Dr Nicholas Francois Dummer
Teams and roles for Nicholas Francois Dummer
MaxNet Research Fellow
Overview
My research interests are focused on applying novel and creative fundamental approaches in chemistry and material science to current and emerging global challenges. I am keen to foster new collaborative intra- and inter-departmental partnerships in areas of common interest by connecting underlying themes across scientific fields. The application of catalysis to emerging issues in sustainability and waste valorisation inspires my research and how the structure of catalysts can give rise to unique catalytic and electron transfer properties to the abatement of pollutants for example.
I have published over 60 articles in journals such as Nature Chemistry, ACS Catalysis, Green Chemistry, Chemistry of Materials and Angewandte Chemie Int. Ed., on research on bio-mass valorisation, selective methane oxidation, sustainable chemistry and nano-technology.
Publication
2025
- Hao, C. et al., 2025. Ce-induced synergistic effect in exsolved perovskite catalyst for highly efficient and robust methane dry reforming. Nature Communications 16 (1) 10630. (10.1038/s41467-025-65619-w)
- Li, R. et al. 2025. Oxidative degradation of phenol via in-situ generation of H2O2 in a flow reactor. Catalysis Letters 155 (11) 373. (10.1007/s10562-025-05221-3)
- Li, Y. et al., 2025. Dynamic active site evolution in lanthanum‐based catalysts dictates ethane chlorination pathways. Angewandte Chemie International Edition 64 (34) e202505846. (10.1002/anie.202505846)
- Parmentier, T. E. et al., 2025. Influence of surface functionalities on Au/C catalysts for oxidative homocoupling of phenylboronic acid. ACS Sustainable Chemistry and Engineering 13 (25), pp.9654-9667. (10.1021/acssuschemeng.5c02262)
- Qi, H. et al. 2025. Tandem reductive amination and deuteration over a phosphorus-modified iron center.. Nature Communications 16 (1) 1840. (10.1038/s41467-024-55722-9)
- Qi, H. et al. 2025. Enhancing activation of D2O for highly efficient deuteration using an Fe-P pair-site catalyst. JACS Au 5 (6), pp.2666-2676. (10.1021/jacsau.5c00257)
- Sun, Z. et al. 2025. Tailoring an Fe-Ov-Ce triggered phase-reversible oxygen carrier for intensified chemical looping CO2 splitting. Carbon Energy 7 (9) e70011. (10.1002/cey2.70011)
- Sun, Z. et al. 2025. Concerted catalysis of single atom and nanocluster enhances bio-ethanol activation and dehydrogenation. Nature Communications 16 (1) 3935. (10.1038/s41467-025-59127-0)
- Sun, Z. et al., 2025. Modulating the interfacial energy of Ni–Bi molten alloys for enhanced methane decomposition to hydrogen. ACS Catalysis 15 , pp.17333-17346. (10.1021/acscatal.5c02867)
- Williams, J. O. et al. 2025. The influence of reaction conditions on selective acetylene hydrogenation over sol immobilisation prepared AgPd/Al2O3 catalysts. ChemCatChem 17 (18) e202401794. (10.1002/cctc.202401794)
2024
- Lawes, N. et al. 2024. Zn loading effects on the selectivity of PdZn catalysts for CO2 hydrogenation to methanol. Catalysis Letters 154 (4), pp.1603-1610. (10.1007/s10562-023-04437-5)
- Lawes, N. et al. 2024. CO2 hydrogenation to methanol on intermetallic PdGa and PdIn catalysts and the effect of Zn co-deposition. Applied Catalysis A: General 679 119735. (10.1016/j.apcata.2024.119735)
- Mugford, K. et al. 2024. Investigating physicochemical properties of MgO catalysts for the gas phase conversion of glycerol. ARKIVOC 2024 (3) 202412252. (10.24820/ark.5550190.p012.252)
- Parker, L. A. et al. 2024. Investigating periodic table interpolation for the rational design of nanoalloy catalysts for green hydrogen production from ammonia decomposition. Catalysis Letters 154 , pp.1958-1969. (10.1007/s10562-023-04446-4)
- Zhang, B. et al. 2024. Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester. Nature Communications 15 (1) 7837. (10.1038/s41467-024-52163-2)
