (7), pp.2941-2948. (10.1167/iovs.03-0131)
- Boote, C. et al. 2003. A wide-angle x-ray diffraction study of the developing embryonic chicken cornea. Fibre Diffraction Review 11 (1), pp.123-129.
- Boote, C. et al. 2003. Collagen orientation during development of the embryonic avian cornea. Fibre Diffraction Review 11 (1), pp.130.
- Hayes, S. et al. 2003. Ultrastructural Changes in Keratoconic-like Mice Corneas [Abstract]. Fibre Diffraction Review 11 , pp.135.
- Quantock, A. J. et al. 2003. Collagen organization in the secondary chick cornea during development. Investigative Ophthalmology and Visual Science 44 (1), pp.130-136.
- Quantock, A. J. et al. 2003. Collagen Organization in the Secondary Chick Cornea during Development. Investigative Ophthalmology & Visual Science 44 (1), pp.130-136. (10.1167/iovs.02-0544)
- Quantock, A. J. et al. 2003. Annulus of collagen fibrils in mouse cornea and structural matrix alterations in a murine-specific keratopathy. Investigative Ophthalmology & Visual Science 44 (5), pp.1906-1911. (10.1167/iovs.02-0884)
2002
- Boote, C. et al. 2002. Collagen orientation during development of the embryonic avian cornea [Abstract]. Investigative Ophthalmology and Visual Science 43 E-Abstract 3214.
- Boote, C. et al. 2002. Psuedo-affine behaviour of collagen fibres during the uniaxial deformation of leather. Journal of Materials Science 37 (17), pp.3651-3656. (10.1023/A:1016505107534)
2001
- Sturrock, E. J. et al., 2001. The effect on bending stiffness of drying leather under strain. Jornal of Leather Tech and Chem 86 , pp.6-10.
1998
- Forsyth, V. T. et al., 1998. Instrument D19 at the Institut Laue-Langevin: A high resolution diffractometer for single crystal and fibre diffraction studies. Fibre Diffraction Review 7 , pp.17-24.
- Shotton, M. W. et al., 1998. New Developments in Instrumentation for X-ray and Neutron Fibre Diffraction Experiments. Journal of Applied Crystallography 31 (5), pp.758-766. (10.1107/S0021889898005287)
Articles
- Abass, A. et al., 2017. SAXS4COLL: an integrated software tool for analysing fibrous collagen-based tissues. Journal of Applied Crystallography 50 , pp.1235-1240. (10.1107/S1600576717007877)
- Bell, J. et al. 2025. Hierarchical biomechanical characterisation of riboflavin-UVA crosslinking and decorin treatment in the porcine cornea. Frontiers in Bioengineering and Biotechnology 13 1603679. (10.3389/fbioe.2025.1603679)
- Boote, C. , Ma, Q. and Goh, K. L. 2023. Age-dependent mechanical properties of tail tendons in wild-type and mimecan gene-knockout mice - A preliminary study. Journal of the Mechanical Behavior of Biomedical Materials 139 105672. (10.1016/j.jmbbm.2023.105672)
- Boote, C. et al. 2003. Collagen fibrils appear more closely packed in the prepupillary cornea: Optical and biomechanical implications. Investigative Ophthalmology and Visual Science 44 (7), pp.2941-2948. (10.1167/iovs.03-0131)
- Boote, C. et al. 2013. Quantification of Collagen Ultrastructure after Penetrating Keratoplasty - Implications for Corneal Biomechanics. PLoS ONE 8 (7) e68166. (10.1371/journal.pone.0068166)
- Boote, C. et al. 2012. Quantitative assessment of ultrastructure and light scatter in mouse corneal debridement wounds. Investigative Ophthalmology and Visual Science 53 (6), pp.2786-2795. (10.1167/iovs.11-9305)
- Boote, C. et al. 2011. The influence of lamellar orientation on corneal material behavior: biomechanical and dtructural changes in an avian corneal disorder. Investigative Ophthalmology & Visual Science 52 (3), pp.1243-1251. (10.1167/iovs.10-5962)
- Boote, C. et al. 2006. Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. Investigative Ophthalmology and Visual Science 47 (3), pp.901-908. (10.1167/iovs.05-0893)
- Boote, C. et al. 2005. Lamellar orientation in human cornea in relation to mechanical properties. Journal of Structural Biology 149 (1), pp.1-6. (10.1016/j.jsb.2004.08.009)
