Publication
2023
- Rastogi, N. et al. 2023. Nuclear factor I-C overexpression promotes monocytic development and cell survival in acute myeloid leukemia. Leukemia 37 , pp.276-287. (10.1038/s41375-022-01801-z)
- Wagstaff, M. et al., 2023. Crosstalk between β-catenin and WT1 signalling activity in acute myeloid leukemia [Letters to the Editor]. Haematologica 108 (1)(10.3324/haematol.2021.280294)
2022
- Menezes, A. C. et al. 2022. RUNX3 overexpression inhibits normal human erythroid development. Scientific Reports 12 1243. (10.1038/s41598-022-05371-z)
- Menezes, A. C. et al. 2022. Increased expression of RUNX3 inhibits normal human myeloid development. Leukemia 36 , pp.1769-1780. (10.1038/s41375-022-01577-2)
- Morgan, H. J. et al. 2022. CD200 ectodomain shedding into the tumor microenvironment leads to NK cell dysfunction and apoptosis. Journal of Clinical Investigation 132 (21) e150750. (10.1172/JCI150750)
- Nicholson, R. et al. 2022. Protein kinase C epsilon overexpression is associated with poor patient outcomes in AML and promotes daunorubicin resistance through p-glycoprotein-mediated drug efflux. Frontiers in Oncology 12 840046. (10.3389/fonc.2022.840046)
2021
- Rastogi, N. et al. 2021. Use of an anti-CD200 blocking antibody improves immune responses to AML in vitro and in vivo. British Journal of Haematology 193 (1), pp.155-159. (10.1111/bjh.17125)
- Robinson, A. J. , Darley, R. L. and Tonks, A. 2021. Reactive oxygen species and metabolic re-wiring in acute leukemias. In: Piccaluga, P. P. ed. Acute Leukemias. IntechOpen. , pp.35-56. (10.5772/intechopen.94829)
- Robinson, A. J. , Darley, R. L. and Tonks, A. 2021. Reactive oxygen species in leukemias: maintaining cancer cell proliferation via redox signaling and changing metabolic homeostasis. Oncotarget 12 (10), pp.952-954. (10.18632/oncotarget.27913)
2020
- Alanazi, B. et al. 2020. Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia 34 (2), pp.427-440. (10.1038/s41375-019-0596-4)
- Robinson, A. J. et al. 2020. Reactive oxygen species drive proliferation in acute myeloid leukemia via the glycolytic regulator PFKFB3. Cancer Research 80 (5), pp.937-949. (10.1158/0008-5472.CAN-19-1920)
2019
- Morgan, R. G. et al., 2019. LEF-1 drives aberrant B-catenin nuclear localization in myeloid leukemia cells. Haematologica 104 , pp.1365-1377. 202846. (10.3324/haematol.2018.202846)
- Wadley, A. J. et al., 2019. Using flow cytometry to detect and measure intracellular thiol redox status in viable T cells from heterogeneous populations. In: Hancock, J. T. and Conway, M. E. eds. Redox-Mediated Signal Transduction: Methods and Protocols. Vol. 1990, Methods in Molecular Biology New York, NY, USA: Humana Press. , pp.53-70. (10.1007/978-1-4939-9463-2_5)
2015
- Agathanggelou, A. et al., 2015. Targeting the ataxia telangiectasia mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica 100 (8), pp.1076-1085. (10.3324/haematol.2014.115170)
- Coles, S. J. et al. 2015. The immunosuppressive ligands PD-L1 and CD200 are linked in AML T-cell immunosuppression: identification of a new immunotherapeutic synapse. Leukemia 29 , pp.1952-1954. (10.1038/leu.2015.62)
- Munje, C. et al. 2015. Cord blood-derived quiescent CD34+ cells are more transcriptionally matched to AML blasts than cytokine-induced normal human hematopoietic CD34+ cells. Gene Expression: International Journal of Molecular and Cellular Science 16 (4), pp.169-175. (10.3727/105221615X14399878166159)
2014
- Morgan, R. G. et al., 2014. Factors affecting the nuclear localization of β-Catenin in normal and malignant tissue. Journal of Cellular Biochemistry 115 (8), pp.1351-1361. (10.1002/jcb.24803)
- Zabkiewicz, J. et al. 2014. The PDK1 master kinase is over-expressed in acute myeloid leukemia and promotes PKC-mediated survival of leukemic blasts. Haematologica 99 (5), pp.858-864. (10.3324/haematol.2013.096487)
2013
- Hole, P. S. et al. 2013. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood 122 (19), pp.3322-3330. (10.1182/blood-2013-04-491944)
- Morgan, R. G. et al. 2013. γ-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin. Leukemia 27 (2), pp.336-343. (10.1038/leu.2012.221)
2012
- Coles, S. et al. 2012. Expression of CD200 on AML blasts directly suppresses memory T-cell function [Letter]. Leukemia 26 (9), pp.2148-2151. (10.1038/leu.2012.77)
- Coles, S. et al. 2012. Increased CD200 expression in acute myeloid leukemia is linked with an increased frequency of FoxP3+ regulatory T cells [Letter]. Leukemia 26 (9), pp.2146-2148. (10.1038/leu.2012.75)
- Daud, S. S. et al. 2012. Identification of the Wnt signalling protein, TCF7L2 as a significantly overexpressed transcription factor in AML [Abstract]. Blood 120 (21) 1281.