2023
- Carter, J. H. et al., 2023. The selective oxidation of methane to methanol using in situ generated H 2 O 2 over palladium-based bimetallic catalysts †. Catalysis Science & Technology (10.1039/d3cy00116d)
- Dummer, N. F. et al. 2023. Methane oxidation to methanol. Chemical Reviews 9 , pp.6359-6411. (10.1021/acs.chemrev.2c00439)
- Lazaridou, A. et al. 2023. Recognizing the best catalyst for a reaction. Nature Reviews Chemistry (10.1038/s41570-023-00470-5)
2022
- Bowker, M. et al. 2022. Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck-Cardiff centre on the fundamentals of heterogeneous catalysis (funcat). Angewandte Chemie International Edition (10.1002/anie.202209016)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12 (9), pp.5371-5379. (10.1021/acscatal.2c00552)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122 (6), pp.6795-6849. (10.1021/acs.chemrev.1c00493)
- Davies, T. E. et al. 2022. Experimental methods in chemical engineering: Scanning electron microscopy and X-ray ultra-microscopy—SEM and XuM. Canadian Journal of Chemical Engineering 100 (11), pp.3145-3159. (10.1002/cjce.24405)
- Dummer, N. F. et al. 2022. Investigating the preparation of Cu3Mo2O9 as a photocatalyst. Catalysis Communications 163 106414. (10.1016/j.catcom.2022.106414)
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Pattisson, S. et al. 2022. Lowering the operating temperature of gold acetylene hydrochlorination catalysts using oxidized carbon supports. ACS Catalysis 12 , pp.14086–14095. (10.1021/acscatal.2c04242)
- Richards, N. et al. 2022. Effect of the preparation method of LaSrCoFeOx perovskites on the activity of N2O decomposition. Catalysis Letters 152 , pp.213-226. (10.1007/s10562-021-03619-3)
- Smith, L. R. et al. 2022. Recent advances on the valorization of glycerol into alcohols. Energies 15 (17) e6250. (10.3390/en15176250)
- Sun, S. et al. 2022. Selective oxidation of methane to methanol and methyl hydroperoxide over palladium modified MoO3 photocatalyst under ambient conditions. Catalysis Science & Technology 12 (11), pp.3727-3736. (10.1039/D2CY00240J)
- Taylor, S. et al. 2022. Selective oxidation of methane to oxygenates using heterogeneous catalysts. In: Li, L. and Hargreaves, J. eds. Heterogeneous Catalysis for Sustainable Energy. Weinheim: Wiley. , pp.183-203.
- Tigwell, M. et al. 2022. Investigating catalytic properties which influence dehydration and oxidative dehydrogenation in aerobic glycerol oxidation over Pt/TiO2. Journal of Physical Chemistry C 126 (37), pp.15651-15661. (10.1021/acs.jpcc.2c03680)
2021
- Dawson, S. R. et al. 2021. Sulfur promotion in Au/C catalyzed acetylene hydrochlorination. Small 17 (16) 2007221. (10.1002/smll.202007221)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Smith, L. R. et al. 2021. Gas phase clycerol valorization over ceria nanostructures with well-defined morphologies. ACS Catalysis 11 , pp.4893-4907. (10.1021/acscatal.0c05606)
- Sun, S. et al. 2021. Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. Catalysis Science & Technology 11 (24), pp.8052-8064. (10.1039/D1CY01643A)
2020
- Devlia, J. et al., 2020. The formation of methanol from glycerol bio-waste over doped ceria based catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200059. (10.1098/rsta.2020.0059)
- Jiao, Y. et al., 2020. The effect of T-atom ratio and TPAOH concentration on the pore structure and titanium position in MFI-Type titanosilicate during dissolution-recrystallization process. Microporous and Mesoporous Materials 305 110397. (10.1016/j.micromeso.2020.110397)
- Malta, G. et al. 2020. Can gold be an effective catalyst for the Deacon reaction?. Catalysis Letters 150 , pp.2991-2995. (10.1007/s10562-020-03204-0)