- Boote, C. et al. 2008. Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype - An X-ray diffraction study. Journal of Structural Biology 161 (1), pp.1-8. (10.1016/j.jsb.2007.08.015)
- Boote, C. , Hayes, S. and Meek, K. M. A. 2003. Collagen organisation in adult and foetal marmoset cornea. Investigative Ophthalmology and Visual Science 44 (E-Abst)
- Boote, C. , Hayes, S. and Meek, K. M. A. 2004. Spatial mapping of collagen fibril organisation in primate cornea - an X-ray diffraction investigation. Journal of Structural Biology 146 (3), pp.359-367. (10.1016/j.jsb.2003.12.009)
- Boote, C. et al. 2003. Collagen fibrils appear more closely packed in the prepupilliary cornea: optical and biomechanical implications. Investigative Ophthalmology & Visual Science 44 (7), pp.2941-2948. (10.1167/iovs.03-0131)
- Boote, C. et al. 2009. Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. Journal of Structural Biology 166 (2), pp.195-204. (10.1016/j.jsb.2009.01.009)
- Boote, C. et al. 2011. Quantification of collagen organization in the peripheral human cornea at micron-scale resolution. Biophysical Journal 101 (1), pp.33-42. (10.1016/j.bpj.2011.05.029)
- Boote, C. et al. 2016. Changes in posterior scleral collagen microstructure in canine eyes with an ADAMTS10 mutation. Molecular Vision 22 , pp.503-517.
- Boote, C. et al. 2003. A wide-angle x-ray diffraction study of the developing embryonic chicken cornea. Fibre Diffraction Review 11 (1), pp.123-129.
- Boote, C. et al. 2003. Collagen orientation during development of the embryonic avian cornea. Fibre Diffraction Review 11 (1), pp.130.
- Boote, C. et al. 2002. Collagen orientation during development of the embryonic avian cornea [Abstract]. Investigative Ophthalmology and Visual Science 43 E-Abstract 3214.
- Boote, C. et al. 2020. Scleral structure and biomechanics. Progress in Retinal and Eye Research 74 100773. (10.1016/j.preteyeres.2019.100773)
- Boote, C. et al. 2002. Psuedo-affine behaviour of collagen fibres during the uniaxial deformation of leather. Journal of Materials Science 37 (17), pp.3651-3656. (10.1023/A:1016505107534)
- Cheong, H. et al., 2020. DeshadowGAN: a deep learning approach to remove shadows from optical coherence tomography images. Translational Vision Science & Technology 9 (2) 23. (10.1167/tvst.9.2.23)
- Cheong, H. et al., 2021. OCT-GAN: single step shadow and noise removal from optical coherence tomography images of the human optic nerve head. Biomedical Optics Express 12 (3), pp.1482-1498. (10.1364/BOE.412156)
- Chuangsuwanich, T. et al., 2020. Morphometric, hemodynamic, and biomechanical factors influencing blood flow and oxygen concentration in the human lamina cribrosa. Investigative Ophthalmology & Visual Science 61 (4) 3. (10.1167/iovs.61.4.3)
- Coudrillier, B. et al., 2013. Scleral anisotropy and its effects on the mechanical response of the optic nerve head. Biomechanics and Modeling in Mechanobiology 12 (5), pp.941-963. (10.1007/s10237-012-0455-y)
- Coudrillier, B. et al., 2015. Effects of age and diabetes on scleral stiffness. Journal of Biomechanical Engineering 137 (7), pp.1-10. BIO-14-1565. (10.1115/1.4029986)
- Coudrillier, B. et al., 2015. Collagen structure and mechanical properties of the human sclera: Analysis for the effects of age. Journal of Biomechanical Engineering 137 (4) BIO-14-1028. (10.1115/1.4029430)
- Coudrillier, B. et al., 2015. Glaucoma-related changes in the mechanical properties and collagen micro-architecture of the human sclera. PLoS ONE 10 (7) e0131396. (10.1371/journal.pone.0131396)
- Devalla, S. K. et al., 2020. Glaucoma management in the era of artificial intelligence. British Journal of Ophthalmology 104 (3), pp.301-311. (10.1136/bjophthalmol-2019-315016)
- Forsyth, V. T. et al., 1998. Instrument D19 at the Institut Laue-Langevin: A high resolution diffractometer for single crystal and fibre diffraction studies. Fibre Diffraction Review 7 , pp.17-24.