- Liddiard, K. et al. 2012. RUNX1-ETO deregulates the proliferation and growth factor responsiveness of human hematopoietic progenitor cells downstream of the myeloid transcription factor, MYCT1 [Letter]. Leukemia 26 (1), pp.177-179. (10.1038/leu.2011.188)
2011
- Coles, S. et al. 2011. CD200 inhibits memory Th1 cell function in acute myeloid leukaemia (AML)[Abstract]. Immunology 135 (S1), pp.178. (10.1111/j.1365-2567.2011.03534.x)
- Coles, S. et al. 2011. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia 25 (5), pp.792-799. (10.1038/leu.2011.1)
- Hole, P. S. , Darley, R. L. and Tonks, A. 2011. Do reactive oxygen species play a role in myeloid leukemias?. Blood 117 (22), pp.5816-5826. (10.1182/blood-2011-01-326025)
2010
- Coles, S. et al. 2010. Over-expression of CD200 un acute myeloid leukemia mediates the expansion of regulatory T-lymphocytes and directly inhibits natural killer cell tumor immunity [Abstract]. Blood 116 (21), pp.218-218.
- Hole, P. S. et al. 2010. Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. Blood 115 (6), pp.1238-1246. (10.1182/blood-2009-06-222869)
- Liddiard, K. et al. 2010. OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene 29 (13), pp.2005-2012. (10.1038/onc.2009.462)
- Morgan, R. G. et al. 2010. Distinct regulation of beta- and gamma-Catenin throughout hematopoietic development contrasts with their cooperative roles in acute myeloid leukemia [Abstract]. Blood 116 (21) 1573.
- Zabkiewicz, J. et al. 2010. PDK1 overexpression in acute myeloid leukemia; Clinical significance and potential as a therapeutic target [Abstract]. Blood 116 (21), pp.892-893.
2009
- Dewitt, S. , Darley, R. L. and Hallett, M. B. 2009. Translocation or just location? Pseudopodia affect fluorescent signals. Journal of Cell Biology 184 (2), pp.197-203. (10.1083/jcb.200806047)
- Yang, J. et al. 2009. Low connexin channel-dependent intercellular communication in human adult hematopoietic progenitor/stem cells: Probing mechanisms of autologous stem cell therapy. Cell Communication and Adhesion 16 (5-6), pp.138-145. (10.3109/15419061003653763)
2007
- Pearn, L. et al. 2007. The role of PKC and PDK1 in monocyte lineage specification by Ras. Blood 109 (10), pp.4461-9. (10.1182/blood-2006-09-047217)
- Tonks, A. et al. 2007. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21 (3), pp.566-568. (10.1038/sj.leu.2404559)
- Tonks, A. et al. 2007. CD200 as a prognostic factor in acute myeloid leukaemia [Letter]. Leukemia 21 (3), pp.566-568. (10.1038/sj.leu.2404559)
- Tonks, A. et al. 2007. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 21 (12), pp.2495-2505. (10.1038/sj.leu.2404961)
- Walsby, E. J. et al. 2007. FUS expression alters the differentiation response to all-trans retinoic acid in NB4 and NB4R2 cells. British Journal of Haematology 139 (1), pp.94-97. (10.1111/j.1365-2141.2007.06756.x)
2006
- Omidvar, N. et al. 2006. Ral is both necessary and sufficient for the inhibition of myeloid differentiation mediated by Ras. Molecular and cellular biology 26 (10), pp.3966-75. (10.1128/MCB.26.10.3966-3975.2006)
- Tonks, A. et al. 2006. The sensitivity of human cells expressing RUNX1-RUNX1T1 to chemotherapeutic agents. Leukemia 20 (10), pp.1883-5. (10.1038/sj.leu.2404364)
2005
- Tonks, A. et al. 2005. Optimized retroviral transduction protocol which preserves the primitive subpopulation of human hematopoietic cells. Biotechnology Progress 21 (3), pp.953-958. (10.1021/bp0500314)
2004
- Tonks, A. et al. 2004. Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal. Leukemia 18 (7), pp.1238-1245. (10.1038/sj.leu.2403396)
- Tonks, A. et al. 2004. Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal. Leukemia 18 (7), pp.1238-1245. (10.1038/sj.leu.2403396)
2003
- Tonks, A. et al. 2003. The AML-1 ETO fusion gene promotes extensive self-renewal of human primary erythroid cells. Blood 101 (2), pp.624-632. (10.1182/blood-2002-06-1732)
2002
- Darley, R. L. et al. 2002. Protein kinase C mediates mutant N-Ras-induced developmental abnormalities in normal human erythroid cells. Blood 100 (12), pp.4185-92. (10.1182/blood-2002-05-1358)
2000
- Darley, R. L. , Pearn, L. and Burnett, A. K. 2000. Mutant RAS promotes amplification of primitive human erythroid cells. Blood 96 (11), pp.92A-92A.