- Parker, L. A. et al. 2020. Ammonia decomposition enhancement by Cs-Promoted Fe/Al2O3 catalysts. Catalysis Letters 150 , pp.3369-3376. (10.1007/s10562-020-03247-3)
- Richards, N. et al. 2020. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition. Applied Catalysis B: Environmental 264 118501. (10.1016/j.apcatb.2019.118501)
- Richards, N. et al. 2020. Lowering the operating temperature of perovskite catalysts for N2O decomposition through control of preparation methods. ACS Catalysis 10 (10), pp.5430-5442. (10.1021/acscatal.0c00698)
2019
- Smith, L. R. et al. 2019. New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology 9 , pp.1464-1475. 6. (10.1039/C8CY02214C)
- Smith, P. J. et al. 2019. Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies 12 (7) 1359. (10.3390/en12071359)
2018
- Chow, Y. K. et al. 2018. A kinetic study of methane partial oxidation over FeZSM-5 using N2O as an oxidant. ChemPhysChem 19 (4), pp.402-411. (10.1002/cphc.201701202)
- Chow, Y. K. et al. 2018. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catalysis Science and Technology 2018 (8), pp.154-163. (10.1039/C7CY01769C)
- Jiang, Z. et al., 2018. Insight into the efficient oxidation of methyl-ethyl-ketone over hierarchically micro-mesostructured Pt/K-(Al)SiO 2 nanorod catalysts: Structure-activity relationships and mechanism. Applied Catalysis B: Environmental 226 , pp.220-233. (10.1016/j.apcatb.2017.12.007)
- Jiao, Y. et al., 2018. Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. Catalysis Science and Technology 8 , pp.2211-2217. (10.1039/C7CY02571H)
- Richards, N. et al. 2018. Investigating the influence of Fe speciation on N2O decomposition over Fe–ZSM-5 catalysts. Topics in Catalysis 61 (18-19), pp.1983-1992. (10.1007/s11244-018-1024-0)
- Williams, C. et al. 2018. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catalysis , pp.2567-2576. (10.1021/acscatal.7b04417)
2017
- Ishikawa, S. et al., 2017. Synthesis of crystalline microporous Mo−V−Bi oxide for selective (Amm)oxidation of light alkanes. Chemistry of Materials 29 (7), pp.2939-2950. (10.1021/acs.chemmater.6b05224)
- Khan, Z. , Dummer, N. F. and Edwards, J. K. 2017. Silver palladium catalysts for the direct synthesis of hydrogen peroxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376 (2110)(10.1098/rsta.2017.0058)
2016
- Dummer, N. et al. 2016. Surfactant controlled magnesium oxide synthesis for base catalysis. Catalysis Science & Technology 6 (6), pp.1903-1912. (10.1039/C5CY01107H)
- Xu, J. et al., 2016. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catalysis Today 270 , pp.93-100. (10.1016/j.cattod.2015.09.011)
2015
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- Gupta, U. N. et al., 2015. Epoxidation of propene with graphite AuPd-supported nanoparticles. Catalysis Letters 145 (2), pp.697-701. (10.1007/s10562-014-1439-6)
- Gupta, U. N. et al., 2015. Solvent-free oxidation of dec-1-ene using gold/graphite catalyst using an in situ generated oxidant. Catalysis Science & Technology 5 (2), pp.1307-1313. (10.1039/C4CY01355G)
- Gupta, U. N. et al., 2015. Solvent-free aerobic epoxidation of Dec-1-ene using gold/graphite as a catalyst. Catalysis Letters 145 (2), pp.689-696. (10.1007/s10562-014-1425-z)
- Haider, M. H. et al., 2015. Efficient green methanol synthesis from glycerol. Nature Chemistry 7 , pp.1028-1032. (10.1038/nchem.2345)
- Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
2014
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Haider, M. et al. 2014. The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. Chemistry - a European Journal 20 (6), pp.1743-1752. (10.1002/chem.201302348)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
2013
- Behera, G. C. et al., 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3 (6), pp.1558-64. (10.1039/c3cy20801j)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Ryabenkova, Y. et al. 2013. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today 203 , pp.139-145. (10.1016/j.cattod.2012.05.037)