- Fung, A. A. et al., 2025. Label-free multimodal optical biopsy reveals biomolecular and morphological features of diabetic kidney tissue in 2D and 3D. Nature Communications 16 (1) 4509. (10.1038/s41467-025-59163-w)
- Hayes, S. et al. 2003. Ultrastructural Changes in Keratoconic-like Mice Corneas [Abstract]. Fibre Diffraction Review 11 , pp.135.
- Hayes, S. et al. 2011. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma. PLoS ONE 6 (8) e22405. (10.1371/journal.pone.0022405)
- Hayes, S. et al. 2007. Comparative Study of Fibrillar Collagen Arrangement in the Corneas of Primates and Other Mammals. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 290 (12), pp.1542-1550. (10.1002/ar.20613)
- Hayes, S. et al. 2007. A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and X-ray scattering techniques. Experimental Eye Research 84 (3), pp.423-434. (10.1016/j.exer.2006.10.014)
- Hayes, S. et al. 2011. The effect of vitamin C deficiency and chronic ultraviolet-B exposure on corneal ultrastructure: a preliminary investigation. Molecular Vision 17 , pp.3107-3115.
- Hayes, S. et al. 2013. The effect of Riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS ONE 8 (1) e52860. (10.1371/journal.pone.0052860)
- Hayes, S. et al. 2012. Depth Profile Study of Abnormal Collagen Orientation in Keratoconus Corneas. Archives of Ophthalmology 130 (2), pp.251-252. (10.1001/archopthalmol.2011.1467)
- Hayes, S. et al. 2017. The structural response of the cornea to changes in stromal hydration. Interface 14 (131)(10.1098/rsif.2017.0062)
- Hayes, S. et al. 2009. A structural investigation of corneal graft failure in suspected recurrent keratoconus. Eye 24 (4), pp.728-734. (10.1038/eye.2009.159)
- Jin, Y. et al., 2020. Effect of changing heart rate on the ocular pulse and dynamic biomechanical behavior of the optic nerve head. Investigative Ophthalmology & Visual Science 61 (4) 27. (10.1167/iovs.61.4.27)
- Kamma-Lorger, C. S. et al. 2010. Collagen and mature elastic fibre organisation as a function of depth in the human cornea and limbus. Journal of Structural Biology 169 (3), pp.424-430. (10.1016/j.jsb.2009.11.004)
- Kamma-Lorger, C. S. et al. 2009. Collagen ultrastructural changes during stromal wound healing in organ cultured bovine corneas. Experimental Eye Research 88 (5), pp.953-959. (10.1016/j.exer.2008.12.005)
- Kamma-Lorger, C. S. et al. 2009. Effects on collagen orientation in the cornea after trephine injury. Molecular Vision 15 , pp.378-385.
- Kamma-Lorger, C. S. et al., 2011. FTIR has the potential to detect stem cells in the bovine corneal stroma. Journal of Physical Chemistry and Biophysics 1 (1) 10000103.
- Koudouna, E. et al. 2011. Preliminary electron microscopical studies of connective tissue in the human lamina cribrosa [Abstract]. International Journal of Experimental Pathology 92 (6), pp.A26. (10.1111/j.1365-2613.2011.00780.x)
- Ma, Q. et al. 2025. Ultrastructural aspects of corneal functional recovery in rats following intrastromal keratocyte injection. Investigative Ophthalmology & Visual Science 66 (2) 45. (10.1167/iovs.66.2.45)
- Markov, P. et al. 2018. Bulk changes in posterior scleral collagen microstructure in human high myopia. Molecular Vision 24 , pp.818-833.