- McGlynn, A. P. et al., 2000. Alternative effects of RAS and RAF oncogenes on the proliferation and apoptosis of factor-dependent FDC-P1 cells. Leukemia Research 24 (1), pp.47-54. (10.1016/s0145-2126(99)00159-9)
1999
- Darley, R. L. and Burnett, A. K. 1999. Mutant RAS inhibits neutrophil but not macrophage differentiation and allows continued growth of neutrophil precursors. Experimental Hematology 27 (11), pp.1599-1608. (10.1016/S0301-472X(99)00100-9)
1998
- Darley, R. L. , Hoy, T. G. and Burnett, A. K. 1998. Mutant N-RAS blocks granulocytic differentiation of human CD34(+) cells [Abstract]. British Journal of Haematology 101 (S), pp.22.
- Darley, R. L. et al. 1998. Mutant N-RAS blocks granulocytic differentiation of human cd34+ cells. British Journal of Haematology 102 (1), pp.289-289. (10.1111/j.1365-2141.1998.tb08997.x)
- Gallagher, A. P. et al., 1998. Mutant RAS selectively promotes sensitivity of myeloid leukemia cells to apoptosis by a protein kinase C-dependent process. Cancer Research 58 (9), pp.2029-2035.
1997
- Darley, R. L. et al. 1997. Mutant RAS selectively promotes sensitivity of myeloid leukemia cells to apoptosis by a PKC-dependent process. Blood 90 (10), pp.202-202.
- Darley, R. L. et al. 1997. Mutant N-RAS induces erythroid lineage dysplasia in human CD34+ Cells. Journal of Experimental Medicine 185 (7), pp.1337-1348. (10.1084/jem.185.7.1337)
- Zaker, F. et al. 1997. Oncogenic RAS genes impair erythroid differentiation of erythroleukaemia cells. Leukemia Research 21 (7), pp.635-640. (10.1016/S0145-2126(97)00022-2)
1996
- Darley, R. L. et al. 1996. Mutant N-RAS alters the developmental potential of human CD34(+) cells in a lineage-specific manner. British Journal of Haematology 93 (S2), pp.597-597.
- Evely, R. S. et al., 1996. In-vivo modelling of myeloid malignancies using severe combined immunodeficient (SCID) mice [Abstract]. British Journal of Haematology 93 , pp.205.
1995
- Darley, R. L. et al. 1995. Mutant N-RAS induces erythroid lineage dysplasia in human CD34(+) progenitor cells. Blood 86 (10), pp.1665-1665.
1994
- Gallagher, A. et al., 1994. P21RAS expression in leukemogenesis and hematopoiesis. Blood 84 (10), pp.A605-A605.