2012
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
- Brett, G. L. et al. 2012. Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science & Technology 2 (1), pp.97-104. (10.1039/c1cy00254f)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Haider, M. et al. 2012. Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis 286 , pp.206-213. (10.1016/j.jcat.2011.11.004)
- Hammond, C. et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angewandte Chemie - International Edition 51 (21), pp.5129-5133. (10.1002/anie.201108706)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Kotionova, T. et al. 2012. Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters 142 (9), pp.1114-1120. (10.1007/s10562-012-0872-7)
- Ryabenkova, Y. et al. 2012. The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis 55 (19-20), pp.1283-1288. (10.1007/s11244-012-9909-9)
2011
- Bawaked, S. M. et al. 2011. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts: an investigation of catalyst re-use. Green Chemistry 13 (1), pp.127-134. (10.1039/c0gc00550a)
- Bawaked, S. M. et al. 2011. Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catalysis Science & Technology 1 (5), pp.747-759. (10.1039/c1cy00122a)
- Dummer, N. et al. 2011. Reprint of: Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, -palladium catalysts. Catalysis Today 160 (1), pp.50-54. (10.1016/j.cattod.2010.12.014)
- Hutchings, G. J. et al. 2011. Selective epoxidation of cyclooctene using graphite-supported gold and gold palladium catalysts. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA 27-31 March 2011.
- Taufiq-Yap, Y. H. et al., 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141 (3), pp.400-407. (10.1007/s10562-010-0508-8)
- Taufiq-Yap, Y. et al., 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20 (6), pp.635-638. (10.1016/S1003-9953(10)60251-4)
- Weng, W. et al., 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21 (40), pp.16136-16146. (10.1039/c1jm12456k)
2010
- Al Otaibi, R. et al., 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2 (4), pp.443-452. (10.1002/cctc.200900274)
- Dummer, N. et al. 2010. Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, palladium and gold-palladium catalysts. Catalysis Today 154 (1-2), pp.2-6. (10.1016/j.cattod.2010.03.031)
- Dummer, N. et al. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376 (1-2), pp.47-55. (10.1016/j.apcata.2009.10.004)
- Lin, Z. et al. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157 (1-4), pp.211-216. (10.1016/j.cattod.2010.03.013)
- Sithamparappillai, U. et al., 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20 (25), pp.5310-5318. (10.1039/c0jm00403k)
- Taufiq-Yap, Y. et al. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28 (10), pp.997-1012. (10.1080/10916460903058004)
- Weng, W. et al., 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1198-1199. (10.1017/S1431927610059805)
2009
- Bawaked, S. M. et al. 2009. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry 11 (7), pp.1037-1044. (10.1039/b823286p)
- Taufiq-Yap, Y. H. et al., 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130 (3-4), pp.327-334. (10.1007/s10562-009-0003-2)
- Weng, W. et al., 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15 (SUPPL.), pp.1412-1413. (10.1017/S1431927609092332)
- Weng, W. et al., 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15 (SUPPL.), pp.1438-1439. (10.1017/S1431927609094203)
2008
- Goh, C. K. et al., 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131 (1-4), pp.408-412. (10.1016/j.cattod.2007.10.059)
2004
- Dummer, N. 2004. Comparison of the heterogeneous enantioselective hydrogenation of 2,3-butanedione over cinchona modified platinum catalysts in three different reactors. PhD Thesis , Cardiff University.