- Markov, P. et al. 2021. 3D immuno-confocal image reconstruction of fibroblast cytoskeleton and nucleus architecture. Journal of Biophotonics 14 (1) e202000202. (10.1002/jbio.202000202)
- Markov, P. et al. 2022. Delayed reorganisation of F-actin cytoskeleton and reversible chromatin condensation in scleral fibroblasts under simulated pathological strain. Biochemistry and Biophysics Reports 32 101338.
- Meek, K. M. A. and Boote, C. 2004. The organization of collagen in the corneal stroma. Experimental Eye Research 78 (3), pp.503-512. (10.1016/j.exer.2003.07.003)
- Meek, K. M. A. and Boote, C. 2009. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Progress in Retinal and Eye Research 28 (5), pp.369-392. (10.1016/j.preteyeres.2009.06.005)
- Morgan, S. et al. 2018. Microwave treatment of the cornea leads to localised disruption of the extracellular matrix. Scientific Reports 8 13742. (10.1038/s41598-018-32110-0)
- Morgan, S. R. et al. 2013. An X-Ray scattering study into the structural basis of corneal refractive function in an Avian Model. Biophysical Journal 104 (12), pp.2586-2594. (10.1016/j.bpj.2013.04.053)
- Palka, B. P. et al. 2010. Structural Collagen Alterations in Macular Corneal Dystrophy Occur Mainly in the Posterior Stroma. Current Eye Research 35 (7), pp.580-586. (10.3109/02713681003760150)
- Pham, T. H. et al., 2021. Deep learning algorithms to isolate and quantify the structures of the anterior segment in optical coherence tomography images. British Journal of Ophthalmology 105 (9), pp.1231-1237. (10.1136/bjophthalmol-2019-315723)
- Pijanka, J. K. et al. 2013. A wide-angle X-ray fibre diffraction method for quantifying collagen orientation across large tissue areas: application to the human eyeball coat. Journal of Applied Crystallography 46 (5), pp.1481-1489. (10.1107/S0021889813022358)
- Pijanka, J. K. et al. 2012. Quantitative mapping of collagen fiber orientation in non-glaucoma and glaucoma posterior human scleras. Investigative Ophthalmology & Visual Science 53 (9), pp.5258-5270. (10.1167/iovs.12-9705)
- Pijanka, J. K. et al. 2014. Changes in scleral collagen organization in murine chronic experimental glaucoma. Investigative Ophthalmology & Visual Science 55 (10), pp.6554-6564. (10.1167/iovs.14-15047)
- Pijanka, J. K. et al., 2019. Quantification of collagen fiber structure using second harmonic generation imaging and two‐dimensional discrete Fourier transform analysis: application to the human optic nerve head. Journal of Biophotonics 12 (5) e201800376. (10.1002/jbio.201800376)
- Pijanka, J. K. et al., 2015. Depth-dependent changes in collagen organization in the hman peripapillary sclera. PLoS ONE 10 (2) e0118648. (10.1371/journal.pone.0118648)
- Pinsky, P. M. et al., 2006. Modeling the human cornea - a stromal tissue constitutive model based on measured collagen architecture [Abstract]. Journal of Biomechanics 39 (S1), pp.S386. (10.1016/S0021-9290(06)84558-6)
- Quantock, A. J. et al. 2003. Collagen organization in the secondary chick cornea during development. Investigative Ophthalmology and Visual Science 44 (1), pp.130-136.