1992
- Morris, A. G. , Darley, R. L. and Bateman, W. J. 1992. The loss of class II MHC antigen expression by ras-transformed murine fibroblasts passaged as tumours correlates with increased tumorigenicity but is not mediated by T cells. Cancer Immunology, Immunotherapy 35 (1), pp.46-52. (10.1007/BF01741054)
Articles
- Agathanggelou, A. et al., 2015. Targeting the ataxia telangiectasia mutated-null phenotype in chronic lymphocytic leukemia with pro-oxidants. Haematologica 100 (8), pp.1076-1085. (10.3324/haematol.2014.115170)
- Alanazi, B. et al. 2020. Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia 34 (2), pp.427-440. (10.1038/s41375-019-0596-4)
- Coles, S. J. et al. 2015. The immunosuppressive ligands PD-L1 and CD200 are linked in AML T-cell immunosuppression: identification of a new immunotherapeutic synapse. Leukemia 29 , pp.1952-1954. (10.1038/leu.2015.62)
- Coles, S. et al. 2012. Expression of CD200 on AML blasts directly suppresses memory T-cell function [Letter]. Leukemia 26 (9), pp.2148-2151. (10.1038/leu.2012.77)
- Coles, S. et al. 2012. Increased CD200 expression in acute myeloid leukemia is linked with an increased frequency of FoxP3+ regulatory T cells [Letter]. Leukemia 26 (9), pp.2146-2148. (10.1038/leu.2012.75)
- Coles, S. et al. 2011. CD200 inhibits memory Th1 cell function in acute myeloid leukaemia (AML)[Abstract]. Immunology 135 (S1), pp.178. (10.1111/j.1365-2567.2011.03534.x)
- Coles, S. et al. 2010. Over-expression of CD200 un acute myeloid leukemia mediates the expansion of regulatory T-lymphocytes and directly inhibits natural killer cell tumor immunity [Abstract]. Blood 116 (21), pp.218-218.
- Coles, S. et al. 2011. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia 25 (5), pp.792-799. (10.1038/leu.2011.1)
- Darley, R. L. et al. 1995. Mutant N-RAS induces erythroid lineage dysplasia in human CD34(+) progenitor cells. Blood 86 (10), pp.1665-1665.
- Darley, R. L. et al. 1996. Mutant N-RAS alters the developmental potential of human CD34(+) cells in a lineage-specific manner. British Journal of Haematology 93 (S2), pp.597-597.
- Darley, R. L. and Burnett, A. K. 1999. Mutant RAS inhibits neutrophil but not macrophage differentiation and allows continued growth of neutrophil precursors. Experimental Hematology 27 (11), pp.1599-1608. (10.1016/S0301-472X(99)00100-9)
- Darley, R. L. et al. 1997. Mutant RAS selectively promotes sensitivity of myeloid leukemia cells to apoptosis by a PKC-dependent process. Blood 90 (10), pp.202-202.
- Darley, R. L. , Hoy, T. G. and Burnett, A. K. 1998. Mutant N-RAS blocks granulocytic differentiation of human CD34(+) cells [Abstract]. British Journal of Haematology 101 (S), pp.22.
- Darley, R. L. et al. 1998. Mutant N-RAS blocks granulocytic differentiation of human cd34+ cells. British Journal of Haematology 102 (1), pp.289-289. (10.1111/j.1365-2141.1998.tb08997.x)
- Darley, R. L. et al. 1997. Mutant N-RAS induces erythroid lineage dysplasia in human CD34+ Cells. Journal of Experimental Medicine 185 (7), pp.1337-1348. (10.1084/jem.185.7.1337)
- Darley, R. L. , Pearn, L. and Burnett, A. K. 2000. Mutant RAS promotes amplification of primitive human erythroid cells. Blood 96 (11), pp.92A-92A.
- Darley, R. L. et al. 2002. Protein kinase C mediates mutant N-Ras-induced developmental abnormalities in normal human erythroid cells. Blood 100 (12), pp.4185-92. (10.1182/blood-2002-05-1358)
- Daud, S. S. et al. 2012. Identification of the Wnt signalling protein, TCF7L2 as a significantly overexpressed transcription factor in AML [Abstract]. Blood 120 (21) 1281.
- Dewitt, S. , Darley, R. L. and Hallett, M. B. 2009. Translocation or just location? Pseudopodia affect fluorescent signals. Journal of Cell Biology 184 (2), pp.197-203. (10.1083/jcb.200806047)
- Evely, R. S. et al., 1996. In-vivo modelling of myeloid malignancies using severe combined immunodeficient (SCID) mice [Abstract]. British Journal of Haematology 93 , pp.205.
- Gallagher, A. et al., 1994. P21RAS expression in leukemogenesis and hematopoiesis. Blood 84 (10), pp.A605-A605.
- Gallagher, A. P. et al., 1998. Mutant RAS selectively promotes sensitivity of myeloid leukemia cells to apoptosis by a protein kinase C-dependent process. Cancer Research 58 (9), pp.2029-2035.