- Li, X. et al., 2004. Enantioselective hydrogenation using cinchona-modified Pt/γ-Al 2O3 catalysts: Comparison of the reaction of ethyl pyruvate and buta-2,3-dione. Catalysis Letters 96 (3-4), pp.147-151. (10.1023/B:CATL.0000030112.70608.a0)
Articles
- Al Otaibi, R. et al., 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2 (4), pp.443-452. (10.1002/cctc.200900274)
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Bawaked, S. M. et al. 2011. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts: an investigation of catalyst re-use. Green Chemistry 13 (1), pp.127-134. (10.1039/c0gc00550a)
- Bawaked, S. M. et al. 2009. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry 11 (7), pp.1037-1044. (10.1039/b823286p)
- Bawaked, S. M. et al. 2011. Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catalysis Science & Technology 1 (5), pp.747-759. (10.1039/c1cy00122a)
- Behera, G. C. et al., 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3 (6), pp.1558-64. (10.1039/c3cy20801j)
- Bowker, M. et al. 2022. Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck-Cardiff centre on the fundamentals of heterogeneous catalysis (funcat). Angewandte Chemie International Edition (10.1002/anie.202209016)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12 (9), pp.5371-5379. (10.1021/acscatal.2c00552)
- Brett, G. L. et al. 2012. Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science & Technology 2 (1), pp.97-104. (10.1039/c1cy00254f)
- Carter, J. H. et al., 2023. The selective oxidation of methane to methanol using in situ generated H 2 O 2 over palladium-based bimetallic catalysts †. Catalysis Science & Technology (10.1039/d3cy00116d)
- Chow, Y. K. et al. 2018. A kinetic study of methane partial oxidation over FeZSM-5 using N2O as an oxidant. ChemPhysChem 19 (4), pp.402-411. (10.1002/cphc.201701202)
- Chow, Y. K. et al. 2018. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catalysis Science and Technology 2018 (8), pp.154-163. (10.1039/C7CY01769C)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122 (6), pp.6795-6849. (10.1021/acs.chemrev.1c00493)
- Davies, T. E. et al. 2022. Experimental methods in chemical engineering: Scanning electron microscopy and X-ray ultra-microscopy—SEM and XuM. Canadian Journal of Chemical Engineering 100 (11), pp.3145-3159. (10.1002/cjce.24405)
- Dawson, S. R. et al. 2021. Sulfur promotion in Au/C catalyzed acetylene hydrochlorination. Small 17 (16) 2007221. (10.1002/smll.202007221)
- Devlia, J. et al., 2020. The formation of methanol from glycerol bio-waste over doped ceria based catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200059. (10.1098/rsta.2020.0059)
- Dummer, N. et al. 2010. Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, palladium and gold-palladium catalysts. Catalysis Today 154 (1-2), pp.2-6. (10.1016/j.cattod.2010.03.031)
- Dummer, N. et al. 2011. Reprint of: Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, -palladium catalysts. Catalysis Today 160 (1), pp.50-54. (10.1016/j.cattod.2010.12.014)
- Dummer, N. et al. 2016. Surfactant controlled magnesium oxide synthesis for base catalysis. Catalysis Science & Technology 6 (6), pp.1903-1912. (10.1039/C5CY01107H)
- Dummer, N. et al. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376 (1-2), pp.47-55. (10.1016/j.apcata.2009.10.004)
- Dummer, N. F. et al. 2022. Investigating the preparation of Cu3Mo2O9 as a photocatalyst. Catalysis Communications 163 106414. (10.1016/j.catcom.2022.106414)
- Dummer, N. F. et al. 2023. Methane oxidation to methanol. Chemical Reviews 9 , pp.6359-6411. (10.1021/acs.chemrev.2c00439)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Goh, C. K. et al., 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131 (1-4), pp.408-412. (10.1016/j.cattod.2007.10.059)
- Gupta, U. N. et al., 2015. Epoxidation of propene with graphite AuPd-supported nanoparticles. Catalysis Letters 145 (2), pp.697-701. (10.1007/s10562-014-1439-6)