- Quantock, A. J. et al. 2003. Collagen Organization in the Secondary Chick Cornea during Development. Investigative Ophthalmology & Visual Science 44 (1), pp.130-136. (10.1167/iovs.02-0544)
- Quantock, A. J. et al. 2007. Small-angle fibre diffraction studies of corneal matrix structure: a depth profiled investigation of the human eye-bank cornea. Journal of Applied Crystallography 40 (S1), pp.S335-S340. (10.1107/S0021889807005523)
- Quantock, A. J. et al. 2003. Annulus of collagen fibrils in mouse cornea and structural matrix alterations in a murine-specific keratopathy. Investigative Ophthalmology & Visual Science 44 (5), pp.1906-1911. (10.1167/iovs.02-0884)
- Quantock, A. J. et al. 2015. From nano to macro: Studying the hierarchical structure of the corneal extracellular matrix. Experimental Eye Research 133 , pp.81-99. (10.1016/j.exer.2014.07.018)
- Riau, A. K. et al., 2024. Impact of keratocyte differentiation on corneal opacity resolution and visual function recovery in male rats. Nature Communications 15 (1) 4959. (10.1038/s41467-024-49008-3)
- Sheppard, J. et al. 2010. Changes in corneal collagen architecture during mouse postnatal development. Investigative Ophthalmology & Visual Science 51 (6), pp.2936-2942. (10.1167/iovs.09-4612)
- Shotton, M. W. et al., 1998. New Developments in Instrumentation for X-ray and Neutron Fibre Diffraction Experiments. Journal of Applied Crystallography 31 (5), pp.758-766. (10.1107/S0021889898005287)
- Sturrock, E. J. et al., 2001. The effect on bending stiffness of drying leather under strain. Jornal of Leather Tech and Chem 86 , pp.6-10.
- Sturrock, E. J. et al., 2004. The effects of the biaxial stretching of leather on fibre orientation and tensile modulus. Journal of Materials Science 39 (7), pp.2481-2486. (10.1023/B:JMSC.0000020013.90114.92)
- Tan, R. K. Y. et al., 2020. Performance of a temperature-controlled shape-memory pupil expander for cataract surgery.. Journal of Cataract and Refractive Surgery 46 (1), pp.116-124. (10.1016/j.jcrs.2019.08.042)
- Tan, R. K. et al., 2019. Permeability of the porcine iris stroma. Experimental Eye Research 181 , pp.190-196. (10.1016/j.exer.2019.02.005)
- Towler, J. et al., 2023. Typical localised element-specific finite element anterior eye model. Heliyon 9 (4) E13944. (10.1016/j.heliyon.2023.e13944)
- Tun, T. A. et al., 2021. Determinants of lamina cribrosa depth in healthy Asian eyes: the Singapore Epidemiology Eye Study. British Journal of Ophthalmology 105 (3), pp.367-373. (10.1136/bjophthalmol-2020-315840)
- Wang, X. et al. 2025. The correlation between myopia severity and stress-strain index (SSI) using the Corneal Visualization Scheimpflug Technology (Corvis ST). Scientific Reports 15 (1) 40103. (10.1038/s41598-025-23834-x)
- Whitford, C. et al., 2015. Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density. Journal of the Mechanical Behavior of Biomedical Materials 42 , pp.76-87. (10.1016/j.jmbbm.2014.11.006)
- Young, R. D. et al. 2009. Stromal Edema in Klf4 Conditional Null Mouse Cornea Is Associated with Altered Collagen Fibril Organization and Reduced Proteoglycans. Investigative Ophthalmology & Visual Science 50 (9), pp.4155-4161. (10.1167/iovs.09-3561)
- Zhang, L. et al., 2020. In vivo measurements of prelamina and lamina cribrosa biomechanical properties in humans. Investigative Ophthalmology & Visual Science 61 (3) 27. (10.1167/iovs.61.3.27)
- Zhou, D. et al., 2021. Fibril density reduction in keratoconic corneas. Journal of the Royal Society Interface 18 (175) 20200900. (10.1098/rsif.2020.0900)
- Zhou, D. et al., 2019. Analysis of X-ray scattering microstructure data for implementation in numerical simulations of ocular biomechanical behaviour. PLoS ONE 14 (4), pp.-. e0214770. (10.1371/journal.pone.0214770)
Book sections
- Geraghty, B. et al., 2014. Age-related variation in the biomechanical and structural properties of the corneo-scleral tunic. In: Derby, B. and Akhtar, R. eds. Mechanical Properties of Aging Soft Tissues. Engineering Materials and Processes Springer. , pp.207-235. (10.1007/978-3-319-03970-1_9)
- Whitford, C. et al., 2014. Modelo biomecanico de la cornea humana considerano la variacion regional de la anisotropia, la densidad y la cohesion interlaminar de las fibrillas de collageno. In: del Buey Sayas, M. A. and Martez, C. P. eds. Biomecanica y Arquitectura Corneal. Barcelona: Elsevier. , pp.343-357.
