Professor Mark Hannam
- Available for postgraduate supervision
Teams and roles for Mark Hannam
Head of Gravity Exploration Institute
Overview
I study black holes and gravitational waves. Black holes are the most extreme objects in the universe (that we know of!), and gravitational waves are the opposite: they are so weak that they can only be detected with the most sensitive instruments that humans have ever built; when they were measured for the first time in 2015, it was one hundred years after Einstein first prediced them. Those signals were produced by black holes colliding with each other. My research has focussed on understanding and modelling the gravitational-wave signals from just such events, and the models we devevlop are used to measure the properties of those events -- how massive were the black holes, how fast were they spinning, and where were they in the universe? These measurements are filling in details in our understanding of how black holes form, and, in turn, about the past, present and future of our universe.
Publication
2025
- Abac, A. G. et al., 2025. Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run. The Astrophysical Journal 983 (2) 99. (10.3847/1538-4357/adb3a0)
- Abac, A. G. et al., 2025. Search for gravitational waves emitted from SN 2023ixf. The Astrophysical Journal 985 (2) 183. (10.3847/1538-4357/adc681)
- Afshordi, N. et al., 2025. Waveform modelling for the Laser Interferometer Space Antenna. Living Reviews in Relativity 28 9. (10.1007/s41114-025-00056-1)
- Aiello, L. et al., 2025. Tests of general relativity with GWTC-3. Physical Review D 112 084080. (10.1103/PhysRevD.112.084080)
- Al-Shammari, S. et al. 2025. GW241011 and GW241110: Exploring binary formation and fundamental physics with asymmetric, high-spin black hole coalescences. The Astrophysical Journal Letters 993 L21. (10.3847/2041-8213/ae0d54)
- Al-Shammari, S. et al. 2025. GW231123: A binary black hole merger with total mass 190–265 M⊙. The Astrophysical Journal Letters 993 (1) L25. (10.3847/2041-8213/ae0c9c)
- al-Shammari, S. et al. 2025. All-sky search for short gravitational-wave bursts in the first part of the fourth LIGO-Virgo-KAGRA observing run. Physical Review D 112 102005. (10.1103/wjdz-jdby)
- Amarasinghege, O. et al. 2025. GW250114: Testing Hawking’s area law and the Kerr nature of black holes. Physical Review Letters 135 111403. (10.1103/kw5g-d732)
- Ghosh, S. and Hannam, M. 2025. Identification of exotic compact binaries with gravitational waves: A phenomenological approach. Physical Review D (particles, fields, gravitation, and cosmology) 112 (10) 104017. (10.1103/76dz-vs8j)
- Kolitsidou, P. , Thompson, J. E. and Hannam, M. 2025. Impact of antisymmetric contributions to signal multipoles in the measurement of black-hole spins. Physical Review D (particles, fields, gravitation, and cosmology) 111 (2) 024050. (10.1103/physrevd.111.024050)
- Thompson, J. E. et al., 2025. Use and interpretation of signal-model indistinguishability measures for gravitational-wave astronomy. Physical Review D (particles, fields, gravitation, and cosmology) 112 (6) 064011. (10.1103/ddz7-x9zz)
2024
- Abac, A. G. et al., 2024. Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo. The Astrophysical Journal 973 (2) 132. (10.3847/1538-4357/ad65ce)
- Abac, A. G. et al., 2024. Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star. The Astrophysical Journal Letters 970 (2) L34. (10.3847/2041-8213/ad5beb)
- Abbott, R. et al., 2024. GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Physical Review D (particles, fields, gravitation, and cosmology) 109 (2) 022001. (10.1103/PhysRevD.109.022001)
- Abbott, R. et al., 2024. Search for gravitational-lensing signatures in the full third observing run of the LIGO–Virgo network. Astrophysical Journal 970 (191)(10.3847/1538-4357/ad3e83)
- Abbott, R. et al., 2024. Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run. The Astrophysical Journal 966 (1) 137. (10.3847/1538-4357/ad27d3)
- Aurrekoetxea, J. C. , Hoy, C. and Hannam, M. 2024. Revisiting the cosmic string origin of GW190521. Physical Review Letters 132 (18) 181401. (10.1103/PhysRevLett.132.181401)
- Fletcher, C. et al., 2024. A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run. The Astrophysical Journal 964 (2) 149. (10.3847/1538-4357/ad1eed)
- Ghosh, S. , Kolitsidou, P. and Hannam, M. 2024. First frequency-domain phenomenological model of the multipole asymmetry in gravitational-wave signals from binary-black-hole coalescence. Physical Review D (particles, fields, gravitation, and cosmology) 109 (2) 024061. (10.1103/PhysRevD.109.024061)
- Hamilton, E. et al. 2024. Catalog of precessing black-hole-binary numerical-relativity simulations. Physical Review D (particles, fields, gravitation, and cosmology) 109 (4) 044032. (10.1103/PhysRevD.109.044032)
- Thompson, J. E. et al., 2024. Phenomenological gravitational-wave model for precessing black-hole binaries with higher multipoles and asymmetries. Physical Review D (particles, fields, gravitation, and cosmology) 109 (6) 063012. (10.1103/PhysRevD.109.063012)
2023
- Abbott, R. et al., 2023. Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a. Astrophysical Journal 955 (2) 155. (10.3847/1538-4357/acd770)
- Abbott, R. et al., 2023. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Physical Review X 13 (1) 011048. (10.1103/PhysRevX.13.011048)
- Abbott, R. et al., 2023. Constraints on the cosmic expansion history from GWTC–3. Astrophysical Journal 949 (2) 76. (10.3847/1538-4357/ac74bb)
- Abbott, R. et al., 2023. Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run. Monthly Notices of the Royal Astronomical Society stad588. (10.1093/mnras/stad588)
- Hamilton, E. , London, L. and Hannam, M. 2023. Ringdown frequencies in black holes formed from precessing black-hole binaries. Physical Review D (particles, fields, gravitation, and cosmology) 107 (10) 104035. (10.1103/PhysRevD.107.104035)
2022
- Abbott, R. et al., 2022. Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run. Astrophysical Journal 932 (2) 133. (10.3847/1538-4357/ac6ad0)
- Abbott, R. et al., 2022. Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO-Virgo Run O3b. Astrophysical Journal 928 (2) 186. (10.3847/1538-4357/ac532b)
- Abbott, R. et al., 2022. Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy & Astrophysics 659 A84. (10.1051/0004-6361/202141452)
- Abbott, R. et al., 2022. All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D 105 (12) 122001. (10.1103/PhysRevD.105.122001)
- Abbott, R. et al., 2022. Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D 105 (6) 063030. (10.1103/PhysRevD.105.063030)
- Abbott, R. et al., 2022. Search for subsolar-mass binaries in the first half of advanced LIGO's and advanced Virgo's third observing run. Physical Review Letters 129 (6)(10.1103/PhysRevLett.129.061104)
- Abbott, R. et al., 2022. Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D 105 (8) 082005. (10.1103/PhysRevD.105.082005)
- Abbott, R. et al., 2022. All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. Physical Review D 105 (10) 102001. (10.1103/PhysRevD.105.102001)
- Abbott, R. et al., 2022. First joint observation by the underground gravitational-wave detector, KAGRA, with GEO 600. Progress of Theoretical and Experimental Physics 2022 (6) 063F01. (10.1093/ptep/ptac073)
- Abbott, R. et al., 2022. Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO-Virgo data. Physical Review D 106 (4) 042003. (10.1103/PhysRevD.106.042003)
- Abbott, R. et al., 2022. Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data. Physical Review D 106 (6) 062002. (10.1103/PhysRevD.106.062002)
- Fairhurst, S. et al. 2022. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. Physical Review D 106 (10)(10.1103/PhysRevD.106.102008)
- Hannam, M. et al. 2022. General-relativistic precession in a black-hole binary. Nature 610 (7933), pp.652-655. (10.1038/s41586-022-05212-z)
- Hoy, C. et al. 2022. Understanding how fast black holes spin by analyzing data from the second gravitational-wave catalogue. Astrophysical Journal 928 (1) 75. (10.3847/1538-4357/ac54a3)
2021
- Aasi, J. et al., 2021. Erratum: "Searches for continuous gravitational waves from nine young supernova remnants" (2015, ApJ, 813, 39). Astrophysical Journal 918 (2), pp.90. (10.3847/1538-4357/ac1f2d)
- Abbott, B. P. et al., 2021. A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo. Astrophysical Journal 909 (2) 218. (10.3847/1538-4357/abdcb7)
- Abbott, R. et al., 2021. All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D 103 (6) 064017. (10.1103/PhysRevD.103.064017)
- Abbott, R. et al., 2021. Constraints on cosmic strings using data from the third advanced LIGO-Virgo observing run. Physical Review Letters 126 (24) 241102. (10.1103/PhysRevLett.126.241102)
- Abbott, R. et al., 2021. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Physical Review X 11 (2) 021053. (10.1103/PhysRevX.11.021053)
- Abbott, R. et al., 2021. Observation of gravitational waves from two neutron star-black hole coalescences. Astrophysical Journal Letters 915 (1) L5. (10.3847/2041-8213/ac082e)
- Abbott, R. et al., 2021. Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D 104 (2) 022005. (10.1103/PhysRevD.104.022005)
- Abbott, R. et al., 2021. Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO-Virgo run O3a. Astrophysical Journal 915 (2) 86. (10.3847/1538-4357/abee15)
- Abbott, R. et al., 2021. Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run. Astrophysical Journal 923 (1) 14. (10.3847/1538-4357/ac23db)
- Abbott, R. et al., 2021. Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D 104 (2) 022004. (10.1103/PhysRevD.104.022004)
- Abbott, R. et al., 2021. All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D 104 122004. (10.1103/PhysRevD.104.122004)
- Abbott, R. et al., 2021. Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX 13 100658. (10.1016/j.softx.2021.100658)
- Abbott, R. et al., 2021. Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D 103 (12) 122002. (10.1103/PhysRevD.103.122002)
- Green, R. et al. 2021. Identifying when precession can be measured in gravitational waveforms. Physical Review D 103 (12) 124023. (10.1103/PhysRevD.103.124023)
- Hamilton, E. et al. 2021. Model of gravitational waves from precessing black-hole binaries through merger and ringdown. Physical Review D 104 (12) 124027. (10.1103/PhysRevD.104.124027)
- Kalaghatgi, C. and Hannam, M. 2021. Investigating the effect of in-plane spin directions for precessing binary black hole systems. Physical Review D 103 (2) 024024. (10.1103/PhysRevD.103.024024)
2020
- Abbott, B. P. et al., 2020. A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity 37 (5) 055002. (10.1088/1361-6382/ab685e)
- Abbott, B. P. et al., 2020. Model comparison from LIGO-Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity 37 (4) 045006. (10.1088/1361-6382/ab5f7c)
- Abbott, B. P. et al., 2020. Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D 101 (8) 084002. (10.1103/PhysRevD.101.084002)
- Abbott, B. P. et al., 2020. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity 23 (1) 3. (10.1007/s41114-020-00026-9)
- Abbott, R. et al., 2020. Gravitational-wave constraints on the equatorial ellipticity of millisecond pulsars. Astrophysical Journal Letters 902 (1) L21. (10.3847/2041-8213/abb655)
- Abbott, R. et al., 2020. GW190412: observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D 102 (4) 043015. (10.1103/PhysRevD.102.043015)
- Abbott, R. et al., 2020. GW190521: a binary back hole merger with a total mass of 150 M⊙. Physical Review Letters 125 (10) 101102. (10.1103/PhysRevLett.125.101102)
- Abbott, R. et al., 2020. GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophysical Journal Letters 896 (2) L44. (10.3847/2041-8213/ab960f)
- Abbott, R. et al., 2020. Properties and astrophysical implications of the 150 M ⊙ binary black hole merger GW190521. Astrophysical Journal Letters 900 (1) L13. (10.3847/2041-8213/aba493)
- Fairhurst, S. et al. 2020. When will we observe binary black holes precessing?. Physical Review D 102 (4) 041302(R). (10.1103/PhysRevD.102.041302)
- Fairhurst, S. et al. 2020. Two-harmonic approximation for gravitational waveforms from precessing binaries. Physical Review D 102 (2) 024055. (10.1103/PhysRevD.102.024055)
- Hamburg, R. et al., 2020. A joint Fermi-GBM and LIGO/Virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs. Astrophysical Journal 893 (2) 100. (10.3847/1538-4357/ab7d3e)
- Kalaghatgi, C. , Hannam, M. and Raymond, V. 2020. Parameter estimation with a spinning multimode waveform model. Physical Review D 101 (10) 103004. (10.1103/PhysRevD.101.103004)
- Thompson, J. E. et al. 2020. Modeling the gravitational wave signature of neutron star black hole coalescences. Physical Review D 101 (12) 124059. (10.1103/PhysRevD.101.124059)
2019
- Abbott, B. P. et al., 2019. Binary black hole population properties inferred from the first and second observing runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters 882 (2) L24. (10.3847/2041-8213/ab3800)
- Abbott, B. P. et al., 2019. Properties of the binary neutron star merger GW170817. Physical Review X 9 (1) 011001. (10.1103/PhysRevX.9.011001)
- Abbott, B. P. et al., 2019. Search for gravitational-wave signals associated with gamma-ray bursts during the second observing run of advanced LIGO and Advanced Virgo. Astrophysical Journal 886 (1) 75. (10.3847/1538-4357/ab4b48)
- Abbott, B. P. et al., 2019. Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015?2017 LIGO Data. Astrophysical Journal 879 (1), pp.10. 10. (10.3847/1538-4357/ab20cb)
- Abbott, B. et al., 2019. All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D 100 (2), pp.-. 024017. (10.1103/PhysRevD.100.024017)
- Abbott, B. et al., 2019. Constraining the p-Mode-g-Mode tidal instability with GW170817. Physical Review Letters 122 (6), pp.-. 061104. (10.1103/PhysRevLett.122.061104)
- Abbott, B. et al., 2019. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Physical Review X 9 (3) 031040. (10.1103/PhysRevX.9.031040)
- Abbott, B. et al., 2019. Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D 100 (12) 122002. (10.1103/PhysRevD.100.122002)
- Abbott, B. et al., 2019. Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D 100 (6) 064064. (10.1103/PhysRevD.100.064064)
- Abbott, B. et al., 2019. Search for subsolar mass ultracompact binaries in advanced LIGO's second observing run. Physical Review Letters 123 (16) 161102. (10.1103/PhysRevLett.123.161102)
- Abbott, B. et al., 2019. Tests of general relativity with GW170817. Physical Review Letters 123 , pp.-. 011102. (10.1103/PhysRevLett.123.011102)
- Abbott, B. et al., 2019. Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D 100 (10) 104036. (10.1103/PhysRevD.100.104036)
- Booth, C. et al. 2019. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D 100 (2) 024004. (10.1103/PhysRevD.100.024004)
- Burns, E. et al., 2019. A fermi gamma-ray burst monitor search for electromagnetic signals coincident with gravitational-wave candidates in advanced LIGO's first observing run. Astrophysical Journal 871 (1) 90. (10.3847/1538-4357/aaf726)
- Chatziioannou, K. et al., 2019. On the properties of the massive binary black hole merger GW170729. Physical Review D 100 (10) 104015. (10.1103/PhysRevD.100.104015)
- Khan, S. et al. 2019. Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D 100 (2) 024059. (10.1103/PhysRevD.100.024059)
2018
- Abbott, B. P. et al., 2018. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity 35 (6) 065010. (10.1088/1361-6382/aaaafa)
- Abbott, B. P. et al., 2018. GW170817: Measurements of neutron star radii and equation of state. Physical Review Letters 121 (16) 161101. (10.1103/PhysRevLett.121.161101)
- Abbott, B. P. et al., 2018. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity 21 (1)(10.1007/s41114-018-0012-9)
- Abbott, B. et al., 2018. Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D 97 (10) 102002. (10.1103/PhysRevD.97.102002)
- Abbott, B. et al., 2018. Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D 97 (10) 102003. (10.1103/PhysRevD.97.102003)
- Abbott, B. et al., 2018. GW170817: Implications for the stochastic gravitational-wave background from compact binary coalescences. Physical Review Letters 120 (9)(10.1103/PhysRevLett.120.091101)
- Abbott, B. et al., 2018. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters 120 (20), pp.-. 201102. (10.1103/PhysRevLett.120.201102)
- Dudi, R. et al., 2018. Relevance of tidal effects and post-merger dynamics for binary neutron star parameter estimation. Physical Review D 98 (8) 084061. (10.1103/PhysRevD.98.084061)
- Hamilton, E. and Hannam, M. 2018. Inferring black-hole orbital dynamics from numerical-relativity gravitational waveforms. Physical Review D 98 (8) 084018. (10.1103/PhysRevD.98.084018)
- London, L. et al. 2018. First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries. Physical Review Letters 120 (16) 161102. (10.1103/PhysRevLett.120.161102)
- Nagar, A. et al., 2018. Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects. Physical Review D 98 (10) 104052. (10.1103/PhysRevD.98.104052)
- Slinker, K. , Evans, C. R. and Hannam, M. 2018. Trumpet initial data for boosted black holes. Physical Review D 98 (4) 044014. (10.1103/PhysRevD.98.044014)
- Tiwari, V. , Fairhurst, S. and Hannam, M. 2018. Constraining black hole spins with gravitational-wave observations. Astrophysical Journal 868 (2), pp.-. 140. (10.3847/1538-4357/aae8df)
2017
- Abbott, B. P. et al., 2017. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551 , pp.85-88. (10.1038/nature24471)
- Abbott, B. P. et al., 2017. Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity 34 (10), pp.-. 104002. (10.1088/1361-6382/aa6854)
- Abbott, B. P. et al., 2017. Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817. Astrophysical Journal Letters 850 (2) L39. (10.3847/2041-8213/aa9478)
- Abbott, B. P. et al., 2017. Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity 34 (4) 044001. (10.1088/1361-6382/aa51f4)
- Abbott, B. P. et al., 2017. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophysical Journal Letters 848 (2) L13. (10.3847/2041-8213/aa920c)
- Abbott, B. P. et al., 2017. GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Physical Review Letters 118 (22) 221101. (10.1103/PhysRevLett.118.221101)
- Abbott, B. P. et al., 2017. GW170608: Observation of a 19 solar-mass binary black hole coalescence. Astrophysical Journal Letters 851 L35. (10.3847/2041-8213/aa9f0c)
- Abbott, B. P. et al., 2017. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Physical Review Letters 119 (14) 141101. (10.1103/PhysRevLett.119.141101)
- Abbott, B. P. et al., 2017. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters 119 (16) 161101. (10.1103/PhysRevLett.119.161101)
- Abbott, B. P. et al., 2017. Multi-messenger observations of a Binary Neutron Star Merger. Astrophysical Journal Letters 848 (2) L12. (10.3847/2041-8213/aa91c9)
- Abbott, B. P. et al., 2017. The basic physics of the binary black hole merger GW150914. Annelen der Physik 529 (1-2) 1600209. (10.1002/andp.201600209)
- Abbott, B. et al., 2017. Search for post-merger Gravitational Waves from the remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters 851 (1) L16. (10.3847/2041-8213/aa9a35)
- Abbott, B. et al., 2017. Calibration of the advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D 95 062003. (10.1103/PhysRevD.95.062003)
- Abbott, B. et al., 2017. Directional limits on persistent gravitational waves from advanced LIGO's first observing run. Physical Review Letters 118 , pp.-. 121102. (10.1103/PhysRevLett.118.121102)
- Abbott, B. et al., 2017. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D 96 (12), pp.-. 122006. (10.1103/PhysRevD.96.122006)
- Abbott, B. et al., 2017. Upper limits on the stochastic gravitational-wave background from advanced LIGO's first observing run. Physical Review Letters 118 (12)(10.1103/PhysRevLett.118.121101)
- Dorrington, I. et al. 2017. Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. The Astrophysical Journal Letters 850 (2) L35. (10.3847/2041-8213/aa9aed)
- Jiménez-Forteza, X. et al., 2017. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy. Physical Review D 95 (6), pp.-. 064024. (10.1103/PhysRevD.95.064024)
- Keitel, D. et al., 2017. The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity. Physical Review D 96 (2), pp.-. 024006. (10.1103/PhysRevD.96.024006)
- Puerrer, M. , Hannam, M. and Ohme, F. 2017. Can we measure individual black-hole spins from gravitational-wave observations?. Presented at: 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity 12 -18 July 2015. Published in: Bianchi, M. , Jantzen, R. T. and Ruffini, R. eds. 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories: Proceedings of the MG14 Meeting on General Relativity. World Scientific Publishing. , pp.3144-3148. (10.1142/9789813226609_0399)
- Puerrer, M. et al. 2017. Accelerating parameter estimation of gravitational waves from black hole binaries with reduced order quadratures. Presented at: 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity 12 -18 July 2015. Published in: Bianchi, M. , Jantzen, R. T. and Ruffini, R. eds. 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories: Proceedings of the MG14 Meeting on General Relativity. World Scientific Publishing. , pp.2015-2018. (10.1142/9789813226609_0218)
2016
- Aasi, J. et al., 2016. First low frequency all-sky search for continuous gravitational wave signals. Physical Review D 93 (4) 042007. (10.1103/PhysRevD.93.042007)
- Abbott, B. P. et al., 2016. Binary black hole mergers in the first advanced LIGO observing run. Physical Review X 6 (4) 041015. (10.1103/PhysRevX.6.041015)
- Abbott, B. P. et al., 2016. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity 33 (13) 134001. (10.1088/0264-9381/33/13/134001)
- Abbott, B. P. et al., 2016. Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D 94 (4), pp.-. 042002. (10.1103/PhysRevD.94.042002)
- Abbott, B. P. et al., 2016. First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D 94 (10), pp.-. 102001. (10.1103/PhysRevD.94.102001)
- Abbott, B. P. et al., 2016. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D 93 (12) 122003. (10.1103/PhysRevD.93.122003)
- Abbott, B. P. et al., 2016. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Physical Review Letters 116 (24) 241103. (10.1103/PhysRevLett.116.241103)
- Abbott, B. P. et al., 2016. Improved analysis of GW150914 using a fully spin-precessing waveform model. Physical Review X 6 (4), pp.-. 041014. (10.1103/PhysRevX.6.041014)
- Abbott, B. P. et al., 2016. Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophysical Journal Letters 826 (1), pp.-. L13. (10.3847/2041-8205/826/1/L13)
- Abbott, B. P. et al., 2016. Observation of gravitational waves from a binary black hole merger. Physical Review Letters 116 (6) 061102. (10.1103/PhysRevLett.116.061102)
- Abbott, B. P. et al., 2016. Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D 93 (12) 122004. (10.1103/PhysRevD.93.122004)
- Abbott, B. P. et al., 2016. Properties of the binary black hole merger GW150914. Physical Review Letters 116 (24) 241102. (10.1103/PhysRevLett.116.241102)
- Abbott, B. P. et al., 2016. Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013. Physical Review D 93 (12), pp.-. 122008. (10.1103/PhysRevD.93.122008)
- Abbott, B. P. et al., 2016. Supplement: 'Localization and broadband follow-up of the gravitational-wave transient GW150914' (2016, ApJL, 826, l13). Astrophysical Journal Supplement 225 (1), pp.1-15. (10.3847/0067-0049/225/1/8)
- Abbott, B. P. et al., 2016. Tests of general relativity with GW150914. Physical Review Letters 116 (22) 221101. (10.1103/PhysRevLett.116.221101)
- Abbott, B. P. et al., 2016. Upper limits on the rates of binary neutron star and neutron star-black hole mergers from advanced Ligo's first observing run. Astrophysical Journal Letters 832 (2), pp.-. L21. (10.3847/2041-8205/832/2/L21)
- Abbott, B. P. et al., 2016. GW150914: implications for the stochastic gravitational wave background from binary black holes. Physical Review Letters 116 131102. (10.1103/PhysRevLett.116.131102)
- Abbott, B. P. et al., 2016. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity 19 1. (10.1007/lrr-2016-1)
- Adams, T. et al. 2016. Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review d Particles and Fields 93 (4) 042006. (10.1103/PhysRevD.93.042006)
- Adrián-Martínez, S. et al., 2016. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D 93 (12) 122010. (10.1103/PhysRevD.93.122010)
- Coughlin, S. B. et al. 2016. All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D. 93 (4) 042005. (10.1103/PhysRevD.93.042005)
- Husa, S. et al., 2016. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Physical Review D - Particles, Fields, Gravitation and Cosmology 93 (4) 044006. (10.1103/PhysRevD.93.044006)
- Khan, S. et al., 2016. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Physical Review D 93 (4) 044007. (10.1103/PhysRevD.93.044007)
- Pürrer, M. , Hannam, M. and Ohme, F. 2016. Can we measure individual black-hole spins from gravitational-wave observations?. Physical Review D 93 (8) 084042. (10.1103/PhysRevD.93.084042)
2015
- Aasi, J. et al., 2015. Advanced LIGO. Classical and Quantum Gravity 32 (7) 074001. (10.1088/0264-9381/32/7/074001)
- Aasi, J. et al., 2015. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D 91 022004. (10.1103/PhysRevD.91.022004)
- Adams, T. et al., 2015. Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review d Particles and Fields 91 (6) 062008. (10.1103/PhysRevD.91.062008)
- Adams, T. et al., 2015. Searches for continuous gravitational waves from nine young supernova remnants. The Astrophysical Journal 813 (1) 39. (10.1088/0004-637X/813/1/39)
- Schmidt, P. , Ohme, F. and Hannam, M. 2015. Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter. Physical Review D 91 (2) 024043. (10.1103/PhysRevD.91.024043)
2014
- Aasi, J. et al., 2014. Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D - Particles, Fields, Gravitation and Cosmology 89 , pp.-. 122004. (10.1103/PhysRevD.89.122004)
- Aasi, J. et al., 2014. Search for gravitational waves associated with gamma-ray bursts detected by the interplanetary network. Physical Review Letters 113 (1) 011102. (10.1103/PhysRevLett.113.011102)
- Aasi, J. et al., 2014. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity 31 (11) 115004. (10.1088/0264-9381/31/11/115004)
- Hannam, M. 2014. Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects. General Relativity and Gravitation 46 (9) 1767. (10.1007/s10714-014-1767-2)
- Hannam, M. et al. 2014. Simple model of complete precessing black-hole-binary gravitational waveforms. Physical Review Letters 113 (15) 151101. (10.1103/PhysRevLett.113.151101)
- Varma, V. et al., 2014. Gravitational-wave observations of binary black holes: Effect of nonquadrupole modes. Physical Review D - Particles, Fields, Gravitation and Cosmology 90 (12), pp.-. 124004. (10.1103/PhysRevD.90.124004)
2013
- Baird, E. et al., 2013. Degeneracy between mass and spin in black-hole-binary waveforms. Physical Review D 87 (2) 024035. (10.1103/PhysRevD.87.024035)
- Hannam, M. et al. 2013. When can gravitational-wave observations distinguish between black holes and neutron stars?. Astrophysical Journal Letters 766 (1) L14. (10.1088/2041-8205/766/1/L14)
- Hinder, I. et al., 2013. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration. Classical and Quantum Gravity 31 (2), pp.-. 025012. (10.1088/0264-9381/31/2/025012)
- Pürrer, M. et al., 2013. Testing the validity of the single-spin approximation in inspiral-merger-ringdown waveforms. Physical Review D 88 (6) 064007. (10.1103/PhysRevD.88.064007)
2012
- Ajith, P. et al., 2012. The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries. Classical and Quantum Gravity 29 (12) 124001. (10.1088/0264-9381/29/12/124001)
- Kamaretsos, I. et al. 2012. Black-hole hair loss: learning about binary progenitors from ringdown signals. Physical Review D 85 (2) 024018. (10.1103/PhysRevD.85.024018)
- Kamaretsos, I. , Hannam, M. and Sathyaprakash, B. S. 2012. Is black-hole ringdown a memory of its progenitor?. Physical Review Letters 109 (14) 141102. (10.1103/PhysRevLett.109.141102)
- Pürrer, M. , Husa, S. and Hannam, M. 2012. An efficient iterative method to reduce eccentricity in numerical-relativity simulations of compact binary inspiral. Physical Review D 85 (12), pp.124051-124076. (10.1103/PhysRevD.85.124051)
- Sathyaprakash, B. S. et al. 2012. Scientific objectives of Einstein Telescope. Classical and Quantum Gravity 29 (12) 124013. (10.1088/0264-9381/29/12/124013)
- Schmidt, P. , Hannam, M. and Husa, S. 2012. Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals. Physical Review D 86 (10) 104063 (. (10.1103/PhysRevD.86.104063)
2011
- Ajith, P. et al., 2011. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. Physical Review Letters 106 (24) 241101. (10.1103/PhysRevLett.106.241101)
- Hannam, M. and Hawke, I. 2011. Numerical relativity simulations in the era of the Einstein Telescope. General Relativity and Gravitation 43 (2), pp.465-483. (10.1007/s10714-010-1008-2)
- Hild, S. et al., 2011. Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity 28 (9) 094013. (10.1088/0264-9381/28/9/094013)
- Ohme, F. , Hannam, M. and Husa, S. 2011. Reliability of complete gravitational waveform models for compact binary coalescences. Physical Review D 84 (6) 064029. (10.1103/PhysRevD.84.064029)
- Ohme, F. , Hannam, M. and Husa, S. 2011. Reliability of complete gravitational waveform models for compact binary coalescences. Physical Review D 84 (6) 064029. (10.1103/PhysRevD.84.064029)
- Sathyaprakash, B. S. et al. 2011. Scientific potential of Einstein Telescope. Presented at: Rencontres de Moriond, Gravitational Waves and Experimental Gravity La Thuile, Italy 3-10 March 2012. Published in: Auge, E. , Dumarchez, J. and Tran Thanh Van, J. eds. Proceedings of the 47th Rencontres de Moriond, Gravitational Waves and Experimental Gravity, La Thuile, Italy, 3-10 March 2012. Vietnam: The Gioi Publishers
- Schmidt, P. et al. 2011. Tracking the precession of compact binaries from their gravitational-wave signal. Physical Review D 84 (2) 024046. (10.1103/PhysRevD.84.024046)
2010
- Hannam, M. et al. 2010. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results. Physical Review D 82 (12) 124008. (10.1103/PhysRevD.82.124008)
- Hannam, M. et al. 2010. Length requirements for numerical-relativity waveforms. Physical Review D 82 (12) 124052. (10.1103/PhysRevD.82.124052)
- Hannam, M. et al. 2010. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results. Physical Review D 82 (12) 124008. (10.1103/PhysRevD.82.124008)
- Santamarıa, L. et al., 2010. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries. Physical Review D 82 (6) 064016. (10.1103/PhysRevD.82.064016)
- Santamaría, L. et al., 2010. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries. Physical Review D 82 (6) 064016. (10.1103/PhysRevD.82.064016)
2009
- Ajith, P. et al., 2009. Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries [Phys. Rev. DPRVDAQ1550-7998 77, 104017 (2008)] [Erratum]. Physical Review D 79 (12) 129901(E). (10.1103/PhysRevD.79.129901)
- Hannam, M. 2009. Status of black-hole-binary simulations for gravitational-wave detection. Classical and Quantum Gravity 26 (11) 114001. (10.1088/0264-9381/26/11/114001)
- Hannam, M. et al. 2009. Samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection. Physical Review D 79 (8) 084025. (10.1103/PhysRevD.79.084025)
- Hannam, M. , Husa, S. and Murchadha, N. Ó. 2009. Bowen-York trumpet data and black-hole simulations. Physical Review D 80 (12) 124007. (10.1103/PhysRevD.80.124007)
- Ohme, F. et al., 2009. Stationary hyperboloidal slicings with evolved gauge conditions. Classical and Quantum Gravity 26 (17) 175014. (10.1088/0264-9381/26/17/175014)
2008
- Ajith, P. et al., 2008. Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries. Physical Review D 77 (10) 104017. (10.1103/PhysRevD.77.104017)
- Babak, S. et al., 2008. Resolving Super Massive Black Holes with LISA. [Online].arXiv. Available at: https://arxiv.org/abs/0806.1591.
- Brügmann, B. et al., 2008. Calibration of moving puncture simulations. Physical Review. D, Particles and Fields 77 (2) 024027. (10.1103/PhysRevD.77.024027)
- Brügmann, B. et al., 2008. Exploring black hole superkicks. Physical Review. D, Particles and Fields 77 (12) 124047. (10.1103/PhysRevD.77.124047)
- Damour, T. et al., 2008. Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries. Physical Review D 78 (4) 044039. (10.1103/PhysRevD.78.044039)
- Gopakumar, A. et al., 2008. Comparison between numerical relativity and a new class of post-Newtonian gravitational-wave phase evolutions: The nonspinning equal-mass case. Physical Review D 78 (6) 064026. (10.1103/PhysRevD.78.064026)
- Hannam, M. et al. 2008. Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation. Physical Review D 78 (6) 064020. (10.1103/PhysRevD.78.064020)
- Hannam, M. et al. 2008. Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case. Physical Review D 78 (10) 104007. (10.1103/PhysRevD.78.104007)
- Hannam, M. et al. 2008. Where post-Newtonian and numerical-relativity waveforms meet. Physical Review. D, Particles and Fields 77 (4) 044020. (10.1103/PhysRevD.77.044020)
- Husa, S. et al., 2008. Reducing phase error in long numerical binary black hole evolutions with sixth-order finite differencing. Classical and Quantum Gravity 25 (10) 105006. (10.1088/0264-9381/25/10/105006)
- Husa, S. et al., 2008. Reducing eccentricity in black-hole binary evolutions with initial parameters from post-Newtonian inspiral. Physical Review D 77 (4) 044037. (10.1103/PhysRevD.77.044037)
- Sperhake, U. et al., 2008. Head-on collisions of different initial data. Presented at: 11th Marcel Grossmann Meeting on General Relativity Berlin, Germany 23-29 July 2006. Published in: Kleinert, H. and Jantzen, R. T. eds. The 11th Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the MG11 Meeting, Part 1, Berline, Germany, 23-29 July 2006. Singapore: World Scientific Publishing. , pp.1612-1614. (10.1142/9789812834300_0210)
2007
- Ajith, P. et al., 2007. A phenomenological template family for black-hole coalescence waveforms. Classical and Quantum Gravity 24 (19) S689. (10.1088/0264-9381/24/19/S31)
- Ajith, P. et al., 2007. Data formats for numerical relativity waves. [Online].arXiv. Available at: http://arxiv.org/abs/0709.0093.
- Berti, E. et al., 2007. Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis. Physical Review D 76 (6) 064034. (10.1103/PhysRevD.76.064034)
- González, J. A. et al., 2007. Supermassive recoil velocities for binary black-hole mergers with antialigned spins. Physical Review Letters 98 (23) 231101. (10.1103/PhysRevLett.98.231101)
- González, J. A. et al., 2007. Maximum kick from nonspinning black-hole binary inspiral. Physical Review Letters 98 (9) 091101. (10.1103/PhysRevLett.98.091101)
- Hannam, M. et al. 2007. Beyond the Bowen-York extrinsic curvature for spinning black holes. Classical and Quantum Gravity 24 (12), pp.S15-S24. (10.1088/0264-9381/24/12/S02)
- Hannam, M. et al. 2007. Where do moving punctures go?. Journal of Physics. Conference Series 66 012047. (10.1088/1742-6596/66/1/012047)
- Hannam, M. et al. 2007. Geometry and Regularity of Moving Punctures. Physical Review Letters 99 (24) 241102. (10.1103/PhysRevLett.99.241102)
- Marronetti, P. et al., 2007. Binary black holes on a budget: simulations using workstations. Classical and Quantum Gravity 24 (12) S43. (10.1088/0264-9381/24/12/S05)
2006
- Campanelli, M. et al., 2006. Relativistic three-body effects in black hole coalescence. Physical Review D 74 (8) 087503. (10.1103/PhysRevD.74.087503)
2005
- Hannam, M. 2005. Quasicircular orbits of conformal thin-sandwich puncture binary black holes. Physical Review D 72 (4) 044025. (10.1103/PhysRevD.72.044025)
- Hannam, M. D. and Cook, G. B. 2005. Conformal thin-sandwich puncture initial data for boosted black holes. Physical Review D 71 (8) 084023. (10.1103/PhysRevD.71.084023)
2003
- Hannam, M. et al. 2003. Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasiequilibrium?. Physical Review D 68 (6) 064003. (10.1103/PhysRevD.68.064003)
1999
- Hannam, M. and Thompson, W. J. 1999. Estimating small signals by using maximum likelihood and Poisson statistics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 431 (1-2), pp.239-251. (10.1016/S0168-9002(99)00269-7)
1998
- Mashhoon, B. et al., 1998. Observable frequency shifts via spin-rotation coupling. Physics letters. A. 249 (3), pp.161-166. (10.1016/S0375-9601(98)00729-4)
Articles
- Aasi, J. et al., 2015. Advanced LIGO. Classical and Quantum Gravity 32 (7) 074001. (10.1088/0264-9381/32/7/074001)
- Aasi, J. et al., 2021. Erratum: "Searches for continuous gravitational waves from nine young supernova remnants" (2015, ApJ, 813, 39). Astrophysical Journal 918 (2), pp.90. (10.3847/1538-4357/ac1f2d)
- Aasi, J. et al., 2016. First low frequency all-sky search for continuous gravitational wave signals. Physical Review D 93 (4) 042007. (10.1103/PhysRevD.93.042007)
- Aasi, J. et al., 2014. Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D - Particles, Fields, Gravitation and Cosmology 89 , pp.-. 122004. (10.1103/PhysRevD.89.122004)
- Aasi, J. et al., 2014. Search for gravitational waves associated with gamma-ray bursts detected by the interplanetary network. Physical Review Letters 113 (1) 011102. (10.1103/PhysRevLett.113.011102)
- Aasi, J. et al., 2014. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity 31 (11) 115004. (10.1088/0264-9381/31/11/115004)
- Aasi, J. et al., 2015. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D 91 022004. (10.1103/PhysRevD.91.022004)
- Abac, A. G. et al., 2024. Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo. The Astrophysical Journal 973 (2) 132. (10.3847/1538-4357/ad65ce)
- Abac, A. G. et al., 2024. Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star. The Astrophysical Journal Letters 970 (2) L34. (10.3847/2041-8213/ad5beb)
- Abac, A. G. et al., 2025. Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run. The Astrophysical Journal 983 (2) 99. (10.3847/1538-4357/adb3a0)
- Abac, A. G. et al., 2025. Search for gravitational waves emitted from SN 2023ixf. The Astrophysical Journal 985 (2) 183. (10.3847/1538-4357/adc681)
- Abbott, B. P. et al., 2021. A gravitational-wave measurement of the Hubble constant following the second observing run of Advanced LIGO and Virgo. Astrophysical Journal 909 (2) 218. (10.3847/1538-4357/abdcb7)
- Abbott, B. P. et al., 2017. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551 , pp.85-88. (10.1038/nature24471)
- Abbott, B. P. et al., 2020. A guide to LIGO-Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity 37 (5) 055002. (10.1088/1361-6382/ab685e)
- Abbott, B. P. et al., 2016. Binary black hole mergers in the first advanced LIGO observing run. Physical Review X 6 (4) 041015. (10.1103/PhysRevX.6.041015)
- Abbott, B. P. et al., 2019. Binary black hole population properties inferred from the first and second observing runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters 882 (2) L24. (10.3847/2041-8213/ab3800)
- Abbott, B. P. et al., 2016. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity 33 (13) 134001. (10.1088/0264-9381/33/13/134001)
- Abbott, B. P. et al., 2016. Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D 94 (4), pp.-. 042002. (10.1103/PhysRevD.94.042002)
- Abbott, B. P. et al., 2018. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity 35 (6) 065010. (10.1088/1361-6382/aaaafa)
- Abbott, B. P. et al., 2017. Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity 34 (10), pp.-. 104002. (10.1088/1361-6382/aa6854)
- Abbott, B. P. et al., 2017. Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817. Astrophysical Journal Letters 850 (2) L39. (10.3847/2041-8213/aa9478)
- Abbott, B. P. et al., 2017. Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity 34 (4) 044001. (10.1088/1361-6382/aa51f4)
- Abbott, B. P. et al., 2016. First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D 94 (10), pp.-. 102001. (10.1103/PhysRevD.94.102001)
- Abbott, B. P. et al., 2017. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophysical Journal Letters 848 (2) L13. (10.3847/2041-8213/aa920c)
- Abbott, B. P. et al., 2016. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D 93 (12) 122003. (10.1103/PhysRevD.93.122003)
- Abbott, B. P. et al., 2016. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Physical Review Letters 116 (24) 241103. (10.1103/PhysRevLett.116.241103)
- Abbott, B. P. et al., 2017. GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Physical Review Letters 118 (22) 221101. (10.1103/PhysRevLett.118.221101)
- Abbott, B. P. et al., 2017. GW170608: Observation of a 19 solar-mass binary black hole coalescence. Astrophysical Journal Letters 851 L35. (10.3847/2041-8213/aa9f0c)
- Abbott, B. P. et al., 2017. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Physical Review Letters 119 (14) 141101. (10.1103/PhysRevLett.119.141101)
- Abbott, B. P. et al., 2018. GW170817: Measurements of neutron star radii and equation of state. Physical Review Letters 121 (16) 161101. (10.1103/PhysRevLett.121.161101)
- Abbott, B. P. et al., 2017. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Physical Review Letters 119 (16) 161101. (10.1103/PhysRevLett.119.161101)
- Abbott, B. P. et al., 2016. Improved analysis of GW150914 using a fully spin-precessing waveform model. Physical Review X 6 (4), pp.-. 041014. (10.1103/PhysRevX.6.041014)
- Abbott, B. P. et al., 2016. Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophysical Journal Letters 826 (1), pp.-. L13. (10.3847/2041-8205/826/1/L13)
- Abbott, B. P. et al., 2020. Model comparison from LIGO-Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity 37 (4) 045006. (10.1088/1361-6382/ab5f7c)
- Abbott, B. P. et al., 2017. Multi-messenger observations of a Binary Neutron Star Merger. Astrophysical Journal Letters 848 (2) L12. (10.3847/2041-8213/aa91c9)
- Abbott, B. P. et al., 2016. Observation of gravitational waves from a binary black hole merger. Physical Review Letters 116 (6) 061102. (10.1103/PhysRevLett.116.061102)
- Abbott, B. P. et al., 2016. Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D 93 (12) 122004. (10.1103/PhysRevD.93.122004)
- Abbott, B. P. et al., 2020. Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D 101 (8) 084002. (10.1103/PhysRevD.101.084002)
- Abbott, B. P. et al., 2016. Properties of the binary black hole merger GW150914. Physical Review Letters 116 (24) 241102. (10.1103/PhysRevLett.116.241102)
- Abbott, B. P. et al., 2019. Properties of the binary neutron star merger GW170817. Physical Review X 9 (1) 011001. (10.1103/PhysRevX.9.011001)
- Abbott, B. P. et al., 2018. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity 21 (1)(10.1007/s41114-018-0012-9)
- Abbott, B. P. et al., 2020. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity 23 (1) 3. (10.1007/s41114-020-00026-9)
- Abbott, B. P. et al., 2019. Search for gravitational-wave signals associated with gamma-ray bursts during the second observing run of advanced LIGO and Advanced Virgo. Astrophysical Journal 886 (1) 75. (10.3847/1538-4357/ab4b48)
- Abbott, B. P. et al., 2016. Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013. Physical Review D 93 (12), pp.-. 122008. (10.1103/PhysRevD.93.122008)
- Abbott, B. P. et al., 2019. Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015?2017 LIGO Data. Astrophysical Journal 879 (1), pp.10. 10. (10.3847/1538-4357/ab20cb)
- Abbott, B. P. et al., 2016. Supplement: 'Localization and broadband follow-up of the gravitational-wave transient GW150914' (2016, ApJL, 826, l13). Astrophysical Journal Supplement 225 (1), pp.1-15. (10.3847/0067-0049/225/1/8)
- Abbott, B. P. et al., 2016. Tests of general relativity with GW150914. Physical Review Letters 116 (22) 221101. (10.1103/PhysRevLett.116.221101)
- Abbott, B. P. et al., 2017. The basic physics of the binary black hole merger GW150914. Annelen der Physik 529 (1-2) 1600209. (10.1002/andp.201600209)
- Abbott, B. P. et al., 2016. Upper limits on the rates of binary neutron star and neutron star-black hole mergers from advanced Ligo's first observing run. Astrophysical Journal Letters 832 (2), pp.-. L21. (10.3847/2041-8205/832/2/L21)
- Abbott, B. P. et al., 2016. GW150914: implications for the stochastic gravitational wave background from binary black holes. Physical Review Letters 116 131102. (10.1103/PhysRevLett.116.131102)
- Abbott, B. P. et al., 2016. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity 19 1. (10.1007/lrr-2016-1)
- Abbott, B. et al., 2017. Search for post-merger Gravitational Waves from the remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters 851 (1) L16. (10.3847/2041-8213/aa9a35)
- Abbott, B. et al., 2019. All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D 100 (2), pp.-. 024017. (10.1103/PhysRevD.100.024017)
- Abbott, B. et al., 2017. Calibration of the advanced LIGO detectors for the discovery of the binary black-hole merger GW150914. Physical Review D 95 062003. (10.1103/PhysRevD.95.062003)
- Abbott, B. et al., 2019. Constraining the p-Mode-g-Mode tidal instability with GW170817. Physical Review Letters 122 (6), pp.-. 061104. (10.1103/PhysRevLett.122.061104)
- Abbott, B. et al., 2018. Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D 97 (10) 102002. (10.1103/PhysRevD.97.102002)
- Abbott, B. et al., 2017. Directional limits on persistent gravitational waves from advanced LIGO's first observing run. Physical Review Letters 118 , pp.-. 121102. (10.1103/PhysRevLett.118.121102)
- Abbott, B. et al., 2017. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D 96 (12), pp.-. 122006. (10.1103/PhysRevD.96.122006)
- Abbott, B. et al., 2018. Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D 97 (10) 102003. (10.1103/PhysRevD.97.102003)
- Abbott, B. et al., 2018. GW170817: Implications for the stochastic gravitational-wave background from compact binary coalescences. Physical Review Letters 120 (9)(10.1103/PhysRevLett.120.091101)
- Abbott, B. et al., 2019. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Physical Review X 9 (3) 031040. (10.1103/PhysRevX.9.031040)
- Abbott, B. et al., 2019. Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D 100 (12) 122002. (10.1103/PhysRevD.100.122002)
- Abbott, B. et al., 2019. Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D 100 (6) 064064. (10.1103/PhysRevD.100.064064)
- Abbott, B. et al., 2019. Search for subsolar mass ultracompact binaries in advanced LIGO's second observing run. Physical Review Letters 123 (16) 161102. (10.1103/PhysRevLett.123.161102)
- Abbott, B. et al., 2018. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters 120 (20), pp.-. 201102. (10.1103/PhysRevLett.120.201102)
- Abbott, B. et al., 2019. Tests of general relativity with GW170817. Physical Review Letters 123 , pp.-. 011102. (10.1103/PhysRevLett.123.011102)
- Abbott, B. et al., 2019. Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D 100 (10) 104036. (10.1103/PhysRevD.100.104036)
- Abbott, B. et al., 2017. Upper limits on the stochastic gravitational-wave background from advanced LIGO's first observing run. Physical Review Letters 118 (12)(10.1103/PhysRevLett.118.121101)
- Abbott, R. et al., 2021. All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D 103 (6) 064017. (10.1103/PhysRevD.103.064017)
- Abbott, R. et al., 2021. Constraints on cosmic strings using data from the third advanced LIGO-Virgo observing run. Physical Review Letters 126 (24) 241102. (10.1103/PhysRevLett.126.241102)
- Abbott, R. et al., 2020. Gravitational-wave constraints on the equatorial ellipticity of millisecond pulsars. Astrophysical Journal Letters 902 (1) L21. (10.3847/2041-8213/abb655)
- Abbott, R. et al., 2020. GW190412: observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D 102 (4) 043015. (10.1103/PhysRevD.102.043015)
- Abbott, R. et al., 2020. GW190521: a binary back hole merger with a total mass of 150 M⊙. Physical Review Letters 125 (10) 101102. (10.1103/PhysRevLett.125.101102)
- Abbott, R. et al., 2020. GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophysical Journal Letters 896 (2) L44. (10.3847/2041-8213/ab960f)
- Abbott, R. et al., 2021. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Physical Review X 11 (2) 021053. (10.1103/PhysRevX.11.021053)
- Abbott, R. et al., 2021. Observation of gravitational waves from two neutron star-black hole coalescences. Astrophysical Journal Letters 915 (1) L5. (10.3847/2041-8213/ac082e)
- Abbott, R. et al., 2020. Properties and astrophysical implications of the 150 M ⊙ binary black hole merger GW190521. Astrophysical Journal Letters 900 (1) L13. (10.3847/2041-8213/aba493)
- Abbott, R. et al., 2021. Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D 104 (2) 022005. (10.1103/PhysRevD.104.022005)
- Abbott, R. et al., 2021. Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO-Virgo run O3a. Astrophysical Journal 915 (2) 86. (10.3847/1538-4357/abee15)
- Abbott, R. et al., 2021. Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo's third observing run. Astrophysical Journal 923 (1) 14. (10.3847/1538-4357/ac23db)
- Abbott, R. et al., 2021. Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D 104 (2) 022004. (10.1103/PhysRevD.104.022004)
- Abbott, R. et al., 2021. All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D 104 122004. (10.1103/PhysRevD.104.122004)
- Abbott, R. et al., 2022. Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run. Astrophysical Journal 932 (2) 133. (10.3847/1538-4357/ac6ad0)
- Abbott, R. et al., 2023. Search for gravitational waves associated with fast radio bursts detected by CHIME/FRB during the LIGO–Virgo observing run O3a. Astrophysical Journal 955 (2) 155. (10.3847/1538-4357/acd770)
- Abbott, R. et al., 2022. Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO-Virgo Run O3b. Astrophysical Journal 928 (2) 186. (10.3847/1538-4357/ac532b)
- Abbott, R. et al., 2022. Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy & Astrophysics 659 A84. (10.1051/0004-6361/202141452)
- Abbott, R. et al., 2021. Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo. SoftwareX 13 100658. (10.1016/j.softx.2021.100658)
- Abbott, R. et al., 2021. Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D 103 (12) 122002. (10.1103/PhysRevD.103.122002)
- Abbott, R. et al., 2022. All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D 105 (12) 122001. (10.1103/PhysRevD.105.122001)
- Abbott, R. et al., 2022. Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D 105 (6) 063030. (10.1103/PhysRevD.105.063030)
- Abbott, R. et al., 2024. GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Physical Review D (particles, fields, gravitation, and cosmology) 109 (2) 022001. (10.1103/PhysRevD.109.022001)
- Abbott, R. et al., 2023. Population of merging compact binaries inferred using gravitational waves through GWTC-3. Physical Review X 13 (1) 011048. (10.1103/PhysRevX.13.011048)
- Abbott, R. et al., 2022. Search for subsolar-mass binaries in the first half of advanced LIGO's and advanced Virgo's third observing run. Physical Review Letters 129 (6)(10.1103/PhysRevLett.129.061104)
- Abbott, R. et al., 2022. Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D 105 (8) 082005. (10.1103/PhysRevD.105.082005)
- Abbott, R. et al., 2022. All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. Physical Review D 105 (10) 102001. (10.1103/PhysRevD.105.102001)
- Abbott, R. et al., 2023. Constraints on the cosmic expansion history from GWTC–3. Astrophysical Journal 949 (2) 76. (10.3847/1538-4357/ac74bb)
- Abbott, R. et al., 2022. First joint observation by the underground gravitational-wave detector, KAGRA, with GEO 600. Progress of Theoretical and Experimental Physics 2022 (6) 063F01. (10.1093/ptep/ptac073)
- Abbott, R. et al., 2022. Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO-Virgo data. Physical Review D 106 (4) 042003. (10.1103/PhysRevD.106.042003)
- Abbott, R. et al., 2022. Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data. Physical Review D 106 (6) 062002. (10.1103/PhysRevD.106.062002)
- Abbott, R. et al., 2024. Search for gravitational-lensing signatures in the full third observing run of the LIGO–Virgo network. Astrophysical Journal 970 (191)(10.3847/1538-4357/ad3e83)
- Abbott, R. et al., 2024. Search for gravitational-wave transients associated with magnetar bursts in Advanced LIGO and Advanced Virgo data from the third observing run. The Astrophysical Journal 966 (1) 137. (10.3847/1538-4357/ad27d3)
- Abbott, R. et al., 2023. Search for subsolar-mass black hole binaries in the second part of Advanced LIGO's and Advanced Virgo's third observing run. Monthly Notices of the Royal Astronomical Society stad588. (10.1093/mnras/stad588)
- Adams, T. et al., 2015. Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review d Particles and Fields 91 (6) 062008. (10.1103/PhysRevD.91.062008)
- Adams, T. et al., 2015. Searches for continuous gravitational waves from nine young supernova remnants. The Astrophysical Journal 813 (1) 39. (10.1088/0004-637X/813/1/39)
- Adams, T. et al. 2016. Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review d Particles and Fields 93 (4) 042006. (10.1103/PhysRevD.93.042006)
- Adrián-Martínez, S. et al., 2016. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D 93 (12) 122010. (10.1103/PhysRevD.93.122010)
- Afshordi, N. et al., 2025. Waveform modelling for the Laser Interferometer Space Antenna. Living Reviews in Relativity 28 9. (10.1007/s41114-025-00056-1)
- Aiello, L. et al., 2025. Tests of general relativity with GWTC-3. Physical Review D 112 084080. (10.1103/PhysRevD.112.084080)
- Ajith, P. et al., 2007. A phenomenological template family for black-hole coalescence waveforms. Classical and Quantum Gravity 24 (19) S689. (10.1088/0264-9381/24/19/S31)
- Ajith, P. et al., 2008. Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries. Physical Review D 77 (10) 104017. (10.1103/PhysRevD.77.104017)
- Ajith, P. et al., 2009. Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries [Phys. Rev. DPRVDAQ1550-7998 77, 104017 (2008)] [Erratum]. Physical Review D 79 (12) 129901(E). (10.1103/PhysRevD.79.129901)
- Ajith, P. et al., 2012. The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries. Classical and Quantum Gravity 29 (12) 124001. (10.1088/0264-9381/29/12/124001)
- Ajith, P. et al., 2011. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. Physical Review Letters 106 (24) 241101. (10.1103/PhysRevLett.106.241101)
- Al-Shammari, S. et al. 2025. GW241011 and GW241110: Exploring binary formation and fundamental physics with asymmetric, high-spin black hole coalescences. The Astrophysical Journal Letters 993 L21. (10.3847/2041-8213/ae0d54)
- Al-Shammari, S. et al. 2025. GW231123: A binary black hole merger with total mass 190–265 M⊙. The Astrophysical Journal Letters 993 (1) L25. (10.3847/2041-8213/ae0c9c)
- al-Shammari, S. et al. 2025. All-sky search for short gravitational-wave bursts in the first part of the fourth LIGO-Virgo-KAGRA observing run. Physical Review D 112 102005. (10.1103/wjdz-jdby)
- Amarasinghege, O. et al. 2025. GW250114: Testing Hawking’s area law and the Kerr nature of black holes. Physical Review Letters 135 111403. (10.1103/kw5g-d732)
- Aurrekoetxea, J. C. , Hoy, C. and Hannam, M. 2024. Revisiting the cosmic string origin of GW190521. Physical Review Letters 132 (18) 181401. (10.1103/PhysRevLett.132.181401)
- Baird, E. et al., 2013. Degeneracy between mass and spin in black-hole-binary waveforms. Physical Review D 87 (2) 024035. (10.1103/PhysRevD.87.024035)
- Berti, E. et al., 2007. Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis. Physical Review D 76 (6) 064034. (10.1103/PhysRevD.76.064034)
- Booth, C. et al. 2019. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D 100 (2) 024004. (10.1103/PhysRevD.100.024004)
- Brügmann, B. et al., 2008. Calibration of moving puncture simulations. Physical Review. D, Particles and Fields 77 (2) 024027. (10.1103/PhysRevD.77.024027)
- Brügmann, B. et al., 2008. Exploring black hole superkicks. Physical Review. D, Particles and Fields 77 (12) 124047. (10.1103/PhysRevD.77.124047)
- Burns, E. et al., 2019. A fermi gamma-ray burst monitor search for electromagnetic signals coincident with gravitational-wave candidates in advanced LIGO's first observing run. Astrophysical Journal 871 (1) 90. (10.3847/1538-4357/aaf726)
- Campanelli, M. et al., 2006. Relativistic three-body effects in black hole coalescence. Physical Review D 74 (8) 087503. (10.1103/PhysRevD.74.087503)
- Chatziioannou, K. et al., 2019. On the properties of the massive binary black hole merger GW170729. Physical Review D 100 (10) 104015. (10.1103/PhysRevD.100.104015)
- Coughlin, S. B. et al. 2016. All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D. 93 (4) 042005. (10.1103/PhysRevD.93.042005)
- Damour, T. et al., 2008. Accurate effective-one-body waveforms of inspiralling and coalescing black-hole binaries. Physical Review D 78 (4) 044039. (10.1103/PhysRevD.78.044039)
- Dorrington, I. et al. 2017. Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. The Astrophysical Journal Letters 850 (2) L35. (10.3847/2041-8213/aa9aed)
- Dudi, R. et al., 2018. Relevance of tidal effects and post-merger dynamics for binary neutron star parameter estimation. Physical Review D 98 (8) 084061. (10.1103/PhysRevD.98.084061)
- Fairhurst, S. et al. 2020. When will we observe binary black holes precessing?. Physical Review D 102 (4) 041302(R). (10.1103/PhysRevD.102.041302)
- Fairhurst, S. et al. 2020. Two-harmonic approximation for gravitational waveforms from precessing binaries. Physical Review D 102 (2) 024055. (10.1103/PhysRevD.102.024055)
- Fairhurst, S. et al. 2022. All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. Physical Review D 106 (10)(10.1103/PhysRevD.106.102008)
- Fletcher, C. et al., 2024. A joint Fermi-GBM and Swift-BAT analysis of Gravitational-wave candidates from the third Gravitational-wave Observing Run. The Astrophysical Journal 964 (2) 149. (10.3847/1538-4357/ad1eed)
- Ghosh, S. and Hannam, M. 2025. Identification of exotic compact binaries with gravitational waves: A phenomenological approach. Physical Review D (particles, fields, gravitation, and cosmology) 112 (10) 104017. (10.1103/76dz-vs8j)
- Ghosh, S. , Kolitsidou, P. and Hannam, M. 2024. First frequency-domain phenomenological model of the multipole asymmetry in gravitational-wave signals from binary-black-hole coalescence. Physical Review D (particles, fields, gravitation, and cosmology) 109 (2) 024061. (10.1103/PhysRevD.109.024061)
- González, J. A. et al., 2007. Supermassive recoil velocities for binary black-hole mergers with antialigned spins. Physical Review Letters 98 (23) 231101. (10.1103/PhysRevLett.98.231101)
- González, J. A. et al., 2007. Maximum kick from nonspinning black-hole binary inspiral. Physical Review Letters 98 (9) 091101. (10.1103/PhysRevLett.98.091101)
- Gopakumar, A. et al., 2008. Comparison between numerical relativity and a new class of post-Newtonian gravitational-wave phase evolutions: The nonspinning equal-mass case. Physical Review D 78 (6) 064026. (10.1103/PhysRevD.78.064026)
- Green, R. et al. 2021. Identifying when precession can be measured in gravitational waveforms. Physical Review D 103 (12) 124023. (10.1103/PhysRevD.103.124023)
- Hamburg, R. et al., 2020. A joint Fermi-GBM and LIGO/Virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs. Astrophysical Journal 893 (2) 100. (10.3847/1538-4357/ab7d3e)
- Hamilton, E. et al. 2024. Catalog of precessing black-hole-binary numerical-relativity simulations. Physical Review D (particles, fields, gravitation, and cosmology) 109 (4) 044032. (10.1103/PhysRevD.109.044032)
- Hamilton, E. and Hannam, M. 2018. Inferring black-hole orbital dynamics from numerical-relativity gravitational waveforms. Physical Review D 98 (8) 084018. (10.1103/PhysRevD.98.084018)
- Hamilton, E. , London, L. and Hannam, M. 2023. Ringdown frequencies in black holes formed from precessing black-hole binaries. Physical Review D (particles, fields, gravitation, and cosmology) 107 (10) 104035. (10.1103/PhysRevD.107.104035)
- Hamilton, E. et al. 2021. Model of gravitational waves from precessing black-hole binaries through merger and ringdown. Physical Review D 104 (12) 124027. (10.1103/PhysRevD.104.124027)
- Hannam, M. 2014. Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects. General Relativity and Gravitation 46 (9) 1767. (10.1007/s10714-014-1767-2)
- Hannam, M. 2005. Quasicircular orbits of conformal thin-sandwich puncture binary black holes. Physical Review D 72 (4) 044025. (10.1103/PhysRevD.72.044025)
- Hannam, M. 2009. Status of black-hole-binary simulations for gravitational-wave detection. Classical and Quantum Gravity 26 (11) 114001. (10.1088/0264-9381/26/11/114001)
- Hannam, M. et al. 2013. When can gravitational-wave observations distinguish between black holes and neutron stars?. Astrophysical Journal Letters 766 (1) L14. (10.1088/2041-8205/766/1/L14)
- Hannam, M. et al. 2003. Can a combination of the conformal thin-sandwich and puncture methods yield binary black hole solutions in quasiequilibrium?. Physical Review D 68 (6) 064003. (10.1103/PhysRevD.68.064003)
- Hannam, M. and Hawke, I. 2011. Numerical relativity simulations in the era of the Einstein Telescope. General Relativity and Gravitation 43 (2), pp.465-483. (10.1007/s10714-010-1008-2)
- Hannam, M. et al. 2022. General-relativistic precession in a black-hole binary. Nature 610 (7933), pp.652-655. (10.1038/s41586-022-05212-z)
- Hannam, M. et al. 2010. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results. Physical Review D 82 (12) 124008. (10.1103/PhysRevD.82.124008)
- Hannam, M. et al. 2008. Wormholes and trumpets: Schwarzschild spacetime for the moving-puncture generation. Physical Review D 78 (6) 064020. (10.1103/PhysRevD.78.064020)
- Hannam, M. et al. 2009. Samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection. Physical Review D 79 (8) 084025. (10.1103/PhysRevD.79.084025)
- Hannam, M. et al. 2007. Beyond the Bowen-York extrinsic curvature for spinning black holes. Classical and Quantum Gravity 24 (12), pp.S15-S24. (10.1088/0264-9381/24/12/S02)
- Hannam, M. et al. 2008. Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case. Physical Review D 78 (10) 104007. (10.1103/PhysRevD.78.104007)
- Hannam, M. et al. 2007. Where do moving punctures go?. Journal of Physics. Conference Series 66 012047. (10.1088/1742-6596/66/1/012047)
- Hannam, M. et al. 2008. Where post-Newtonian and numerical-relativity waveforms meet. Physical Review. D, Particles and Fields 77 (4) 044020. (10.1103/PhysRevD.77.044020)
- Hannam, M. , Husa, S. and Murchadha, N. Ó. 2009. Bowen-York trumpet data and black-hole simulations. Physical Review D 80 (12) 124007. (10.1103/PhysRevD.80.124007)
- Hannam, M. et al. 2010. Length requirements for numerical-relativity waveforms. Physical Review D 82 (12) 124052. (10.1103/PhysRevD.82.124052)
- Hannam, M. et al. 2010. Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical properties, and comparison with post-Newtonian results. Physical Review D 82 (12) 124008. (10.1103/PhysRevD.82.124008)
- Hannam, M. et al. 2007. Geometry and Regularity of Moving Punctures. Physical Review Letters 99 (24) 241102. (10.1103/PhysRevLett.99.241102)
- Hannam, M. et al. 2014. Simple model of complete precessing black-hole-binary gravitational waveforms. Physical Review Letters 113 (15) 151101. (10.1103/PhysRevLett.113.151101)
- Hannam, M. and Thompson, W. J. 1999. Estimating small signals by using maximum likelihood and Poisson statistics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 431 (1-2), pp.239-251. (10.1016/S0168-9002(99)00269-7)
- Hannam, M. D. and Cook, G. B. 2005. Conformal thin-sandwich puncture initial data for boosted black holes. Physical Review D 71 (8) 084023. (10.1103/PhysRevD.71.084023)
- Hild, S. et al., 2011. Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity 28 (9) 094013. (10.1088/0264-9381/28/9/094013)
- Hinder, I. et al., 2013. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration. Classical and Quantum Gravity 31 (2), pp.-. 025012. (10.1088/0264-9381/31/2/025012)
- Hoy, C. et al. 2022. Understanding how fast black holes spin by analyzing data from the second gravitational-wave catalogue. Astrophysical Journal 928 (1) 75. (10.3847/1538-4357/ac54a3)
- Husa, S. et al., 2008. Reducing phase error in long numerical binary black hole evolutions with sixth-order finite differencing. Classical and Quantum Gravity 25 (10) 105006. (10.1088/0264-9381/25/10/105006)
- Husa, S. et al., 2008. Reducing eccentricity in black-hole binary evolutions with initial parameters from post-Newtonian inspiral. Physical Review D 77 (4) 044037. (10.1103/PhysRevD.77.044037)
- Husa, S. et al., 2016. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. Physical Review D - Particles, Fields, Gravitation and Cosmology 93 (4) 044006. (10.1103/PhysRevD.93.044006)
- Jiménez-Forteza, X. et al., 2017. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy. Physical Review D 95 (6), pp.-. 064024. (10.1103/PhysRevD.95.064024)
- Kalaghatgi, C. and Hannam, M. 2021. Investigating the effect of in-plane spin directions for precessing binary black hole systems. Physical Review D 103 (2) 024024. (10.1103/PhysRevD.103.024024)
- Kalaghatgi, C. , Hannam, M. and Raymond, V. 2020. Parameter estimation with a spinning multimode waveform model. Physical Review D 101 (10) 103004. (10.1103/PhysRevD.101.103004)
- Kamaretsos, I. et al. 2012. Black-hole hair loss: learning about binary progenitors from ringdown signals. Physical Review D 85 (2) 024018. (10.1103/PhysRevD.85.024018)
- Kamaretsos, I. , Hannam, M. and Sathyaprakash, B. S. 2012. Is black-hole ringdown a memory of its progenitor?. Physical Review Letters 109 (14) 141102. (10.1103/PhysRevLett.109.141102)
- Keitel, D. et al., 2017. The most powerful astrophysical events: Gravitational-wave peak luminosity of binary black holes as predicted by numerical relativity. Physical Review D 96 (2), pp.-. 024006. (10.1103/PhysRevD.96.024006)
- Khan, S. et al. 2019. Phenomenological model for the gravitational-wave signal from precessing binary black holes with two-spin effects. Physical Review D 100 (2) 024059. (10.1103/PhysRevD.100.024059)
- Khan, S. et al., 2016. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era. Physical Review D 93 (4) 044007. (10.1103/PhysRevD.93.044007)
- Kolitsidou, P. , Thompson, J. E. and Hannam, M. 2025. Impact of antisymmetric contributions to signal multipoles in the measurement of black-hole spins. Physical Review D (particles, fields, gravitation, and cosmology) 111 (2) 024050. (10.1103/physrevd.111.024050)
- London, L. et al. 2018. First higher-multipole model of gravitational waves from spinning and coalescing black-hole binaries. Physical Review Letters 120 (16) 161102. (10.1103/PhysRevLett.120.161102)
- Marronetti, P. et al., 2007. Binary black holes on a budget: simulations using workstations. Classical and Quantum Gravity 24 (12) S43. (10.1088/0264-9381/24/12/S05)
- Mashhoon, B. et al., 1998. Observable frequency shifts via spin-rotation coupling. Physics letters. A. 249 (3), pp.161-166. (10.1016/S0375-9601(98)00729-4)
- Nagar, A. et al., 2018. Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects. Physical Review D 98 (10) 104052. (10.1103/PhysRevD.98.104052)
- Ohme, F. , Hannam, M. and Husa, S. 2011. Reliability of complete gravitational waveform models for compact binary coalescences. Physical Review D 84 (6) 064029. (10.1103/PhysRevD.84.064029)
- Ohme, F. , Hannam, M. and Husa, S. 2011. Reliability of complete gravitational waveform models for compact binary coalescences. Physical Review D 84 (6) 064029. (10.1103/PhysRevD.84.064029)
- Ohme, F. et al., 2009. Stationary hyperboloidal slicings with evolved gauge conditions. Classical and Quantum Gravity 26 (17) 175014. (10.1088/0264-9381/26/17/175014)
- Pürrer, M. et al., 2013. Testing the validity of the single-spin approximation in inspiral-merger-ringdown waveforms. Physical Review D 88 (6) 064007. (10.1103/PhysRevD.88.064007)
- Pürrer, M. , Hannam, M. and Ohme, F. 2016. Can we measure individual black-hole spins from gravitational-wave observations?. Physical Review D 93 (8) 084042. (10.1103/PhysRevD.93.084042)
- Pürrer, M. , Husa, S. and Hannam, M. 2012. An efficient iterative method to reduce eccentricity in numerical-relativity simulations of compact binary inspiral. Physical Review D 85 (12), pp.124051-124076. (10.1103/PhysRevD.85.124051)
- Santamarıa, L. et al., 2010. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries. Physical Review D 82 (6) 064016. (10.1103/PhysRevD.82.064016)
- Santamaría, L. et al., 2010. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries. Physical Review D 82 (6) 064016. (10.1103/PhysRevD.82.064016)
- Sathyaprakash, B. S. et al. 2012. Scientific objectives of Einstein Telescope. Classical and Quantum Gravity 29 (12) 124013. (10.1088/0264-9381/29/12/124013)
- Schmidt, P. , Hannam, M. and Husa, S. 2012. Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals. Physical Review D 86 (10) 104063 (. (10.1103/PhysRevD.86.104063)
- Schmidt, P. et al. 2011. Tracking the precession of compact binaries from their gravitational-wave signal. Physical Review D 84 (2) 024046. (10.1103/PhysRevD.84.024046)
- Schmidt, P. , Ohme, F. and Hannam, M. 2015. Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter. Physical Review D 91 (2) 024043. (10.1103/PhysRevD.91.024043)
- Slinker, K. , Evans, C. R. and Hannam, M. 2018. Trumpet initial data for boosted black holes. Physical Review D 98 (4) 044014. (10.1103/PhysRevD.98.044014)
- Thompson, J. E. et al. 2020. Modeling the gravitational wave signature of neutron star black hole coalescences. Physical Review D 101 (12) 124059. (10.1103/PhysRevD.101.124059)
- Thompson, J. E. et al., 2024. Phenomenological gravitational-wave model for precessing black-hole binaries with higher multipoles and asymmetries. Physical Review D (particles, fields, gravitation, and cosmology) 109 (6) 063012. (10.1103/PhysRevD.109.063012)
- Thompson, J. E. et al., 2025. Use and interpretation of signal-model indistinguishability measures for gravitational-wave astronomy. Physical Review D (particles, fields, gravitation, and cosmology) 112 (6) 064011. (10.1103/ddz7-x9zz)
- Tiwari, V. , Fairhurst, S. and Hannam, M. 2018. Constraining black hole spins with gravitational-wave observations. Astrophysical Journal 868 (2), pp.-. 140. (10.3847/1538-4357/aae8df)
- Varma, V. et al., 2014. Gravitational-wave observations of binary black holes: Effect of nonquadrupole modes. Physical Review D - Particles, Fields, Gravitation and Cosmology 90 (12), pp.-. 124004. (10.1103/PhysRevD.90.124004)
Conferences
- Puerrer, M. , Hannam, M. and Ohme, F. 2017. Can we measure individual black-hole spins from gravitational-wave observations?. Presented at: 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity 12 -18 July 2015. Published in: Bianchi, M. , Jantzen, R. T. and Ruffini, R. eds. 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories: Proceedings of the MG14 Meeting on General Relativity. World Scientific Publishing. , pp.3144-3148. (10.1142/9789813226609_0399)
- Puerrer, M. et al. 2017. Accelerating parameter estimation of gravitational waves from black hole binaries with reduced order quadratures. Presented at: 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity 12 -18 July 2015. Published in: Bianchi, M. , Jantzen, R. T. and Ruffini, R. eds. 14th Marcel Grossman Meeting On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories: Proceedings of the MG14 Meeting on General Relativity. World Scientific Publishing. , pp.2015-2018. (10.1142/9789813226609_0218)
- Sathyaprakash, B. S. et al. 2011. Scientific potential of Einstein Telescope. Presented at: Rencontres de Moriond, Gravitational Waves and Experimental Gravity La Thuile, Italy 3-10 March 2012. Published in: Auge, E. , Dumarchez, J. and Tran Thanh Van, J. eds. Proceedings of the 47th Rencontres de Moriond, Gravitational Waves and Experimental Gravity, La Thuile, Italy, 3-10 March 2012. Vietnam: The Gioi Publishers
- Sperhake, U. et al., 2008. Head-on collisions of different initial data. Presented at: 11th Marcel Grossmann Meeting on General Relativity Berlin, Germany 23-29 July 2006. Published in: Kleinert, H. and Jantzen, R. T. eds. The 11th Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the MG11 Meeting, Part 1, Berline, Germany, 23-29 July 2006. Singapore: World Scientific Publishing. , pp.1612-1614. (10.1142/9789812834300_0210)
Websites
- Ajith, P. et al., 2007. Data formats for numerical relativity waves. [Online].arXiv. Available at: http://arxiv.org/abs/0709.0093.
- Babak, S. et al., 2008. Resolving Super Massive Black Holes with LISA. [Online].arXiv. Available at: https://arxiv.org/abs/0806.1591.
Research
Research interests
Numerical Relativity and Gravitational-Wave Astronomy
Numerical Relativity involves solving Einstein's equations of generalrelativity on a computer, and one of the most exciting currentapplications is to model two black holes that orbit each other, inspiraltogether, and merge to form a single black hole. The reason this is so topical is that these simulations are the only way to predict thegravitational-wave signal from black-hole mergers, which provided the first direct gravitational-wave observations by LIGO in 2015 -- and indeed, many more detections since then. Our gravitational-wave signal models were used to decipher the properties of those first direct gravitational-wave detections. As the detectors become more sensitive, and we are able to extract more detailed information from gravitational-wave signals, we need to move beyond the simple approximate models that we have developed so far, and construct precision models that capture all of the physics of black-hole-binary systems.
Teaching
I teach the 4th-year course, "Introductinon to General Relativity", and the MSc course "Numerical relativity and waveform modelling".
Biography
I studied at Waikato and Canterbury Universities in New Zealand, and atthe University of North Carolina at Chapel Hill, in the USA. During my PhDI numerically solved the equations necessary to provide the initialconditions for simulations of collisions of black holes.After I completed my PhD in 2003, I embarked on a research world tour,stopping at the University of Texas at Brownsville; theFriedrich-Schiller-University in Jena, Germany; University College Cork,Ireland; and the University of Vienna, Austria. In 2010 I came to Cardiffas an STFC Advanced Fellow, and became a professor in 2015. In 2015 I was also awarded an ERC Consolidator Grant to study precessing binary black holes.
Supervisions
- Numerical relativity
- Gravitational waves
- Black holes
- Waveform modelling
- Astrophysical implications of gravitational-wave observations
Current supervision
Contact Details
+44 29208 70167
Queen's Buildings - North Building, Room N/1.17, 5 The Parade, Newport Road, Cardiff, CF24 3AA