Dr Colan Hughes
Teams and roles for Colan Hughes
Postdoctoral Research Associate (with Prof Kenneth Harris)
Publication
2025
- Elliott, M. C. and Hughes, C. E. 2025. The interface of hybridization, hyperconjugation, and conformation in organic chemistry teaching. Journal of Chemical Education 102 (8), pp.3459-3467. (10.1021/acs.jchemed.5c00445)
- Elliott, M. C. et al. 2025. Alkyl groups in organic molecules are NOT inductively electron-releasing. Organic and Biomolecular Chemistry 23 (2), pp.352-359. (10.1039/D4OB01572J)
- Gauttier, R. et al., 2025. In-situ solid-state NMR spectroscopy reveals competing crystallization pathways for a system that forms structurally diverse multicomponent crystalline phases. Solid State Nuclear Magnetic Resonance 140 102046. (10.1016/j.ssnmr.2025.102046)
- Harris, K. D. and Hughes, C. E. 2025. NMR crystallization: The application of NMR strategies to monitor the evolution of crystallization processes. In: Bryce, D. L. ed. Modern NMR Crystallography: Concepts and Applications. Vol. 36, New Developments in NMR Royal Society of Chemistry. , pp.342-371. (10.1039/9781837673179-00342)
- Hughes, C. E. et al. 2025. Solid-state structure of xanthine determined by a combination of 3D electron diffraction, powder x-ray diffraction, and DFT-D calculations. Crystal Growth and Design 25 (4), pp.895-902. (10.1021/acs.cgd.4c01717)
- Hughes, C. E. et al. 2025. NMR crystallization: In-situ NMR strategies for monitoring the evolution of crystallization processes. Faraday Discussions 255 , pp.520-552. (10.1039/D4FD00079J)
- Kelly, N. L. et al., 2025. Exploiting in situ NMR spectroscopy to understand non-traditional methods for zeolite synthesis. Chemical Science 16 (10), pp.4245-4255. (10.1039/d4sc07931k)
2024
- Smalley, C. J. H. et al. 2024. Understanding the solid-state structure of riboflavin through a multitechnique approach. Crystal Growth and Design 24 (15), pp.6256-6266. (10.1021/acs.cgd.4c00480)
- Wagner, A. et al., 2024. Structure determination of biogenic crystals directly from 3D electron diffraction data. Crystal Growth and Design 24 (3), pp.899-905. (10.1021/acs.cgd.3c01290)
2023
- Al Rahal, O. et al. 2023. Unraveling the Complex Solid-State Phase Transition Behavior of 1-Iodoadamantane, a Material for Which Ostensibly Identical Crystals Undergo Different Transformation Pathways. Crystal Growth and Design 23 (5), pp.3820-3833. (10.1021/acs.cgd.3c00223)
- Cousin, S. F. et al., 2023. Exploiting solid-state dynamic nuclear polarization NMR spectroscopy to establish the spatial distribution of polymorphic phases in a solid material. Chemical Science 14 , pp.10121-10128. (10.1039/D3SC02063K)
2022
- Dosso, J. et al. 2022. Boron nitride-doped polyphenylenic organogels. Chemistry of Materials 34 (23), pp.10670-10680. (10.1021/acs.chemmater.2c01766)
- Pinsk, N. et al., 2022. Biogenic guanine crystals are solid solutions of guanine and other purine metabolites. Journal of the American Chemical Society 144 (11), pp.5180-5189. (10.1021/jacs.2c00724)
- Smalley, C. et al. 2022. A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of L-tyrosine. Chemical Science 13 (18), pp.5277-5288. (10.1039/D1SC06467C)
- Smalley, C. J. H. et al. 2022. Solid-state structural properties of alloxazine determined from powder XRD data in conjunction with DFT-D calculations and solid-state NMR spectroscopy: unraveling the tautomeric identity and pathways for tautomeric interconversion. Crystal Growth and Design 22 (1), pp.524-534. (10.1021/acs.cgd.1c01114)
2021
- Al Rahal, O. et al. 2021. Structure determination of multicomponent crystalline phases of (S)-Ibuprofen and l-Proline from powder x-ray diffraction data, augmented by complementary experimental and computational techniques. Crystal Growth and Design 21 (4), pp.2498-2507. (10.1021/acs.cgd.1c00160)
- Jones, C. L. et al. 2021. Exploiting in-situ NMR to monitor the formation of a metal-organic framework. Chemical Science 12 (4), pp.1486-1494. (10.1039/D0SC04892E)