Conferences
- Chuangsuwanich, T. et al., 2019. Morphometric, hemodynamic and biomechanical factors influencing blood flow and oxygen concentration in the human lamina cribrosa. Presented at: 2019 ARVO Annual Meeting Vancouver, B.C., Canada 28 April - 2 May 2019. ARVO Annual Meeting Abstract Issue 2019. Vol. 60.Investigative Ophthalmology and Visial Science. , pp.1785.
- Coudrillier, B. , Boote, C. and Nguyen, T. D. 2012. Effects of the scleral collagen structure on the biomechanical response of the optic nerve head. Presented at: ASME 2012 Summer Bioengineering Conference Fajardo, Puerto Rico 20-23 June 2012. Proceedings of the ASME Summer Bioengineering Conference--2012 : presented at ASME 2012 Summer Bioengineering Conference, June 20-23, 2012, Fajardo, Puerto Rico. New York, N.Y.: ASME. , pp.513-514. (10.1115/SBC2012-80540)
- Coudrillier, B. , Boote, C. and Nguyen, T. D. 2011. Modeling the effect of the experimentally-derived collagen structure on the mechanical anisotropy of the human sclera. Presented at: ASME Summer Bioengineering Conference 2011 Farmington, PA, USA 22-25 June 2011. Proceedings of the ASME Summer Bioengineering Conference--2011 : presented at 2010 ASME Summer Bioengineering Conference, June 22-25, 2011, Farmington, Pennsylvania, USA. New York, N.Y.: ASME. , pp.419-420. (10.1115/SBC2011-53272)
- Markov, P. et al. 2019. Building a cell-specific cytoskeletal finite element model of scleral fibroblasts. Presented at: 25th Congress of the European Society of Biomechanics (ESB 2019) Vienna, Austria 7-10 July 2019. , pp.-.
- Markov, P. et al. 2019. Effects of mechanical load on cytoskeletal protein arrangement in scleral fibroblasts. Presented at: The Association for Research in Vision and Ophthalmology Annual Meeting Vancouver, BC, Canada 28 April -- 2 May 2019.
Monographs
- Boote, C. et al. 2023. Towards corneal structure mapping in the living eye using a combined X-ray scattering, biomedical imaging and machine learning approach. Project Report.[Online].SPring-8/SACLA Research Report: Japan Synchrotron Radiation Research Institute. Available at: https://doi.org/10.18957/rr.11.1.37.
Research
The role of scleral and optic nerve head micro-architecture in glaucoma.
Elevated IOP is a major glaucoma risk factor. However the exact role that IOP plays in the RGC cell loss that characterises glaucoma is unknown. The biomechanical model of glaucoma proposes that IOP-induced deformation in and around the lamina cribrosa of the optic nerve head results in axonal dysfunction and apoptosis. The physical effects of IOP on nerve head axons are primarily mediated by the collagen-rich tissues of the lamina cribrosa and surrounding sclera. Our research aims are to: (i) characterise scleral and laminar tissue micro-architecture as a function of age and glaucoma, and (ii) use this information to determine the biomechanical factors that underpin glaucoma susceptibility and pathogenesis. We have developed novel synchrotron x-ray scattering and laser scanning multiphoton imaging (Fig. 1) tools, to quantify scleral and laminar collagen fibre arrangement, and are using the information to build finite-element models to describe the mechanical behaviour of these tissues under normal/elevated IOP, and thereby their projected influence on nerve head axons.
Corneal dysfunction and the development of therapeutic strategies.