- Gupta, U. N. et al., 2015. Solvent-free oxidation of dec-1-ene using gold/graphite catalyst using an in situ generated oxidant. Catalysis Science & Technology 5 (2), pp.1307-1313. (10.1039/C4CY01355G)
- Gupta, U. N. et al., 2015. Solvent-free aerobic epoxidation of Dec-1-ene using gold/graphite as a catalyst. Catalysis Letters 145 (2), pp.689-696. (10.1007/s10562-014-1425-z)
- Haider, M. et al. 2014. The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. Chemistry - a European Journal 20 (6), pp.1743-1752. (10.1002/chem.201302348)
- Haider, M. et al. 2012. Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis 286 , pp.206-213. (10.1016/j.jcat.2011.11.004)
- Haider, M. H. et al., 2015. Efficient green methanol synthesis from glycerol. Nature Chemistry 7 , pp.1028-1032. (10.1038/nchem.2345)
- Hammond, C. et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angewandte Chemie - International Edition 51 (21), pp.5129-5133. (10.1002/anie.201108706)
- Hao, C. et al., 2025. Ce-induced synergistic effect in exsolved perovskite catalyst for highly efficient and robust methane dry reforming. Nature Communications 16 (1) 10630. (10.1038/s41467-025-65619-w)
- Ishikawa, S. et al., 2017. Synthesis of crystalline microporous Mo−V−Bi oxide for selective (Amm)oxidation of light alkanes. Chemistry of Materials 29 (7), pp.2939-2950. (10.1021/acs.chemmater.6b05224)
- Jiang, Z. et al., 2018. Insight into the efficient oxidation of methyl-ethyl-ketone over hierarchically micro-mesostructured Pt/K-(Al)SiO 2 nanorod catalysts: Structure-activity relationships and mechanism. Applied Catalysis B: Environmental 226 , pp.220-233. (10.1016/j.apcatb.2017.12.007)
- Jiao, Y. et al., 2020. The effect of T-atom ratio and TPAOH concentration on the pore structure and titanium position in MFI-Type titanosilicate during dissolution-recrystallization process. Microporous and Mesoporous Materials 305 110397. (10.1016/j.micromeso.2020.110397)
- Jiao, Y. et al., 2018. Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. Catalysis Science and Technology 8 , pp.2211-2217. (10.1039/C7CY02571H)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Khan, Z. , Dummer, N. F. and Edwards, J. K. 2017. Silver palladium catalysts for the direct synthesis of hydrogen peroxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376 (2110)(10.1098/rsta.2017.0058)
- Kotionova, T. et al. 2012. Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters 142 (9), pp.1114-1120. (10.1007/s10562-012-0872-7)
- Lawes, N. et al. 2024. Zn loading effects on the selectivity of PdZn catalysts for CO2 hydrogenation to methanol. Catalysis Letters 154 (4), pp.1603-1610. (10.1007/s10562-023-04437-5)
- Lawes, N. et al. 2024. CO2 hydrogenation to methanol on intermetallic PdGa and PdIn catalysts and the effect of Zn co-deposition. Applied Catalysis A: General 679 119735. (10.1016/j.apcata.2024.119735)
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Lazaridou, A. et al. 2023. Recognizing the best catalyst for a reaction. Nature Reviews Chemistry (10.1038/s41570-023-00470-5)
- Li, R. et al. 2025. Oxidative degradation of phenol via in-situ generation of H2O2 in a flow reactor. Catalysis Letters 155 (11) 373. (10.1007/s10562-025-05221-3)
- Li, X. et al., 2004. Enantioselective hydrogenation using cinchona-modified Pt/γ-Al 2O3 catalysts: Comparison of the reaction of ethyl pyruvate and buta-2,3-dione. Catalysis Letters 96 (3-4), pp.147-151. (10.1023/B:CATL.0000030112.70608.a0)
- Li, Y. et al., 2025. Dynamic active site evolution in lanthanum‐based catalysts dictates ethane chlorination pathways. Angewandte Chemie International Edition 64 (34) e202505846. (10.1002/anie.202505846)
- Lin, Z. et al. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157 (1-4), pp.211-216. (10.1016/j.cattod.2010.03.013)
- Malta, G. et al. 2020. Can gold be an effective catalyst for the Deacon reaction?. Catalysis Letters 150 , pp.2991-2995. (10.1007/s10562-020-03204-0)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Mugford, K. et al. 2024. Investigating physicochemical properties of MgO catalysts for the gas phase conversion of glycerol. ARKIVOC 2024 (3) 202412252. (10.24820/ark.5550190.p012.252)
- Parker, L. A. et al. 2020. Ammonia decomposition enhancement by Cs-Promoted Fe/Al2O3 catalysts. Catalysis Letters 150 , pp.3369-3376. (10.1007/s10562-020-03247-3)
- Parker, L. A. et al. 2024. Investigating periodic table interpolation for the rational design of nanoalloy catalysts for green hydrogen production from ammonia decomposition. Catalysis Letters 154 , pp.1958-1969. (10.1007/s10562-023-04446-4)
- Parmentier, T. E. et al., 2025. Influence of surface functionalities on Au/C catalysts for oxidative homocoupling of phenylboronic acid. ACS Sustainable Chemistry and Engineering 13 (25), pp.9654-9667. (10.1021/acssuschemeng.5c02262)
- Pattisson, S. et al. 2022. Lowering the operating temperature of gold acetylene hydrochlorination catalysts using oxidized carbon supports. ACS Catalysis 12 , pp.14086–14095. (10.1021/acscatal.2c04242)
- Qi, H. et al. 2025. Tandem reductive amination and deuteration over a phosphorus-modified iron center.. Nature Communications 16 (1) 1840. (10.1038/s41467-024-55722-9)
- Qi, H. et al. 2025. Enhancing activation of D2O for highly efficient deuteration using an Fe-P pair-site catalyst. JACS Au 5 (6), pp.2666-2676. (10.1021/jacsau.5c00257)
- Richards, N. et al. 2020. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition. Applied Catalysis B: Environmental 264 118501. (10.1016/j.apcatb.2019.118501)
- Richards, N. et al. 2020. Lowering the operating temperature of perovskite catalysts for N2O decomposition through control of preparation methods. ACS Catalysis 10 (10), pp.5430-5442. (10.1021/acscatal.0c00698)
- Richards, N. et al. 2018. Investigating the influence of Fe speciation on N2O decomposition over Fe–ZSM-5 catalysts. Topics in Catalysis 61 (18-19), pp.1983-1992. (10.1007/s11244-018-1024-0)
- Richards, N. et al. 2022. Effect of the preparation method of LaSrCoFeOx perovskites on the activity of N2O decomposition. Catalysis Letters 152 , pp.213-226. (10.1007/s10562-021-03619-3)
- Ryabenkova, Y. et al. 2013. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today 203 , pp.139-145. (10.1016/j.cattod.2012.05.037)
- Ryabenkova, Y. et al. 2012. The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis 55 (19-20), pp.1283-1288. (10.1007/s11244-012-9909-9)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Sithamparappillai, U. et al., 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20 (25), pp.5310-5318. (10.1039/c0jm00403k)
- Smith, L. R. et al. 2022. Recent advances on the valorization of glycerol into alcohols. Energies 15 (17) e6250. (10.3390/en15176250)
- Smith, L. R. et al. 2021. Gas phase clycerol valorization over ceria nanostructures with well-defined morphologies. ACS Catalysis 11 , pp.4893-4907. (10.1021/acscatal.0c05606)
- Smith, L. R. et al. 2019. New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology 9 , pp.1464-1475. 6. (10.1039/C8CY02214C)
- Smith, P. J. et al. 2019. Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies 12 (7) 1359. (10.3390/en12071359)
- Sun, S. et al. 2021. Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. Catalysis Science & Technology 11 (24), pp.8052-8064. (10.1039/D1CY01643A)
- Sun, S. et al. 2022. Selective oxidation of methane to methanol and methyl hydroperoxide over palladium modified MoO3 photocatalyst under ambient conditions. Catalysis Science & Technology 12 (11), pp.3727-3736. (10.1039/D2CY00240J)
- Sun, Z. et al. 2025. Tailoring an Fe-Ov-Ce triggered phase-reversible oxygen carrier for intensified chemical looping CO2 splitting. Carbon Energy 7 (9) e70011. (10.1002/cey2.70011)
- Sun, Z. et al. 2025. Concerted catalysis of single atom and nanocluster enhances bio-ethanol activation and dehydrogenation. Nature Communications 16 (1) 3935. (10.1038/s41467-025-59127-0)
- Sun, Z. et al., 2025. Modulating the interfacial energy of Ni–Bi molten alloys for enhanced methane decomposition to hydrogen. ACS Catalysis 15 , pp.17333-17346. (10.1021/acscatal.5c02867)
- Taufiq-Yap, Y. H. et al., 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130 (3-4), pp.327-334. (10.1007/s10562-009-0003-2)
- Taufiq-Yap, Y. H. et al., 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141 (3), pp.400-407. (10.1007/s10562-010-0508-8)
- Taufiq-Yap, Y. et al., 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20 (6), pp.635-638. (10.1016/S1003-9953(10)60251-4)
- Taufiq-Yap, Y. et al. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28 (10), pp.997-1012. (10.1080/10916460903058004)
- Tigwell, M. et al. 2022. Investigating catalytic properties which influence dehydration and oxidative dehydrogenation in aerobic glycerol oxidation over Pt/TiO2. Journal of Physical Chemistry C 126 (37), pp.15651-15661. (10.1021/acs.jpcc.2c03680)
- Weng, W. et al., 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15 (SUPPL.), pp.1412-1413. (10.1017/S1431927609092332)
- Weng, W. et al., 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15 (SUPPL.), pp.1438-1439. (10.1017/S1431927609094203)
- Weng, W. et al., 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21 (40), pp.16136-16146. (10.1039/c1jm12456k)
- Weng, W. et al., 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1198-1199. (10.1017/S1431927610059805)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
- Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
- Williams, C. et al. 2018. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catalysis , pp.2567-2576. (10.1021/acscatal.7b04417)
- Williams, J. O. et al. 2025. The influence of reaction conditions on selective acetylene hydrogenation over sol immobilisation prepared AgPd/Al2O3 catalysts. ChemCatChem 17 (18) e202401794. (10.1002/cctc.202401794)
- Xu, J. et al., 2016. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catalysis Today 270 , pp.93-100. (10.1016/j.cattod.2015.09.011)
- Zhang, B. et al. 2024. Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester. Nature Communications 15 (1) 7837. (10.1038/s41467-024-52163-2)
Book sections
- Taylor, S. et al. 2022. Selective oxidation of methane to oxygenates using heterogeneous catalysts. In: Li, L. and Hargreaves, J. eds. Heterogeneous Catalysis for Sustainable Energy. Weinheim: Wiley. , pp.183-203.
Conferences
- Hutchings, G. J. et al. 2011. Selective epoxidation of cyclooctene using graphite-supported gold and gold palladium catalysts. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA 27-31 March 2011.
Patents
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
Thesis
Biography
I am interested in the application of catalysis to emerging issues in fuel and energy, sustainability and waste valorisation. Particularly how the structure of heterogeneous catalysts can give rise to unique catalytic and electron transfer properties. My research background in physical chemistry includes materials science and catalyst design applied to the conversion of methane to methanol, valorisation of bio-mass sourced glycerol and carbon dioxide hydrogenation. Presently, I am the local coordinator of the Max Planck Centre in Cardiff University on the fundamentals of heterogeneous catalysis (FUNCAT).
I hold a PhD in chemistry, which was awarded by Cardiff University and focused on enantioselective hydrogenation at the gas – solid interface under the supervision of Prof. Graham Hutchings CBE FRS in 2005. I then completed post-doctoral positions in the Cardiff Catalysis Institute and from here I joined Prof. Wataru Ueda’s laboratory in Hokkaido University, Japan (2012-2013) as a Assistant Professor. I then was awarded a two-year Vice Chancellor’s Research Fellowship at the University of Wollongong, Australia (2013-2015).