Dr Serena Giardiello
Teams and roles for Serena Giardiello
Postdoctoral Research Associate
Astronomy Instrumentation Group
Cardiff Hub for Astrophysics Research and Technology
Overview
I work in Cosmology, studying in particular the Cosmic Microwave Background. I am a member of the LiteBIRD, Simons Observatory (SO) and Atacama Cosmology Telescope (ACT) collaborations.
I mainly study how systematic effects in CMB experiments propagate in the data analysis to the estimate of cosmological parameters. I am involved in the development of simulations and analysis pipelines for the collaborations I joined.
I joined Cardiff University in November 2022. Previously, I was a PhD candidate at Ferrara University in Italy.
Publication
2025
- Abitbol, M. et al., 2025. The Simons Observatory: science goals and forecasts for the enhanced Large Aperture Telescope. Journal of Cosmology and Astroparticle Physics 2025 (8) 34. (10.1088/1475-7516/2025/08/034)
- Atkins, Z. et al., 2025. The Atacama Cosmology Telescope: semi-analytic covariance matrices for the DR6 CMB power spectra. Journal of Cosmology and Astroparticle Physics 2025 (05) 015. (10.1088/1475-7516/2025/05/015)
- Aurvik, R. et al., 2025. On the computational feasibility of Bayesian end-to-end analysis of LiteBIRD simulations within Cosmoglobe. Journal of Cosmology and Astroparticle Physics 2025 (11) 041. (10.1088/1475-7516/2025/11/041)
- Beringue, B. et al. 2025. The Atacama Cosmology Telescope: DR6 power spectrum foreground model and validation. [Online].arXiv: Cornell University. (10.48550/arXiv.2506.06274)Available at: https://doi.org/10.48550/arXiv.2506.06274.
- Beringue, B. et al., 2025. The Atacama Cosmology Telescope: DR6 power spectrum foreground model and validation. Journal of Cosmology and Astroparticle Physics 2025 (10) 082. (10.1088/1475-7516/2025/10/082)
- Bortolami, M. et al., 2025. First release of LiteBIRD simulations from an end-to-end pipeline. Journal of Cosmology and Astroparticle Physics 2025 (11) 042. (10.1088/1475-7516/2025/11/042)
- Calabrese, E. et al. 2025. The Atacama Cosmology Telescope: DR6 constraints on extended cosmological models. Journal of Cosmology and Astroparticle Physics 2025 (11) 063. (10.1088/1475-7516/2025/11/063)
- Carralot, F. et al., 2025. Requirements on the gain calibration for LiteBIRD polarisation data with blind component separation. Journal of Cosmology and Astroparticle Physics 2025 (01) 019. (10.1088/1475-7516/2025/01/019)
- de la Hoz, E. et al., 2025. LiteBIRD science goals and forecasts: constraining isotropic cosmic birefringence. Journal of Cosmology and Astroparticle Physics 2025 (07) 083. (10.1088/1475-7516/2025/07/083)
- Giardiello, S. 2025. Requirements on bandpass resolution and measurement precision for LiteBIRD. [Online].arXiv: Cornell University. (10.48550/arXiv.2506.22217)Available at: https://doi.org/10.48550/arXiv.2506.22217.
- Giardiello, S. et al. 2025. Requirements on bandpass resolution and measurement precision for LiteBIRD. Journal of Cosmology and Astroparticle Physics 2025 (10) 038. (10.1088/1475-7516/2025/10/038)
- Giardiello, S. et al. 2025. The Atacama Cosmology Telescope: DR6 constraints on extended cosmological models. [Online].ArXiv: Cornell university. (10.48550/arXiv.2503.14454)Available at: https://doi.org/10.48550/arXiv.2503.14454.
- Giardiello, S. et al. 2025. Modeling beam chromaticity for high-resolution CMB analyses. Physical Review D 111 (4) 043502. (10.1103/PhysRevD.111.043502)
- Hervías-Caimapo, C. , Calabrese, E. and Giardiello, S. 2025. The Simons Observatory: Validation of reconstructed power spectra from simulated filtered maps for the Small Aperture Telescope survey. [Online].arXiv: Cornell University. Available at: https://doi.org/10.48550/arXiv.2502.00946.
- Louis, T. et al., 2025. The Atacama Cosmology Telescope: DR6 power spectra, likelihoods and ΛCDM parameters. Journal of Cosmology and Astroparticle Physics 2025 (11) 062. (10.1088/1475-7516/2025/11/062)
- Naess, S. et al., 2025. The Atacama Cosmology Telescope: DR6 maps. Journal of Cosmology and Astroparticle Physics 2025 (11) 061. (10.1088/1475-7516/2025/11/061)
- Raffuzzi, N. et al., 2025. Unveiling V modes: enhancing CMB sensitivity to BSM physics with a non-ideal half-wave plate. Journal of Cosmology and Astroparticle Physics 2025 (03) 009. (10.1088/1475-7516/2025/03/009)
- Ruiz-Granda, M. et al., 2025. LiteBIRD science goals and forecasts: improved full-sky reconstruction of the gravitational lensing potential through the combination of Planck and LiteBIRD data. Journal of Cosmology and Astroparticle Physics 11 (2025) 073. (10.1088/1475-7516/2025/11/073)
- the LiteBIRD Collaboration, and Giardiello, S. 2025. LiteBIRD science goals and forecasts: constraining isotropic cosmic birefringence. [Online].arXiv: Cornell University. (10.48550/arXiv.2503.22322)Available at: https://doi.org/10.48550/arXiv.2503.22322.
- The Simons Observatory Collaboration, , Abitbol, M. and Giardiello, S. 2025. The Simons Observatory: Science goals and forecasts for the enhanced large aperture telescope. [Online].arXiv: Cornell University. Available at: https://doi.org/10.48550/arXiv.2503.00636.
- Tomasi, M. et al., 2025. A simulation framework for the LiteBIRD instruments. Journal of Cosmology and Astroparticle Physics 2025 (11) 040. (10.1088/1475-7516/2025/11/040)
2024
- Braithwaite, C. et al. 2024. A study on the performance of half-wave plates designed for sub-mm studies. Presented at: SPIE Astronomical Telescopes + Instrumentation Yokohama, Japan 15-20 June 2024. Proc. SPIE 13096: Ground-based and Airborne Instrumentation for Astronomy X. SPIE. (10.1117/12.3019262)
- Campeti, P. et al., 2024. LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization. Journal of Cosmology and Astroparticle Physics 2024 (06) 008. (10.1088/1475-7516/2024/06/008)
- Ghigna, T. et al., 2024. The LiteBIRD mission to explore cosmic inflation. [Online].arXiv. Available at: https://doi.org/10.48550/arXiv.2406.02724.
- Ghigna, T. et al., 2024. The LiteBIRD mission to explore cosmic inflation. Presented at: SPIE Astronomical Telescopes + Instrumentation Yokohama, Japan 16-22 June 2024. Published in: Coyle, L. E. , Matsuura, S. and Perrin, M. D. eds. Proceedings Volume 13092, Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave;. Society of Photo-optical Instrumentation Engineers. (10.1117/12.3021377)
- Giardiello, S. et al. 2024. The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis. Journal of Cosmology and Astroparticle Physics 2024 008. (10.1088/1475-7516/2024/09/008)
- Leloup, C. et al., 2024. Impact of beam far side-lobe knowledge in the presence of foregrounds for LiteBIRD. Journal of Cosmology and Astroparticle Physics 06 011. (10.1088/1475-7516/2024/06/011)
- Lonappan, A. et al., 2024. LiteBIRD science goals and forecasts: a full-sky measurement of gravitational lensing of the CMB. Journal of Cosmology and Astroparticle Physics 2024 (06) 009. (10.1088/1475-7516/2024/06/009)
- Namikawa, T. et al., 2024. LiteBIRD science goals and forecasts: improving sensitivity to inflationary gravitational waves with multitracer delensing. Journal of Cosmology and Astroparticle Physics 2024 (06) 010. (10.1088/1475-7516/2024/06/010)
- Paoletti, D. et al., 2024. LiteBIRD science goals and forecasts: primordial magnetic fields. Journal of Cosmology and Astroparticle Physics 2024 (07) 086. (10.1088/1475-7516/2024/07/086)
- Raffuzzi, N. et al., 2024. Unveiling V modes: Enhancing CMB sensitivity to BSM physics with a non-ideal half-wave plate. [Online].arXiv. (10.48550/ARXIV.2409.10424)Available at: https://arxiv.org/abs/2409.10424.
- Remazeilles, M. et al., 2024. LiteBIRD science goals and forecasts. Mapping the hot gas in the Universe. Journal of Cosmology and Astroparticle Physics 2024 026. (10.1088/1475-7516/2024/12/026)
- Shaikh, S. et al., 2024. Cosmology from cross-correlation of ACT-DR4 CMB lensing and DES-Y3 cosmic shear. Monthly Notices of the Royal Astronomical Society 528 (2) 2112. (10.1093/mnras/stad3987)
2023
- Bari, P. et al., 2023. An analytical study of the primordial gravitational-wave-induced contribution to the large-scale structure of the universe. Journal of Cosmology and Astroparticle Physics 2023 (July) 034. (10.1088/1475-7516/2023/07/034)
- Caloni, L. et al., 2023. Probing Lorentz-violating electrodynamics with CMB polarization. Journal of Cosmology and Astroparticle Physics 2023 (03) 018. (10.1088/1475-7516/2023/03/018)
- Fuskeland, U. et al., 2023. Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations. Astronomy & Astrophysics 676 A42. (10.1051/0004-6361/202346155)
2022
- Bari, P. et al., 2022. An analytical study of the primordial gravitational-wave-induced contribution to the large-scale structure of the universe. [Online].arXiv. (10.48550/ARXIV.2209.05329)Available at: https://arxiv.org/abs/2209.05329.
- Giardiello, S. et al. 2022. Detailed study of HWP non-idealities and their impact on future measurements of CMB polarization anisotropies from space. Astronomy & Astrophysics 658 A15. (10.1051/0004-6361/202141619)
- Hasebe, T. et al., 2022. Sensitivity modeling for LiteBIRD. Journal of Low Temperature Physics (10.1007/s10909-022-02921-7)
- LiteBIRD Collaboration, et al., 2022. Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey. Progress of Theoretical and Experimental Physics (10.1093/ptep/ptac150)
- The LiteBIRD Collaboration, et al., 2022. In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications. Journal of Cosmology and Astroparticle Physics 2022 (01)(10.1088/1475-7516/2022/01/039)
Articles
- Abitbol, M. et al., 2025. The Simons Observatory: science goals and forecasts for the enhanced Large Aperture Telescope. Journal of Cosmology and Astroparticle Physics 2025 (8) 34. (10.1088/1475-7516/2025/08/034)
- Atkins, Z. et al., 2025. The Atacama Cosmology Telescope: semi-analytic covariance matrices for the DR6 CMB power spectra. Journal of Cosmology and Astroparticle Physics 2025 (05) 015. (10.1088/1475-7516/2025/05/015)
- Aurvik, R. et al., 2025. On the computational feasibility of Bayesian end-to-end analysis of LiteBIRD simulations within Cosmoglobe. Journal of Cosmology and Astroparticle Physics 2025 (11) 041. (10.1088/1475-7516/2025/11/041)
- Bari, P. et al., 2023. An analytical study of the primordial gravitational-wave-induced contribution to the large-scale structure of the universe. Journal of Cosmology and Astroparticle Physics 2023 (July) 034. (10.1088/1475-7516/2023/07/034)
- Beringue, B. et al., 2025. The Atacama Cosmology Telescope: DR6 power spectrum foreground model and validation. Journal of Cosmology and Astroparticle Physics 2025 (10) 082. (10.1088/1475-7516/2025/10/082)
- Bortolami, M. et al., 2025. First release of LiteBIRD simulations from an end-to-end pipeline. Journal of Cosmology and Astroparticle Physics 2025 (11) 042. (10.1088/1475-7516/2025/11/042)
- Calabrese, E. et al. 2025. The Atacama Cosmology Telescope: DR6 constraints on extended cosmological models. Journal of Cosmology and Astroparticle Physics 2025 (11) 063. (10.1088/1475-7516/2025/11/063)
- Caloni, L. et al., 2023. Probing Lorentz-violating electrodynamics with CMB polarization. Journal of Cosmology and Astroparticle Physics 2023 (03) 018. (10.1088/1475-7516/2023/03/018)
- Campeti, P. et al., 2024. LiteBIRD science goals and forecasts. A case study of the origin of primordial gravitational waves using large-scale CMB polarization. Journal of Cosmology and Astroparticle Physics 2024 (06) 008. (10.1088/1475-7516/2024/06/008)
- Carralot, F. et al., 2025. Requirements on the gain calibration for LiteBIRD polarisation data with blind component separation. Journal of Cosmology and Astroparticle Physics 2025 (01) 019. (10.1088/1475-7516/2025/01/019)
- de la Hoz, E. et al., 2025. LiteBIRD science goals and forecasts: constraining isotropic cosmic birefringence. Journal of Cosmology and Astroparticle Physics 2025 (07) 083. (10.1088/1475-7516/2025/07/083)
- Fuskeland, U. et al., 2023. Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations. Astronomy & Astrophysics 676 A42. (10.1051/0004-6361/202346155)
- Giardiello, S. et al. 2025. Requirements on bandpass resolution and measurement precision for LiteBIRD. Journal of Cosmology and Astroparticle Physics 2025 (10) 038. (10.1088/1475-7516/2025/10/038)
- Giardiello, S. et al. 2024. The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis. Journal of Cosmology and Astroparticle Physics 2024 008. (10.1088/1475-7516/2024/09/008)
- Giardiello, S. et al. 2025. Modeling beam chromaticity for high-resolution CMB analyses. Physical Review D 111 (4) 043502. (10.1103/PhysRevD.111.043502)
- Giardiello, S. et al. 2022. Detailed study of HWP non-idealities and their impact on future measurements of CMB polarization anisotropies from space. Astronomy & Astrophysics 658 A15. (10.1051/0004-6361/202141619)
- Hasebe, T. et al., 2022. Sensitivity modeling for LiteBIRD. Journal of Low Temperature Physics (10.1007/s10909-022-02921-7)
- Leloup, C. et al., 2024. Impact of beam far side-lobe knowledge in the presence of foregrounds for LiteBIRD. Journal of Cosmology and Astroparticle Physics 06 011. (10.1088/1475-7516/2024/06/011)
- LiteBIRD Collaboration, et al., 2022. Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey. Progress of Theoretical and Experimental Physics (10.1093/ptep/ptac150)
- Lonappan, A. et al., 2024. LiteBIRD science goals and forecasts: a full-sky measurement of gravitational lensing of the CMB. Journal of Cosmology and Astroparticle Physics 2024 (06) 009. (10.1088/1475-7516/2024/06/009)
- Louis, T. et al., 2025. The Atacama Cosmology Telescope: DR6 power spectra, likelihoods and ΛCDM parameters. Journal of Cosmology and Astroparticle Physics 2025 (11) 062. (10.1088/1475-7516/2025/11/062)
- Naess, S. et al., 2025. The Atacama Cosmology Telescope: DR6 maps. Journal of Cosmology and Astroparticle Physics 2025 (11) 061. (10.1088/1475-7516/2025/11/061)
- Namikawa, T. et al., 2024. LiteBIRD science goals and forecasts: improving sensitivity to inflationary gravitational waves with multitracer delensing. Journal of Cosmology and Astroparticle Physics 2024 (06) 010. (10.1088/1475-7516/2024/06/010)
- Paoletti, D. et al., 2024. LiteBIRD science goals and forecasts: primordial magnetic fields. Journal of Cosmology and Astroparticle Physics 2024 (07) 086. (10.1088/1475-7516/2024/07/086)
- Raffuzzi, N. et al., 2025. Unveiling V modes: enhancing CMB sensitivity to BSM physics with a non-ideal half-wave plate. Journal of Cosmology and Astroparticle Physics 2025 (03) 009. (10.1088/1475-7516/2025/03/009)
- Remazeilles, M. et al., 2024. LiteBIRD science goals and forecasts. Mapping the hot gas in the Universe. Journal of Cosmology and Astroparticle Physics 2024 026. (10.1088/1475-7516/2024/12/026)
- Ruiz-Granda, M. et al., 2025. LiteBIRD science goals and forecasts: improved full-sky reconstruction of the gravitational lensing potential through the combination of Planck and LiteBIRD data. Journal of Cosmology and Astroparticle Physics 11 (2025) 073. (10.1088/1475-7516/2025/11/073)
- Shaikh, S. et al., 2024. Cosmology from cross-correlation of ACT-DR4 CMB lensing and DES-Y3 cosmic shear. Monthly Notices of the Royal Astronomical Society 528 (2) 2112. (10.1093/mnras/stad3987)
- The LiteBIRD Collaboration, et al., 2022. In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications. Journal of Cosmology and Astroparticle Physics 2022 (01)(10.1088/1475-7516/2022/01/039)
- Tomasi, M. et al., 2025. A simulation framework for the LiteBIRD instruments. Journal of Cosmology and Astroparticle Physics 2025 (11) 040. (10.1088/1475-7516/2025/11/040)
Conferences
- Braithwaite, C. et al. 2024. A study on the performance of half-wave plates designed for sub-mm studies. Presented at: SPIE Astronomical Telescopes + Instrumentation Yokohama, Japan 15-20 June 2024. Proc. SPIE 13096: Ground-based and Airborne Instrumentation for Astronomy X. SPIE. (10.1117/12.3019262)
- Ghigna, T. et al., 2024. The LiteBIRD mission to explore cosmic inflation. Presented at: SPIE Astronomical Telescopes + Instrumentation Yokohama, Japan 16-22 June 2024. Published in: Coyle, L. E. , Matsuura, S. and Perrin, M. D. eds. Proceedings Volume 13092, Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave;. Society of Photo-optical Instrumentation Engineers. (10.1117/12.3021377)
Websites
- Bari, P. et al., 2022. An analytical study of the primordial gravitational-wave-induced contribution to the large-scale structure of the universe. [Online].arXiv. (10.48550/ARXIV.2209.05329)Available at: https://arxiv.org/abs/2209.05329.
- Beringue, B. et al. 2025. The Atacama Cosmology Telescope: DR6 power spectrum foreground model and validation. [Online].arXiv: Cornell University. (10.48550/arXiv.2506.06274)Available at: https://doi.org/10.48550/arXiv.2506.06274.
- Ghigna, T. et al., 2024. The LiteBIRD mission to explore cosmic inflation. [Online].arXiv. Available at: https://doi.org/10.48550/arXiv.2406.02724.
- Giardiello, S. 2025. Requirements on bandpass resolution and measurement precision for LiteBIRD. [Online].arXiv: Cornell University. (10.48550/arXiv.2506.22217)Available at: https://doi.org/10.48550/arXiv.2506.22217.
- Giardiello, S. et al. 2025. The Atacama Cosmology Telescope: DR6 constraints on extended cosmological models. [Online].ArXiv: Cornell university. (10.48550/arXiv.2503.14454)Available at: https://doi.org/10.48550/arXiv.2503.14454.
- Hervías-Caimapo, C. , Calabrese, E. and Giardiello, S. 2025. The Simons Observatory: Validation of reconstructed power spectra from simulated filtered maps for the Small Aperture Telescope survey. [Online].arXiv: Cornell University. Available at: https://doi.org/10.48550/arXiv.2502.00946.
- Raffuzzi, N. et al., 2024. Unveiling V modes: Enhancing CMB sensitivity to BSM physics with a non-ideal half-wave plate. [Online].arXiv. (10.48550/ARXIV.2409.10424)Available at: https://arxiv.org/abs/2409.10424.
- the LiteBIRD Collaboration, and Giardiello, S. 2025. LiteBIRD science goals and forecasts: constraining isotropic cosmic birefringence. [Online].arXiv: Cornell University. (10.48550/arXiv.2503.22322)Available at: https://doi.org/10.48550/arXiv.2503.22322.
- The Simons Observatory Collaboration, , Abitbol, M. and Giardiello, S. 2025. The Simons Observatory: Science goals and forecasts for the enhanced large aperture telescope. [Online].arXiv: Cornell University. Available at: https://doi.org/10.48550/arXiv.2503.00636.
Research
My current research activity is mainly focused on the study of the propagation of systematic effects in experiments observing the Cosmic Microwave Background (CMB).
Half-Wave Plate systematics
For the upcoming LiteBIRD satellite, I have studied the half-wave plate (HWP) systematics and their effect on the constraints on the amplitude of primordial gravitational waves. The HWP is an optical element that will help achieving a higher sensitivity B-mode signal. The quest for primordial B-modes is one of the main goals of forthcoming CMB experiments: observing this signal will allow to constrain the amplitude of a (possible) primordial gravitational wave background, which would be the smoking-gun of inflationary mechanisms. Characterizing any possible systematic effects that contaminates the primordial signal is thus vital.
I am also studying the joint effect of HWP systematics and out-of-band contamination signal.
Study of systematic effects on small scales CMB power spectra
For the ground-based Simons Observatory, I am studying the propagation of systematic effects related to bandpasses, calibration and polarization angle on the constraining power of the high-ell CMB data collected by the Large Aperture Telescope (LAT). The study of small scales CMB power spectra will allow to better constrain the radiation and particle content of the Universe, the weak gravitational lensing, the Sunyaev-Zeldovich effect (among many science cases). We study how these classes of systematics affect the estimate of both cosmological and foreground parameters. My activity includes the development of the LAT likelihood code (LAT_MFLike), which will be relevant also for the forthcoming ACT dr6 data analysis.
Probing Lorentz violation with CMB polarization
CMB polarization data can be used to constrain models of Lorentz-violating electrodynamics. We derived the modified propagation of CMB photons due to a non standard EM Lagrangian and computed from that the CMB power spectra affected by phenomenological Lorentz-violating parameters. The model taken into account generates both cosmic birefringence and circular polarization. We used the most recent CMB polarization data to set competitive constraints on these Lorentz-violating parameters.
Teaching
Tutoring
- 10/20 - 09/21: Assistant for the course of Statistics and models of experimental data, Master Degree in Mechanical Engineering, Università degli Studi di Ferrara, Italy
- 01/20 - 05/20: Tutor of Physics, Bachelor Degree in Biotechnology, Università degli Studi di Ferrara, Italy
- 03/20 - 06/20: Tutor of Physics I, Bachelor Degree in Geology, Università degli Studi di Ferrara, Italy
Biography
Appointment
- 11/2022 - present: Research Associate, Cardiff University, UK
Education
-
11/2019 - 3/2023: PhD in Physics, Università degli Studi di Ferrara, Italy. Supervisor: Dr. Martina Gerbino
- 04/2018 - 08/2018: Erasmus +, Ruprecht-Karls-Universitaet, Heidelberg, Germany
-
09/2017 - 09/2019: Master Degree in Physics, Università degli Studi di Padova, Italy. Grade: 110/110 laude
-
09/2014 - 09/2017: Bachelor Degree in Astronomy, Università degli Studi di Padova, Italy. Grade: 110/110 laude
Contact Details
Queen's Buildings - North Building, Room N/3.20A, 5 The Parade, Newport Road, Cardiff, CF24 3AA