2020
- Bemmer, V. et al., 2020. Rationalization of the X-ray photoelectron spectroscopy of aluminium phosphates synthesized from different precursors. RSC Advances 10 (14), pp.84448452. (10.1039/C9RA08738A)
- Dosso, J. et al. 2020. Boron-nitrogen-doped nanographenes: a synthetic tale from borazine precursors. Chemistry - A European Journal 26 (29), pp.6608-6621. (10.1002/chem.201905794)
- Schotten, C. et al. 2020. Comparison of the thermal stabilities of diazonium salts and their corresponding triazenes. Organic Process Research and Development 24 (10), pp.2336-2341. (10.1021/acs.oprd.0c00162)
- Sun, T. et al., 2020. Direct-space structure determination of covalent organic frameworks from 3D electron diffraction data. Angewandte Chemie International Edition 59 (50), pp.22638-22644. (10.1002/anie.202009922)
- Yan, Y. et al. 2020. Polymorphism in a multicomponent crystal system of trimesic acid and t-butylamine. Crystal Growth and Design 20 (9), pp.5736-5744. (10.1021/acs.cgd.0c00163)
2019
- Al Rahal, O. et al. 2019. Polymorphism of L-tryptophan. Angewandte Chemie International Edition 58 (52), pp.18788-18792. (10.1002/anie.201908247)
- Hughes, C. E. et al. 2019. Exploiting in-situ solid-state NMR spectroscopy to probe the early stages of hydration of calcium aluminate cement. Solid State Nuclear Magnetic Resonance 99 , pp.-. (10.1016/j.ssnmr.2019.01.003)
- Vioglio, P. C. et al., 2019. A strategy for probing the evolution of crystallization processes by low-temperature solid-state NMR and dynamic nuclear polarization. Journal of Physical Chemistry Letters 10 (7), pp.1505-1510. (10.1021/acs.jpclett.9b00306)
- Zhou, Y. et al. 2019. Temperature-dependent structural properties, phase transition behavior, and dynamic properties of a benzene derivative in the solid state. Crystal Growth and Design 19 (4), pp.2155-2162. (10.1021/acs.cgd.8b01775)
2018
- Cerreia Vioglio, P. et al., 2018. Insights into the crystallization and structural evolution of glycine dihydrate by in situ solid-state NMR spectroscopy. Angewandte Chemie International Edition 57 (22), pp.6619-6623. (10.1002/anie.201801114)
- Hughes, C. E. et al. 2018. Establishing the transitory existence of amorphous phases in crystallization pathways by the CLASSIC NMR technique. ChemPhysChem 19 (24), pp.3341-3345. (10.1002/cphc.201800976)
- Hughes, C. E. et al. 2018. Elucidating the crystal structure of DL-Arginine by combined powder X-ray diffraction data analysis and periodic DFT-D calculations. Crystal Growth and Design 18 (1), pp.42-46. (10.1021/acs.cgd.7b01412)
- Khoj, M. A. et al. 2018. Polymorphic phase transformations of 3-chloro-trans-cinnamic acid and its solid solution with 3-bromo-trans-cinnamic acid. Acta Crystallographica Section C: Structural Chemistry 74 (8), pp.923-928. C74. (10.1107/S2053229618009269)
2017
- Harris, K. D. et al. 2017. `NMR Crystallization': in-situ NMR techniques for time-resolved monitoring of crystallization processes. Acta Crystallographica Section C Structural Chemistry C73 (3), pp.137-148. (10.1107/S2053229616019811)
- Hughes, C. E. et al. 2017. Determination of a complex crystal structure in the absence of single crystals: analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new 2'-deoxyguanosine structural motif. Chemical Science 8 (5), pp.3971-3979. (10.1039/C7SC00587C)
- Khoj, M. A. et al. 2017. Structural diversity of solid solutions formed between 3-chloro-trans-cinnamic acid and 3-bromo-trans-cinnamic acid. Crystal Growth and Design 17 (3), pp.1276-1284. (10.1021/acs.cgd.6b01675)
- Maruyoshi, K. et al., 2017. Assessing the detection limit of a minority solid-state Form of a pharmaceutical by 1 H double-quantum magic-angle spinning nuclear magnetic resonance spectroscopy. Journal of Pharmaceutical Sciences 106 (11), pp.3372-3377. (10.1016/j.xphs.2017.07.014)