- Hole, P. S. , Darley, R. L. and Tonks, A. 2011. Do reactive oxygen species play a role in myeloid leukemias?. Blood 117 (22), pp.5816-5826. (10.1182/blood-2011-01-326025)
- Hole, P. S. et al. 2010. Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. Blood 115 (6), pp.1238-1246. (10.1182/blood-2009-06-222869)
- Hole, P. S. et al. 2013. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood 122 (19), pp.3322-3330. (10.1182/blood-2013-04-491944)
- Liddiard, K. et al. 2012. RUNX1-ETO deregulates the proliferation and growth factor responsiveness of human hematopoietic progenitor cells downstream of the myeloid transcription factor, MYCT1 [Letter]. Leukemia 26 (1), pp.177-179. (10.1038/leu.2011.188)
- Liddiard, K. et al. 2010. OGG1 is a novel prognostic indicator in acute myeloid leukaemia. Oncogene 29 (13), pp.2005-2012. (10.1038/onc.2009.462)
- McGlynn, A. P. et al., 2000. Alternative effects of RAS and RAF oncogenes on the proliferation and apoptosis of factor-dependent FDC-P1 cells. Leukemia Research 24 (1), pp.47-54. (10.1016/s0145-2126(99)00159-9)
- Menezes, A. C. et al. 2022. RUNX3 overexpression inhibits normal human erythroid development. Scientific Reports 12 1243. (10.1038/s41598-022-05371-z)
- Menezes, A. C. et al. 2022. Increased expression of RUNX3 inhibits normal human myeloid development. Leukemia 36 , pp.1769-1780. (10.1038/s41375-022-01577-2)
- Morgan, H. J. et al. 2022. CD200 ectodomain shedding into the tumor microenvironment leads to NK cell dysfunction and apoptosis. Journal of Clinical Investigation 132 (21) e150750. (10.1172/JCI150750)
- Morgan, R. G. et al. 2013. γ-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin. Leukemia 27 (2), pp.336-343. (10.1038/leu.2012.221)
- Morgan, R. G. et al., 2019. LEF-1 drives aberrant B-catenin nuclear localization in myeloid leukemia cells. Haematologica 104 , pp.1365-1377. 202846. (10.3324/haematol.2018.202846)
- Morgan, R. G. et al., 2014. Factors affecting the nuclear localization of β-Catenin in normal and malignant tissue. Journal of Cellular Biochemistry 115 (8), pp.1351-1361. (10.1002/jcb.24803)
- Morgan, R. G. et al. 2010. Distinct regulation of beta- and gamma-Catenin throughout hematopoietic development contrasts with their cooperative roles in acute myeloid leukemia [Abstract]. Blood 116 (21) 1573.
- Morris, A. G. , Darley, R. L. and Bateman, W. J. 1992. The loss of class II MHC antigen expression by ras-transformed murine fibroblasts passaged as tumours correlates with increased tumorigenicity but is not mediated by T cells. Cancer Immunology, Immunotherapy 35 (1), pp.46-52. (10.1007/BF01741054)
- Munje, C. et al. 2015. Cord blood-derived quiescent CD34+ cells are more transcriptionally matched to AML blasts than cytokine-induced normal human hematopoietic CD34+ cells. Gene Expression: International Journal of Molecular and Cellular Science 16 (4), pp.169-175. (10.3727/105221615X14399878166159)
- Nicholson, R. et al. 2022. Protein kinase C epsilon overexpression is associated with poor patient outcomes in AML and promotes daunorubicin resistance through p-glycoprotein-mediated drug efflux. Frontiers in Oncology 12 840046. (10.3389/fonc.2022.840046)
- Omidvar, N. et al. 2006. Ral is both necessary and sufficient for the inhibition of myeloid differentiation mediated by Ras. Molecular and cellular biology 26 (10), pp.3966-75. (10.1128/MCB.26.10.3966-3975.2006)
- Pearn, L. et al. 2007. The role of PKC and PDK1 in monocyte lineage specification by Ras. Blood 109 (10), pp.4461-9. (10.1182/blood-2006-09-047217)
- Rastogi, N. et al. 2021. Use of an anti-CD200 blocking antibody improves immune responses to AML in vitro and in vivo. British Journal of Haematology 193 (1), pp.155-159. (10.1111/bjh.17125)
- Rastogi, N. et al. 2023. Nuclear factor I-C overexpression promotes monocytic development and cell survival in acute myeloid leukemia. Leukemia 37 , pp.276-287. (10.1038/s41375-022-01801-z)