The cornea is a uniquely transparent, precisely curved tissue whose functionality depends heavily on the hierarchical structure and complex micro-anatomy of its extracellular matrix. Despite their importance for vision, the fundamental basis of corneal transparency and shape, and their compromise due to injury and disease, is not fully understood. Our ultimate objective is to relate loss of transparency and changes in corneal shape/astigmatism to tissue micro- and ultra-structure. We are using x-ray scattering methods (Fig. 2) and a range of complementary microscopic imaging modalities to determine in three-dimensions the relationships between the constituent collagen, proteoglycans and cells within normal and pathological mature/developing corneas, post-surgical corneas and emerging biosynthetic corneal replacements. Our aims are to: (i) model corneal transparency at the cellular and fibrillar level, and use this to explain the loss of transparency in a range of pathological conditions, including corneal wounds; (ii) characterize the full three-dimensional structure of the cornea, explain the structural basis of astigmatism, and demonstrate how ectatic and astigmatic pathologies and their surgical treatments can be modelled and their effect on the cornea$acirc; s macroscopic behaviour predicted by finite element analysis; (iii) develop methodologies for stabilizing corneal curvature and restoring transparency, including cell-based and photochemical cross-linking methods.Fig. 2: Collagen fibril orientations in the human cornea, as determined using wide-angle x-ray scattering< (Source:http://www.projectsmagazine.eu.com/randd_projects/understanding_the_complexities_of_the_cornea)
Research Funding (Recent)
Zhu H (PI), Blain E, Boote C, £55,251, PhD Studentship: "Gaining cellular control of ocular biomechanics: a potential route to the treatment of eye disease.", EPSRC, 2019-2020.
Boote C (PI), £79,828, Project Grant: "The biomechanics of the human lamina cribrosa and posteriorsclera: Effects of age and glaucoma.", NIH, 2016-2018.
Meek KM (PI), Quantock AJ, Knupp C, Boote C, £1.75M, Programme Grant: "The ultrastructural basis of corneal dysfunction and the development and optimization of novel therapeutic strategies", MRC, 2012 - 2017.
Boote C (PI), Meek KM. £122,672, Project Grant:"The role of the sclera in human glaucoma.", Fight For Sight , 2012-2015.
Research Collaborators
- Dr Harry Quigley, Wilmer Ophthalmological Institute, Johns Hopkins University, USA.
- Prof. Thao Nguyen, Department of Mechanical Engineering, Johns Hopkins University, USA.
- Prof. Ahmed Elsheikh, School of Engineering, University of Liverpool, UK.
- Dr Michael Girard, Singapore Eye Research Institute, Singapore.
- Prof Jodbir Mehta, Singapore National Eye Centre, Singapore.
- Dr Gary Yam, University of Pittsburgh School of Medicine, USA.
- Dr Mor Dickman, MERLN Institute, Maastricht University, Netherlands.
Biography
Educational and Professional Qualifications:
- 1995-1999 PhD, Structural studies of DNA using diffraction and spectroscopic methods, Keele University
- 1992-1995 BSc (Physics/Biochemistry Dual Hons, Class: I), Keele University
Honours and awards
2022 Fellow, Royal Society of Biology
2018 Visiting Researcher Appointment, Newcastle Research & Innovation Institute, Singapore
2018 Visiting Scholar Appointment, National University of Singapore
2018 Research Leave Fellowship, Cardiff University
2013 Associate Fellow, Higher Education Academy
2005 Research Merit Prize, 5th World Corneal Congress, Washington DC, USA
2004 Travel Award, The Royal Society
Professional memberships
- 2022-Present Fellow, Royal Society of Biology
- 2013-Present Academic Editor, PLoS One Journal
- 2012-Present STEMNET ambassador
- 2010-Present Visiting lecturer, HERCULES international training school, Universite Grenoble-Alpes, France
Academic positions
- 2014-2020: Senior Lecturer, Cardiff University
- 2010-2014: Lecturer, Cardiff University
- 2001-2011 Senior research Associate, Cardiff University
- 1999-2001 Research Associate, Cardiff University
Committees and reviewing
- 2018-Present Grant Reviewer, Research Grants Council of Hong Kong
- 2012-Present Deputy Director of Postgraduate Research, School of Optometry & Vision Sciences, Cardiff University
Supervisions
Current supervision
Qian Ma