- Zilka, M. et al., 2017. Ab initio random structure searching of organic molecular solids: assessment and validation against experimental data. Physical Chemistry Chemical Physics 19 (38), pp.25949-25960. (10.1039/C7CP04186A)
2016
- Hughes, C. E. and Harris, K. D. M. 2016. Calculation of solid-state NMR Lineshapes using contour analysis. Solid State Nuclear Magnetic Resonance 80 , pp.7-13. (10.1016/j.ssnmr.2016.10.002)
- Palmer, B. A. et al., 2016. Determining molecular orientations in disordered materials from X-ray linear dichroism at the iodine L1-edge. Journal of the American Chemical Society 138 (50), pp.16188-16191. (10.1021/jacs.6b09054)
- Watts, A. E. et al., 2016. Combining the advantages of powder X-ray diffraction and NMR crystallography in structure determination of the pharmaceutical material cimetidine hydrochloride. Crystal Growth and Design 16 (4), pp.1798-1804. (10.1021/acs.cgd.6b00016)
- Williams, E. et al., 2016. Nanosecond laser milling of the amorphous alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5. Presented at: 11 th International Conference on Multi-Material Micro Manufacture (4M2016), co-organised with 10th International Workshop on Microfactories (IWMF2016) Lyngby, Denmark, 13-15 September 2016.
- Williams, P. A. et al. 2016. Understanding the solid-state hydration behavior of a common amino acid: identification, structural characterization, and hydration/dehydration processes of new hydrate phases of l-lysine. Journal of Physical Chemistry C 120 (17), pp.9385-9392. (10.1021/acs.jpcc.5b12420)
2015
- Harris, K. D. M. , Hughes, C. and Williams, P. A. 2015. In situ solid-state NMR studies of crystallization processes. Advances in Organic Crystal Chemistry , pp.31-53. (10.1007/978-4-431-55555-1_3)
- Harris, K. D. M. , Hughes, C. E. and Williams, P. A. 2015. Monitoring the evolution of crystallization processes by in-situ solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance 65 , pp.107-113. (10.1016/j.ssnmr.2014.11.004)
- Hughes, C. E. et al. 2015. New in situ solid-state NMR techniques for probing the evolution of crystallization processes: pre-nucleation, nucleation and growth. Faraday Discussions 179 , pp.115-140. (10.1039/C4FD00215F)
- Shivakumar, K. I. et al., 2015. Exploiting powder X-ray diffraction to establish the solvent-assisted solid-state supramolecular assembly of pillar[5]quinone. Crystal Growth and Design 15 (4), pp.1583-1587. (10.1021/acs.cgd.5b00277)
- Williams, P. A. , Hughes, C. E. and Harris, K. D. M. 2015. L-lysine: exploiting powder X-ray diffraction to complete the set of crystal structures of the 20 directly encoded proteinogenic amino acids. Angewandte Chemie International Edition 54 (13), pp.3973-3977. (10.1002/anie.201411520)
- Zhou, Y. et al. 2015. Discovery of new metastable polymorphs in a family of urea co-crystals by solid-state mechanochemistry. Crystal Growth and Design 15 (6), pp.2901-2907. (10.1021/acs.cgd.5b00331)
2014
- Hughes, C. E. , Williams, P. A. and Harris, K. D. M. 2014. "Classic NMR": an in-situ NMR strategy for mapping the time-evolution of crystallization processes by combined liquid-state and solid-state measurements. Angewandte Chemie International Edition 53 (34), pp.8939-8943. (10.1002/anie.201404266)
- Iwama, S. et al., 2014. Highly efficient chiral resolution of dl-arginine by cocrystal formation followed by recrystallization under preferential-enrichment conditions. Chemistry - a European Journal 20 (33), pp.10343-10350. (10.1002/chem.201402446)
2013
- Dudenko, D. et al. 2013. Exploiting the synergy of powder X-ray diffraction and solid-state NMR spectroscopy in structure determination of organic molecular solids. The Journal of Physical Chemistry C 117 (23), pp.12258-12265. (10.1021/jp4041106)
- Khoj, M. A. et al. 2013. Polymorphism in a trans-cinnamic acid derivative exhibiting two distinct β‑type phases: structural properties, [2 + 2] photodimerization reactions, and polymorphic phase transition behavior. Crystal Growth and Design 13 (9), pp.4110-4117. (10.1021/cg4009202)
- Sharples, K. M. et al. 2013. An ENDOR and DFT analysis of hindered methyl group rotations in frozen solutions of bis(acetylacetonato)-copper(ii). Physical Chemistry Chemical Physics 15 (36), pp.15214-15222. (10.1039/c3cp52464g)
- Williams, P. A. et al. 2013. Expanding the Solid-State Landscape ofl-Phenylalanine: Discovery of Polymorphism and New Hydrate Phases, with Rationalization of Hydration/Dehydration Processes. The Journal of Physical Chemistry C 117 (23), pp.12136-12145. (10.1021/jp401547f)
- Yan, Y. et al. 2013. A rare case of polymorphism in a three-component co-crystal system, with each polymorph having ten independent molecules in the asymmetric unit. Crystal Growth and Design 13 (1), pp.27-30. (10.1021/cg3016035)
2012
- Courvoisier, E. et al. 2012. The crystal structure of l-arginine. Chemical Communications 48 (22), pp.2761-2763. (10.1039/c2cc17203h)
- Hughes, C. E. et al. 2012. Exploiting in situ solid-state NMR for the discovery of new polymorphs during crystallization processes. The Journal of Physical Chemistry Letters 3 (21), pp.3176-3181. (10.1021/jz301252u)
- Williams, P. A. , Hughes, C. E. and Harris, K. D. M. 2012. New insights into the preparation of the low-melting polymorph of racemic ibuprofen. Crystal Growth and Design 12 (12), pp.5839-5845. (10.1021/cg300599q)
- Williams, P. A. et al. 2012. Discovery of a New System Exhibiting Abundant Polymorphism: m-Aminobenzoic Acid. Crystal Growth & Design 12 (6), pp.3104-3113. (10.1021/cg3003178)
2011
- Aliev, A. E. et al., 2011. Natural-abundance solid-state H-2 NMR spectroscopy at high magnetic field. Journal of Physical Chemistry A 115 (22), pp.5568-5578. (10.1021/jp202810k)
- Aliev, A. E. et al., 2011. High-resolution solid-state 2H NMR spectroscopy of polymorphs of glycine. Journal of Physical Chemistry A 115 (44), pp.12201-12211. (10.1021/jp207592u)
- Marti-Rujas, J. et al., 2011. Structural diversity, but no polymorphism, in a homologous family of co-crystals of urea and α,ω-dihydroxyalkanes. New Journal of Chemistry 35 (7), pp.1515-1521. (10.1039/C1NJ20040B)
- Palmer, B. A. et al. 2011. An incommensurate thiourea inclusion compound. Chemical Communications- Royal Society of Chemistry 47 (13), pp.3760-3762. (10.1039/C0CC05477A)
2010
- Hughes, C. E. and Harris, K. D. M. 2010. Direct observation of a transient polymorph during crystallization. Chemical Communications- Royal Society of Chemistry 46 (27), pp.4982-4984. (10.1039/C0CC01007C)
2009
- Hughes, C. E. and Harris, K. D. M. 2009. The effect of deuteration on polymorphic outcome in the crystallization of glycine from aqueous solution. New Journal of Chemistry 33 (4), pp.713-716. (10.1039/B819199A)
2008
- Hamad, S. et al., 2008. Clustering of glycine molecules in aqueous solution studied by molecular dynamics simulation. Journal of Physical Chemistry B 112 (24), pp.7280-7288. (10.1021/jp711271z)
- Hughes, C. E. and Harris, K. D. M. 2008. A technique for in situ monitoring of crystallization from solution by solid-state C-13 CPMAS NMR spectroscopy. Journal of Physical Chemistry A 112 (30), pp.6808-6810. (10.1021/jp805182v)
- Olejniczak, S. et al., 2008. 15N and13C high-resolution solid-state NMR study of the polymorphism of the L-enantiomer of N-benzoylphenylalanine. Journal of Physical Chemistry B 112 (6), pp.1586-1593. (10.1021/jp073428u)
- Olejniczak, S. et al., 2008. N-15 and C-13 high-resolution solid-state NMR study of the polymorphism of the L-enantiomer of N-benzoylphenylalanine. Journal of Physical Chemistry B 112 (6), pp.1586-1593. (10.1021/jp073428u)
2007
- Hughes, C. E. et al. 2007. A multi-techuique approach for probing the evolution of structural properties during crystallization of organic materials from solution. Faraday Discussions- Royal Society of Chemistry 136 , pp.71-89. (10.1039/B616611C)
Articles
- Al Rahal, O. et al. 2019. Polymorphism of L-tryptophan. Angewandte Chemie International Edition 58 (52), pp.18788-18792. (10.1002/anie.201908247)
- Al Rahal, O. et al. 2023. Unraveling the Complex Solid-State Phase Transition Behavior of 1-Iodoadamantane, a Material for Which Ostensibly Identical Crystals Undergo Different Transformation Pathways. Crystal Growth and Design 23 (5), pp.3820-3833. (10.1021/acs.cgd.3c00223)
- Al Rahal, O. et al. 2021. Structure determination of multicomponent crystalline phases of (S)-Ibuprofen and l-Proline from powder x-ray diffraction data, augmented by complementary experimental and computational techniques. Crystal Growth and Design 21 (4), pp.2498-2507. (10.1021/acs.cgd.1c00160)
- Aliev, A. E. et al., 2011. Natural-abundance solid-state H-2 NMR spectroscopy at high magnetic field. Journal of Physical Chemistry A 115 (22), pp.5568-5578. (10.1021/jp202810k)
- Aliev, A. E. et al., 2011. High-resolution solid-state 2H NMR spectroscopy of polymorphs of glycine. Journal of Physical Chemistry A 115 (44), pp.12201-12211. (10.1021/jp207592u)
- Bemmer, V. et al., 2020. Rationalization of the X-ray photoelectron spectroscopy of aluminium phosphates synthesized from different precursors. RSC Advances 10 (14), pp.84448452. (10.1039/C9RA08738A)
- Cerreia Vioglio, P. et al., 2018. Insights into the crystallization and structural evolution of glycine dihydrate by in situ solid-state NMR spectroscopy. Angewandte Chemie International Edition 57 (22), pp.6619-6623. (10.1002/anie.201801114)
- Courvoisier, E. et al. 2012. The crystal structure of l-arginine. Chemical Communications 48 (22), pp.2761-2763. (10.1039/c2cc17203h)
- Cousin, S. F. et al., 2023. Exploiting solid-state dynamic nuclear polarization NMR spectroscopy to establish the spatial distribution of polymorphic phases in a solid material. Chemical Science 14 , pp.10121-10128. (10.1039/D3SC02063K)
- Dosso, J. et al. 2020. Boron-nitrogen-doped nanographenes: a synthetic tale from borazine precursors. Chemistry - A European Journal 26 (29), pp.6608-6621. (10.1002/chem.201905794)
- Dosso, J. et al. 2022. Boron nitride-doped polyphenylenic organogels. Chemistry of Materials 34 (23), pp.10670-10680. (10.1021/acs.chemmater.2c01766)
- Dudenko, D. et al. 2013. Exploiting the synergy of powder X-ray diffraction and solid-state NMR spectroscopy in structure determination of organic molecular solids. The Journal of Physical Chemistry C 117 (23), pp.12258-12265. (10.1021/jp4041106)
- Elliott, M. C. and Hughes, C. E. 2025. The interface of hybridization, hyperconjugation, and conformation in organic chemistry teaching. Journal of Chemical Education 102 (8), pp.3459-3467. (10.1021/acs.jchemed.5c00445)
- Elliott, M. C. et al. 2025. Alkyl groups in organic molecules are NOT inductively electron-releasing. Organic and Biomolecular Chemistry 23 (2), pp.352-359. (10.1039/D4OB01572J)
- Gauttier, R. et al., 2025. In-situ solid-state NMR spectroscopy reveals competing crystallization pathways for a system that forms structurally diverse multicomponent crystalline phases. Solid State Nuclear Magnetic Resonance 140 102046. (10.1016/j.ssnmr.2025.102046)
- Hamad, S. et al., 2008. Clustering of glycine molecules in aqueous solution studied by molecular dynamics simulation. Journal of Physical Chemistry B 112 (24), pp.7280-7288. (10.1021/jp711271z)
- Harris, K. D. M. , Hughes, C. and Williams, P. A. 2015. In situ solid-state NMR studies of crystallization processes. Advances in Organic Crystal Chemistry , pp.31-53. (10.1007/978-4-431-55555-1_3)
- Harris, K. D. M. , Hughes, C. E. and Williams, P. A. 2015. Monitoring the evolution of crystallization processes by in-situ solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance 65 , pp.107-113. (10.1016/j.ssnmr.2014.11.004)
- Harris, K. D. et al. 2017. `NMR Crystallization': in-situ NMR techniques for time-resolved monitoring of crystallization processes. Acta Crystallographica Section C Structural Chemistry C73 (3), pp.137-148. (10.1107/S2053229616019811)
- Hughes, C. E. et al. 2025. Solid-state structure of xanthine determined by a combination of 3D electron diffraction, powder x-ray diffraction, and DFT-D calculations. Crystal Growth and Design 25 (4), pp.895-902. (10.1021/acs.cgd.4c01717)
- Hughes, C. E. et al. 2025. NMR crystallization: In-situ NMR strategies for monitoring the evolution of crystallization processes. Faraday Discussions 255 , pp.520-552. (10.1039/D4FD00079J)
- Hughes, C. E. et al. 2017. Determination of a complex crystal structure in the absence of single crystals: analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new 2'-deoxyguanosine structural motif. Chemical Science 8 (5), pp.3971-3979. (10.1039/C7SC00587C)
- Hughes, C. E. et al. 2019. Exploiting in-situ solid-state NMR spectroscopy to probe the early stages of hydration of calcium aluminate cement. Solid State Nuclear Magnetic Resonance 99 , pp.-. (10.1016/j.ssnmr.2019.01.003)
- Hughes, C. E. et al. 2018. Establishing the transitory existence of amorphous phases in crystallization pathways by the CLASSIC NMR technique. ChemPhysChem 19 (24), pp.3341-3345. (10.1002/cphc.201800976)
- Hughes, C. E. , Williams, P. A. and Harris, K. D. M. 2014. "Classic NMR": an in-situ NMR strategy for mapping the time-evolution of crystallization processes by combined liquid-state and solid-state measurements. Angewandte Chemie International Edition 53 (34), pp.8939-8943. (10.1002/anie.201404266)
- Hughes, C. E. et al. 2018. Elucidating the crystal structure of DL-Arginine by combined powder X-ray diffraction data analysis and periodic DFT-D calculations. Crystal Growth and Design 18 (1), pp.42-46. (10.1021/acs.cgd.7b01412)
- Hughes, C. E. et al. 2007. A multi-techuique approach for probing the evolution of structural properties during crystallization of organic materials from solution. Faraday Discussions- Royal Society of Chemistry 136 , pp.71-89. (10.1039/B616611C)
- Hughes, C. E. and Harris, K. D. M. 2016. Calculation of solid-state NMR Lineshapes using contour analysis. Solid State Nuclear Magnetic Resonance 80 , pp.7-13. (10.1016/j.ssnmr.2016.10.002)
- Hughes, C. E. and Harris, K. D. M. 2008. A technique for in situ monitoring of crystallization from solution by solid-state C-13 CPMAS NMR spectroscopy. Journal of Physical Chemistry A 112 (30), pp.6808-6810. (10.1021/jp805182v)
- Hughes, C. E. and Harris, K. D. M. 2010. Direct observation of a transient polymorph during crystallization. Chemical Communications- Royal Society of Chemistry 46 (27), pp.4982-4984. (10.1039/C0CC01007C)
- Hughes, C. E. and Harris, K. D. M. 2009. The effect of deuteration on polymorphic outcome in the crystallization of glycine from aqueous solution. New Journal of Chemistry 33 (4), pp.713-716. (10.1039/B819199A)
- Hughes, C. E. et al. 2015. New in situ solid-state NMR techniques for probing the evolution of crystallization processes: pre-nucleation, nucleation and growth. Faraday Discussions 179 , pp.115-140. (10.1039/C4FD00215F)
- Hughes, C. E. et al. 2012. Exploiting in situ solid-state NMR for the discovery of new polymorphs during crystallization processes. The Journal of Physical Chemistry Letters 3 (21), pp.3176-3181. (10.1021/jz301252u)
- Iwama, S. et al., 2014. Highly efficient chiral resolution of dl-arginine by cocrystal formation followed by recrystallization under preferential-enrichment conditions. Chemistry - a European Journal 20 (33), pp.10343-10350. (10.1002/chem.201402446)
- Jones, C. L. et al. 2021. Exploiting in-situ NMR to monitor the formation of a metal-organic framework. Chemical Science 12 (4), pp.1486-1494. (10.1039/D0SC04892E)
- Kelly, N. L. et al., 2025. Exploiting in situ NMR spectroscopy to understand non-traditional methods for zeolite synthesis. Chemical Science 16 (10), pp.4245-4255. (10.1039/d4sc07931k)
- Khoj, M. A. et al. 2018. Polymorphic phase transformations of 3-chloro-trans-cinnamic acid and its solid solution with 3-bromo-trans-cinnamic acid. Acta Crystallographica Section C: Structural Chemistry 74 (8), pp.923-928. C74. (10.1107/S2053229618009269)
- Khoj, M. A. et al. 2013. Polymorphism in a trans-cinnamic acid derivative exhibiting two distinct β‑type phases: structural properties, [2 + 2] photodimerization reactions, and polymorphic phase transition behavior. Crystal Growth and Design 13 (9), pp.4110-4117. (10.1021/cg4009202)
- Khoj, M. A. et al. 2017. Structural diversity of solid solutions formed between 3-chloro-trans-cinnamic acid and 3-bromo-trans-cinnamic acid. Crystal Growth and Design 17 (3), pp.1276-1284. (10.1021/acs.cgd.6b01675)
- Marti-Rujas, J. et al., 2011. Structural diversity, but no polymorphism, in a homologous family of co-crystals of urea and α,ω-dihydroxyalkanes. New Journal of Chemistry 35 (7), pp.1515-1521. (10.1039/C1NJ20040B)
- Maruyoshi, K. et al., 2017. Assessing the detection limit of a minority solid-state Form of a pharmaceutical by 1 H double-quantum magic-angle spinning nuclear magnetic resonance spectroscopy. Journal of Pharmaceutical Sciences 106 (11), pp.3372-3377. (10.1016/j.xphs.2017.07.014)
- Olejniczak, S. et al., 2008. 15N and13C high-resolution solid-state NMR study of the polymorphism of the L-enantiomer of N-benzoylphenylalanine. Journal of Physical Chemistry B 112 (6), pp.1586-1593. (10.1021/jp073428u)
- Olejniczak, S. et al., 2008. N-15 and C-13 high-resolution solid-state NMR study of the polymorphism of the L-enantiomer of N-benzoylphenylalanine. Journal of Physical Chemistry B 112 (6), pp.1586-1593. (10.1021/jp073428u)
- Palmer, B. A. et al., 2016. Determining molecular orientations in disordered materials from X-ray linear dichroism at the iodine L1-edge. Journal of the American Chemical Society 138 (50), pp.16188-16191. (10.1021/jacs.6b09054)
- Palmer, B. A. et al. 2011. An incommensurate thiourea inclusion compound. Chemical Communications- Royal Society of Chemistry 47 (13), pp.3760-3762. (10.1039/C0CC05477A)
- Pinsk, N. et al., 2022. Biogenic guanine crystals are solid solutions of guanine and other purine metabolites. Journal of the American Chemical Society 144 (11), pp.5180-5189. (10.1021/jacs.2c00724)
- Schotten, C. et al. 2020. Comparison of the thermal stabilities of diazonium salts and their corresponding triazenes. Organic Process Research and Development 24 (10), pp.2336-2341. (10.1021/acs.oprd.0c00162)
- Sharples, K. M. et al. 2013. An ENDOR and DFT analysis of hindered methyl group rotations in frozen solutions of bis(acetylacetonato)-copper(ii). Physical Chemistry Chemical Physics 15 (36), pp.15214-15222. (10.1039/c3cp52464g)
- Shivakumar, K. I. et al., 2015. Exploiting powder X-ray diffraction to establish the solvent-assisted solid-state supramolecular assembly of pillar[5]quinone. Crystal Growth and Design 15 (4), pp.1583-1587. (10.1021/acs.cgd.5b00277)
- Smalley, C. et al. 2022. A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of L-tyrosine. Chemical Science 13 (18), pp.5277-5288. (10.1039/D1SC06467C)
- Smalley, C. J. H. et al. 2024. Understanding the solid-state structure of riboflavin through a multitechnique approach. Crystal Growth and Design 24 (15), pp.6256-6266. (10.1021/acs.cgd.4c00480)
- Smalley, C. J. H. et al. 2022. Solid-state structural properties of alloxazine determined from powder XRD data in conjunction with DFT-D calculations and solid-state NMR spectroscopy: unraveling the tautomeric identity and pathways for tautomeric interconversion. Crystal Growth and Design 22 (1), pp.524-534. (10.1021/acs.cgd.1c01114)
- Sun, T. et al., 2020. Direct-space structure determination of covalent organic frameworks from 3D electron diffraction data. Angewandte Chemie International Edition 59 (50), pp.22638-22644. (10.1002/anie.202009922)
- Vioglio, P. C. et al., 2019. A strategy for probing the evolution of crystallization processes by low-temperature solid-state NMR and dynamic nuclear polarization. Journal of Physical Chemistry Letters 10 (7), pp.1505-1510. (10.1021/acs.jpclett.9b00306)
- Wagner, A. et al., 2024. Structure determination of biogenic crystals directly from 3D electron diffraction data. Crystal Growth and Design 24 (3), pp.899-905. (10.1021/acs.cgd.3c01290)
- Watts, A. E. et al., 2016. Combining the advantages of powder X-ray diffraction and NMR crystallography in structure determination of the pharmaceutical material cimetidine hydrochloride. Crystal Growth and Design 16 (4), pp.1798-1804. (10.1021/acs.cgd.6b00016)
- Williams, P. A. , Hughes, C. E. and Harris, K. D. M. 2015. L-lysine: exploiting powder X-ray diffraction to complete the set of crystal structures of the 20 directly encoded proteinogenic amino acids. Angewandte Chemie International Edition 54 (13), pp.3973-3977. (10.1002/anie.201411520)
- Williams, P. A. et al. 2013. Expanding the Solid-State Landscape ofl-Phenylalanine: Discovery of Polymorphism and New Hydrate Phases, with Rationalization of Hydration/Dehydration Processes. The Journal of Physical Chemistry C 117 (23), pp.12136-12145. (10.1021/jp401547f)
- Williams, P. A. , Hughes, C. E. and Harris, K. D. M. 2012. New insights into the preparation of the low-melting polymorph of racemic ibuprofen. Crystal Growth and Design 12 (12), pp.5839-5845. (10.1021/cg300599q)
- Williams, P. A. et al. 2012. Discovery of a New System Exhibiting Abundant Polymorphism: m-Aminobenzoic Acid. Crystal Growth & Design 12 (6), pp.3104-3113. (10.1021/cg3003178)
- Williams, P. A. et al. 2016. Understanding the solid-state hydration behavior of a common amino acid: identification, structural characterization, and hydration/dehydration processes of new hydrate phases of l-lysine. Journal of Physical Chemistry C 120 (17), pp.9385-9392. (10.1021/acs.jpcc.5b12420)
- Yan, Y. et al. 2013. A rare case of polymorphism in a three-component co-crystal system, with each polymorph having ten independent molecules in the asymmetric unit. Crystal Growth and Design 13 (1), pp.27-30. (10.1021/cg3016035)
- Yan, Y. et al. 2020. Polymorphism in a multicomponent crystal system of trimesic acid and t-butylamine. Crystal Growth and Design 20 (9), pp.5736-5744. (10.1021/acs.cgd.0c00163)
- Zhou, Y. et al. 2015. Discovery of new metastable polymorphs in a family of urea co-crystals by solid-state mechanochemistry. Crystal Growth and Design 15 (6), pp.2901-2907. (10.1021/acs.cgd.5b00331)
- Zhou, Y. et al. 2019. Temperature-dependent structural properties, phase transition behavior, and dynamic properties of a benzene derivative in the solid state. Crystal Growth and Design 19 (4), pp.2155-2162. (10.1021/acs.cgd.8b01775)
- Zilka, M. et al., 2017. Ab initio random structure searching of organic molecular solids: assessment and validation against experimental data. Physical Chemistry Chemical Physics 19 (38), pp.25949-25960. (10.1039/C7CP04186A)
Book sections
- Harris, K. D. and Hughes, C. E. 2025. NMR crystallization: The application of NMR strategies to monitor the evolution of crystallization processes. In: Bryce, D. L. ed. Modern NMR Crystallography: Concepts and Applications. Vol. 36, New Developments in NMR Royal Society of Chemistry. , pp.342-371. (10.1039/9781837673179-00342)
Conferences
- Williams, E. et al., 2016. Nanosecond laser milling of the amorphous alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5. Presented at: 11 th International Conference on Multi-Material Micro Manufacture (4M2016), co-organised with 10th International Workshop on Microfactories (IWMF2016) Lyngby, Denmark, 13-15 September 2016.
Teaching
CH5101 Foundations of Physical Chemistry
CH5108 Introduction to University Chemistry
CH5116 Mathematical Methods for Chemistry
CH3205 Thermodynamics and Kinetics