- Robinson, A. J. , Darley, R. L. and Tonks, A. 2021. Reactive oxygen species in leukemias: maintaining cancer cell proliferation via redox signaling and changing metabolic homeostasis. Oncotarget 12 (10), pp.952-954. (10.18632/oncotarget.27913)
- Robinson, A. J. et al. 2020. Reactive oxygen species drive proliferation in acute myeloid leukemia via the glycolytic regulator PFKFB3. Cancer Research 80 (5), pp.937-949. (10.1158/0008-5472.CAN-19-1920)
- Tonks, A. et al. 2007. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21 (3), pp.566-568. (10.1038/sj.leu.2404559)
- Tonks, A. et al. 2007. CD200 as a prognostic factor in acute myeloid leukaemia [Letter]. Leukemia 21 (3), pp.566-568. (10.1038/sj.leu.2404559)
- Tonks, A. et al. 2006. The sensitivity of human cells expressing RUNX1-RUNX1T1 to chemotherapeutic agents. Leukemia 20 (10), pp.1883-5. (10.1038/sj.leu.2404364)
- Tonks, A. et al. 2007. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 21 (12), pp.2495-2505. (10.1038/sj.leu.2404961)
- Tonks, A. et al. 2003. The AML-1 ETO fusion gene promotes extensive self-renewal of human primary erythroid cells. Blood 101 (2), pp.624-632. (10.1182/blood-2002-06-1732)
- Tonks, A. et al. 2004. Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal. Leukemia 18 (7), pp.1238-1245. (10.1038/sj.leu.2403396)
- Tonks, A. et al. 2004. Expression of AML1-ETO in human myelomonocytic cells selectively inhibits granulocytic differentiation and promotes their self-renewal. Leukemia 18 (7), pp.1238-1245. (10.1038/sj.leu.2403396)
- Tonks, A. et al. 2005. Optimized retroviral transduction protocol which preserves the primitive subpopulation of human hematopoietic cells. Biotechnology Progress 21 (3), pp.953-958. (10.1021/bp0500314)
- Wagstaff, M. et al., 2023. Crosstalk between β-catenin and WT1 signalling activity in acute myeloid leukemia [Letters to the Editor]. Haematologica 108 (1)(10.3324/haematol.2021.280294)
- Walsby, E. J. et al. 2007. FUS expression alters the differentiation response to all-trans retinoic acid in NB4 and NB4R2 cells. British Journal of Haematology 139 (1), pp.94-97. (10.1111/j.1365-2141.2007.06756.x)
- Yang, J. et al. 2009. Low connexin channel-dependent intercellular communication in human adult hematopoietic progenitor/stem cells: Probing mechanisms of autologous stem cell therapy. Cell Communication and Adhesion 16 (5-6), pp.138-145. (10.3109/15419061003653763)
- Zabkiewicz, J. et al. 2014. The PDK1 master kinase is over-expressed in acute myeloid leukemia and promotes PKC-mediated survival of leukemic blasts. Haematologica 99 (5), pp.858-864. (10.3324/haematol.2013.096487)
- Zabkiewicz, J. et al. 2010. PDK1 overexpression in acute myeloid leukemia; Clinical significance and potential as a therapeutic target [Abstract]. Blood 116 (21), pp.892-893.
- Zaker, F. et al. 1997. Oncogenic RAS genes impair erythroid differentiation of erythroleukaemia cells. Leukemia Research 21 (7), pp.635-640. (10.1016/S0145-2126(97)00022-2)
Book sections
- Robinson, A. J. , Darley, R. L. and Tonks, A. 2021. Reactive oxygen species and metabolic re-wiring in acute leukemias. In: Piccaluga, P. P. ed. Acute Leukemias. IntechOpen. , pp.35-56. (10.5772/intechopen.94829)
- Wadley, A. J. et al., 2019. Using flow cytometry to detect and measure intracellular thiol redox status in viable T cells from heterogeneous populations. In: Hancock, J. T. and Conway, M. E. eds. Redox-Mediated Signal Transduction: Methods and Protocols. Vol. 1990, Methods in Molecular Biology New York, NY, USA: Humana Press. , pp.53-70. (10.1007/978-1-4939-9463-2_5)
Contact Details
[email protected]
+44 29207 45507
Main Hospital Building, Room 7FT 183, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN
+44 29207 45507
Main Hospital Building, Room 7FT 183, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN