Professor Graham Hutchings
CBE FRS
- Available for postgraduate supervision
Teams and roles for Graham Hutchings
Regius Professor of Chemistry
Overview
- The study of gold nanocrystals as novel active heterogeneous catalysts and their characterisation.
- The design of selective oxidation and hydrogenation catalysts and their study using in situ spectroscopy.
- Designing novel heterogeneous catalysts
Links
- Physical Chemistry Research Group
- Cardiff Catalysis Institute
- Graham Hutchings' Publication List (pdf)
- Graham Hutchings' CV (pdf)
Publication
2022
- Brehm, J. et al. 2022. The direct synthesis of hydrogen peroxide over AuPd nanoparticles: an investigation into metal loading. Catalysis Letters 152 , pp.254-262. (10.1007/s10562-021-03632-6)
- Miedziak, P. J. et al. 2022. The over-riding role of autocatalysis in alllylic oxidation. Catalysis Letters 152 , pp.1003-1008. (10.1007/s10562-021-03707-4)
- Richards, N. et al. 2022. Effect of the preparation method of LaSrCoFeOx perovskites on the activity of N2O decomposition. Catalysis Letters 152 , pp.213-226. (10.1007/s10562-021-03619-3)
2021
- Agarwal, N. et al. 2021. The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today 381 , pp.76-85. (10.1016/j.cattod.2020.09.001)
- Chachvalvutikul, A. et al. 2021. Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light-responsive Bi2WO6/ZnIn2S4 heterojunction. Applied Surface Science 544 148885. (10.1016/j.apsusc.2020.148885)
- Crombie, C. M. et al. 2021. The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catalysis Letters 151 , pp.164-171. (10.1007/s10562-020-03281-1)
- Crombie, C. M. et al. 2021. The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catalysis Letters 151 , pp.2762-2774. (10.1007/s10562-020-03511-6)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11 , pp.2701–2714. (10.1021/acscatal.0c04586)
- Dawson, S. R. et al. 2021. Sulfur promotion in Au/C catalyzed acetylene hydrochlorination. Small 17 (16) 2007221. (10.1002/smll.202007221)
- Freakley, S. J. et al. 2021. Methane oxidation to methanol in water. Accounts of Chemical Research 54 (11), pp.2614–2623. (10.1021/acs.accounts.1c00129)
- Hutchings, G. 2021. Spiers memorial lecture: understanding reaction mechanisms in heterogeneously catalysed reactions. Faraday Discussions 229 , pp.9-34. (10.1039/D1FD00023C)
- Palacios, M. et al., 2021. Characterisation and activity of mixed metal oxide catalysts for the gas-phase selective oxidation of toluene. Catalysis Today 363 , pp.73-84. (10.1016/j.cattod.2019.06.001)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4 , pp.575-585. (10.1038/s41929-021-00642-w)
- Ruiz Esquius, J. et al. 2021. Identification of C2-C5 products from CO2 hydrogenation over PdZn/TiO2-ZSM-5 hybrid catalysts. Faraday Discussions 230 , pp.52-67. (10.1039/D0FD00135J)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Smith, L. R. et al. 2021. Gas phase clycerol valorization over ceria nanostructures with well-defined morphologies. ACS Catalysis 11 , pp.4893-4907. (10.1021/acscatal.0c05606)
- Tariq, A. et al. 2021. Combination of Cu/ZnO methanol synthesis catalysts and ZSM-5 zeolites to produce oxygenates from CO2 and H2. Topics in Catalysis 64 , pp.965-973. (10.1007/s11244-021-01447-8)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47 , pp.303-324. (10.1007/s11164-020-04333-2)
- Wilbers, D. et al., 2021. Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. Green Chemistry 23 (11), pp.4170-4180. (10.1039/D0GC04320F)
2020
- Abedin, M. A. et al., 2020. Probing the surface acidity of supported aluminum bromide catalysts. Catalysts 10 (8) 869. (10.3390/catal10080869)
- Abis, L. et al. 2020. Plasmonic oxidation of glycerol using Au/TiO2 catalysts prepared by sol-immobilisation. Catalysis Letters 150 (1), pp.49-55. (10.1007/s10562-019-02952-y)
- Abis, L. et al. 2020. The effect of polymer addition on base catalysed glycerol oxidation using gold and gold-palladium bimetallic catalysts. Topics in Catalysis 63 , pp.394-402. (10.1007/s11244-019-01212-y)
- Akram, A. et al. 2020. The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology 10 (24), pp.8203-8212. (10.1039/D0CY01163K)
- Aldridge, J. K. et al. 2020. Ambient temperature CO oxidation using palladium-platinum bimetallic catalysts supported on tin oxide/alumina. Catalysts 10 (11) 1223. (10.3390/catal10111223)
- Bowker, M. et al. 2020. CO2 hydrogenation to CH3OH over PdZn catalysts, with reduced CH4 production. ChemCatChem 12 (23), pp.6024-6032. (10.1002/cctc.202000974)
- Cai, R. et al., 2020. Gas-phase deposition of gold nanoclusters to produce heterogeneous glycerol oxidation catalysts. ACS Applied Nano Materials 3 (6), pp.4997-5001. (10.1021/acsanm.0c01140)
- Caswell, T. et al. 2020. Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology 10 (7), pp.2083-2091. (10.1039/C9CY02473E)
- Catlow, C. R. et al. 2020. Science to enable the circular economy. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 378 (2176)(10.1098/rsta.2020.0060)
- Cattaneo, S. et al. 2020. Continuous flow synthesis of bimetallic AuPd catalysts for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ChemNanoMat 6 (3), pp.420-426. (10.1002/cnma.201900704)
- Crole, D. A. et al. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ni/TiO2 catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200062. (10.1098/rsta.2020.0062)
- Devlia, J. et al., 2020. The formation of methanol from glycerol bio-waste over doped ceria based catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200059. (10.1098/rsta.2020.0059)
- Evans, C. D. et al. 2020. Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. Journal of Chemical Physics 152 (13) 134705. (10.1063/1.5128595)
- Freakley, S. J. et al., 2020. Gold–palladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. Catalysis Science and Technology 10 (17), pp.5935-5944. (10.1039/D0CY00915F)
- Gong, X. et al. 2020. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catalysis Science and Technology 10 (14), pp.4635-4644. (10.1039/D0CY01079K)
- Hardacre, C. et al., 2020. Synchrotron radiation and catalytic science. Synchrotron Radiation News 33 (1), pp.10-14. (10.1080/08940886.2020.1701368)
- Jarvis, J. et al., 2020. Inhibiting the dealkylation of basic arenes during n-alkane direct aromatization reactions and understanding the C6 ring closure mechanism. ACS Catalysis 10 , pp.8428-8443. (10.1021/acscatal.0c02361)
- Jiao, Y. et al., 2020. The effect of T-atom ratio and TPAOH concentration on the pore structure and titanium position in MFI-Type titanosilicate during dissolution-recrystallization process. Microporous and Mesoporous Materials 305 110397. (10.1016/j.micromeso.2020.110397)
- Ju, Q. et al., 2020. Ruthenium triazine composite: a good match for increasing hydrogen evolution activity through contact electrification. Advanced Energy Materials 10 (21) 2000067. (10.1002/aenm.202000067)
- Ledendecker, M. et al., 2020. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catalysis 10 (10), pp.5928-5938. (10.1021/acscatal.0c01305)
- Liu, S. et al., 2020. Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A 8 , pp.15725-15733. (10.1039/D0TA00334D)
- Malta, G. et al. 2020. Can gold be an effective catalyst for the Deacon reaction?. Catalysis Letters 150 , pp.2991-2995. (10.1007/s10562-020-03204-0)
- Malta, G. et al. 2020. In situ K-edge X-ray absorption spectroscopy of the ligand environment of single-site Au/C catalysts during acetylene hydrochlorination. Chemical Science 11 (27), pp.7040-7052. (10.1039/D0SC02152K)
- McVicker, R. et al. 2020. Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today 342 , pp.32-38. (10.1016/j.cattod.2018.12.017)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120 (8), pp.3890-3938. (10.1021/acs.chemrev.9b00662)
- Parker, L. A. et al. 2020. Ammonia decomposition enhancement by Cs-Promoted Fe/Al2O3 catalysts. Catalysis Letters 150 , pp.3369-3376. (10.1007/s10562-020-03247-3)
- Pattisson, S. et al. 2020. Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts. Catalysis Today 357 , pp.3-7. (10.1016/j.cattod.2019.04.053)
- Pudkon, W. et al., 2020. Enhanced visible-light-driven photocatalytic H2 production and Cr(vi) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method. Catalysis Science and Technology 10 (9), pp.2838-2854. (10.1039/D0CY00234H)
- Richards, N. et al. 2020. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition. Applied Catalysis B: Environmental 264 118501. (10.1016/j.apcatb.2019.118501)
- Richards, N. et al. 2020. Lowering the operating temperature of perovskite catalysts for N2O decomposition through control of preparation methods. ACS Catalysis 10 (10), pp.5430-5442. (10.1021/acscatal.0c00698)
- Rogers, O. et al. 2020. Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the role of homogeneous vanadium species. Catalysis Science and Technology 10 (13), pp.4210-4218. (10.1039/D0CY00914H)
- Rucinska, E. et al. 2020. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: An optimization of metal ratio and investigation of the deactivation mechanism under autoxidation conditions. Topics in Catalysis 63 , pp.99-112. (10.1007/s11244-020-01231-0)
- Ruiz Esquius, J. et al. 2020. Preparation of solid solution and layered IrOx–Ni(OH)2 oxygen evolution catalysts: toward optimizing iridium efficiency for OER. ACS Catalysis 10 (24), pp.14640-14648. (10.1021/acscatal.0c03866)
- Ruiz Esquius, J. et al. 2020. Effect of base on the facile hydrothermal preparation of highly active IrOx oxygen evolution catalysts. ACS Applied Energy Materials 3 (1), pp.800-809. (10.1021/acsaem.9b01642)
- Shen, H. et al., 2020. Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel. Cell Reports Physical Science 1 (11) 100255. (10.1016/j.xcrp.2020.100255)
- Sun, X. et al. 2020. Facile synthesis of precious-metal single-site catalysts using organic solvents. Nature Chemistry 12 , pp.560-567. (10.1038/s41557-020-0446-z)
- Thaore, V. B. et al., 2020. Sustainable production of glucaric acid from corn stover via glucose oxidation: an assessment of homogeneous and heterogeneous catalytic oxidation production routes. Chemical Engineering Research and Design 153 , pp.337-349. (10.1016/j.cherd.2019.10.042)
- Wang, S. et al., 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd–Ga and Pd–In catalysts. Catalysis Science and Technology 10 , pp.1925-1932. (10.1039/C9CY02210D)
- Zhang, B. et al., 2020. Seed- and solvent-free synthesis of ZSM-5 with tuneable Si/Al ratios for biomass hydrogenation. Green Chemistry 22 (5), pp.1630-1638. (10.1039/C9GC03622A)
2019
- Abis, L. et al. 2019. Plasmonic oxidation of glycerol using AuPd/TiO2 catalysts. Catalysis Science and Technology 9 (20), pp.5686-5691. (10.1039/C9CY01409H)
- Alotaibi, F. et al., 2019. Direct synthesis of hydrogen peroxide using Cs-containing heteropolyacid-supported palladium-copper catalysts. Catalysis Letters 149 (4), pp.998-1006. (10.1007/s10562-019-02680-3)
- Armstrong, R. D. et al. 2019. Quantitative determination of Pt- catalyzed D-glucose oxidation products using 2D NMR. ACS Catalysis 9 (1), pp.325-335. (10.1021/acscatal.8b03838)
- Carter, J. H. et al. 2019. Enhanced activity and stability of Gold/Ceria-Titania for the low-temperature water-gas shift reaction. Frontiers in Chemistry 7 443. (10.3389/fchem.2019.00443)
- Cattaneo, S. et al. 2019. Synthesis of highly uniform and composition-controlled gold-palladium supported nanoparticles in continuous flow. Nanoscale 17 , pp.8247-8259. (10.1039/C8NR09917K)
- Dai, X. et al., 2019. Efficient elimination of chlorinated organics on a phosphoric acid modified CeO2 catalyst: a hydrolytic destruction route. Environmental Science and Technology 53 (21), pp.12697-12705. (10.1021/acs.est.9b05088)
- Engel, R. V. et al. 2019. Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catalysis Today 333 , pp.154-160. (10.1016/j.cattod.2018.09.005)
- Freakley, S. J. et al. 2019. A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2. Nature Communications 10 (1) 4178. (10.1038/s41467-019-12120-w)
- Hirayama, J. et al., 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123 (13), pp.7879-7888. (10.1021/acs.jpcc.8b07108)
- Hutchings, G. J. and Lewis, R. 2019. A review of recent advances in the direct synthesis of H2O2. ChemCatChem 11 (1), pp.298-308. (10.1002/cctc.201801435)
- Lewis, R. et al. 2019. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11 (6), pp.1673-1680. (10.1002/cctc.201900100)
- Lewis, R. J. et al. 2019. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catalysis Letters 149 (11), pp.3066-3075. (10.1007/s10562-019-02876-7)
- Macino, M. et al. 2019. Tuning of catalytic sites in Pt/TiO2 catalysts for chemoselective hydrogenation of 3-nitrostyrene. Nature Catalysis 2 , pp.873-881. (10.1038/s41929-019-0334-3)
- Nowicka, E. et al. 2019. Benzyl alcohol oxidation with Pd-Zn/TiO2: computational and experimental studies. Science and Technology of Advanced Materials 20 (1), pp.367-378. (10.1080/14686996.2019.1598237)
- Nyathi, T. M. et al. 2019. Impact of nanoparticle-support interactions in Co3O4/Al2O3 catalysts for the preferential oxidation of carbon monoxide. ACS Catalysis 9 (8), pp.7166-7178. (10.1021/acscatal.9b00685)
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36 , pp.15-24. (10.1016/j.jechem.2019.01.015)
- Pudkon, W. et al., 2019. Microwave synthesis of ZnIn2S4/WS2 composites for photocatalytic hydrogen production and hexavalent chromium reduction. Catalysis Science and Technology 9 (20), pp.5698-5711. (10.1039/C9CY01553A)
- Santos Hernandez, A. et al. 2019. The direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions. Industrial & Engineering Chemistry Research 58 (28), pp.12623-12631. (10.1021/acs.iecr.9b02211)
- Shen, Y. et al., 2019. Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversion. Journal of Physical Chemistry C 123 (32), pp.19734-19741. (10.1021/acs.jpcc.9b05475)
- Smith, L. R. et al. 2019. New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology 9 , pp.1464-1475. 6. (10.1039/C8CY02214C)
- Smith, P. J. et al. 2019. Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies 12 (7) 1359. (10.3390/en12071359)
- Venezia, B. et al., 2019. Slurry loop tubular membrane reactor for the catalysed aerobic oxidation of benzyl alcohol. Chemical Engineering Journal 378 122250. (10.1016/j.cej.2019.122250)
- Waldron, C. et al., 2019. Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors. Chemical Engineering Journal 377 119976. (10.1016/j.cej.2018.09.137)
- Zhan, S. et al., 2019. Editorial of Environmental Catalysis_18NCC. Catalysis Today 327 , pp.1-1. (10.1016/j.cattod.2019.01.046)
2018
- Adishev, A. et al., 2018. Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions 208 , pp.471-495. (10.1039/C8FD90015A)
- Agarwal, N. et al. 2018. Low temperature selective methane oxidation to methanol utilizing molecular oxygen with gold palladium colloidal catalysts. Presented at: 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water New Orleans, LA, USA 18-22 March 2018. Abstracts of Papers of the American Chemical Society. Vol. 255.American Chemical Society. , pp.35.
- Armstrong, R. et al. 2018. The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts. ChemPhysChem 19 (4), pp.469-478. (10.1002/cphc.201701046)
- Arrigo, R. et al., 2018. Theory as a driving force to understand reactions on nanoparticles: general discussion. Faraday Discussions 208 , pp.147-185. (10.1039/C8FD90013B)
- Bahruji, H. et al. 2018. Hydrogenation of CO2 to dimethyl ether over brønsted acidic PdZn catalysts. Industrial and Engineering Chemistry Research 57 (20), pp.6821-6829. (10.1021/acs.iecr.8b00230)
- Bahruji, H. et al. 2018. Correction to: Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Topics in Catalysis (10.1007/s11244-018-1081-4)
- Bahruji, H. et al. 2018. Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Topics in Catalysis 61 (3-4), pp.144-153. (10.1007/s11244-018-0885-6)
- Baletto, F. et al., 2018. Application of new nanoparticle structures as catalysts: general discussion. Faraday Discussions 208 , pp.575-593. (10.1039/C8FD90016G)
- Carter, J. H. and Hutchings, G. J. 2018. Recent advances in the gold-catalysed low-temperature water-gas shift reaction. Catalysts 8 (12), pp.627-627. (10.3390/catal8120627)
- Cattaneo, S. et al. 2018. Cinnamaldehyde hydrogenation using Au-Pd catalysts prepared by sol immobilisation. Catalysis Science and Technology 8 , pp.1677-1685. (10.1039/C7CY02556D)
- Chow, Y. K. et al. 2018. A kinetic study of methane partial oxidation over FeZSM-5 using N2O as an oxidant. ChemPhysChem 19 (4), pp.402-411. (10.1002/cphc.201701202)
- Chow, Y. K. et al. 2018. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catalysis Science and Technology 2018 (8), pp.154-163. (10.1039/C7CY01769C)
- D'Agostino, C. et al., 2018. Product inhibition in the glycerol oxidation over Au/TiO2 catalyst quantified by NMR relaxation. ACS Catalysis 8 (8), pp.7334-7339. (10.1021/acscatal.8b01516)
- Dodekatos, G. et al., 2018. Glycerol oxidation using MgO and Al2O3 supported gold and gold-palladium nanoparticles prepared in the absence of polymer stabilisers. ChemCatChem 10 (6), pp.1351-1359. (10.1002/cctc.201800074)
- Engel, R. V. et al. 2018. Oxidative carboxylation of 1-decene to 1,2-decylene carbonate. Topics in Catalysis 61 (5-6), pp.509-518. (10.1007/s11244-018-0900-y)
- Galvanin, F. et al., 2018. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal 342 , pp.196-210. (10.1016/j.cej.2017.11.165)
- Hutchings, G. et al. 2018. Selective hydrogenation of levulinic acid using Ru/C catalysts prepared by sol-immobilsation. Topics in Catalysis 61 (9-11), pp.833-843.
- Hutchings, G. J. 2018. Heterogeneous gold catalysis. ACS Central Science 4 (9), pp.1095-1101. (10.1021/acscentsci.8b00306)
- Hutchings, G. J. and Catlow, C. R. 2018. Designing heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2216) 20180514. (10.1098/rspa.2018.0514)
- Hutchings, G. J. , Catlow, C. and Turner, N. 2018. Providing sustainable catalytic solutions for a rapidly changing world [RETRACTED]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2215) 20180414. (10.1098/rspa.2018.0414)
- Jiao, Y. et al., 2018. Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. Catalysis Science and Technology 8 , pp.2211-2217. (10.1039/C7CY02571H)
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4 (1), pp.12-23. (10.1080/2055074X.2018.1433598)
- Jones, M. et al. 2018. Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons. Journal of Catalysis 364 , pp.102-111. (10.1016/j.jcat.2018.05.012)
- Kanitkar, S. et al., 2018. Low temperature direct conversion of methane using a solid superacid. ChemCatChem 10 (21), pp.5033-5038. (10.1002/cctc.201801310)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317 , pp.12-20. (10.1016/j.cattod.2018.03.046)
- Malta, G. et al. 2018. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: An X-ray absorption and inelastic neutron scattering study. ACS Catalysis 8 (9), pp.8493-8505. (10.1021/acscatal.8b02232)
- Marquart, W. et al., 2018. Oxygenate formation over K/β-Mo2C catalysts in the Fischer-Tropsch synthesis. Catalysis Science and Technology 8 (15), pp.3806-3817. (10.1039/C8CY01181H)
- Miedziak, P. et al. 2018. Gold as a catalyst for the ring opening of 2,5-Dimethylfuran. Catalysis Letters 148 (7), pp.2109-2116. (10.1007/s10562-018-2415-3)
- Nowicka, E. et al. 2018. Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catalysis Science and Technology 8 (22), pp.5848-5857. (10.1039/C8CY01100A)
- Nowicka, E. et al. 2018. Mechanistic insights into selective oxidation of polyaromatic compounds using RICO chemistry. Chemistry - A European Journal 24 (47), pp.12359-12369. (10.1002/chem.201800423)
- Nowicka, E. et al. 2018. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based catalysts. ACS Catalysis 8 , pp.3454-3468. (10.1021/acscatal.7b03805)
- Parmentier, T. et al. 2018. Homocoupling of phenylboronic acid using atomically dispersed gold on carbon catalysts: catalyst evolution before reaction. ChemCatChem 10 (8), pp.1853-1859. (10.1002/cctc.201701840)
- Qu, R. et al. 2018. Supported bimetallic AuPd nanoparticles as a catalyst for the selective hydrogenation of nitroarenes. Nanomaterials 8 (9) 690. (10.3390/nano8090690)
- Richards, N. et al. 2018. Investigating the influence of Fe speciation on N2O decomposition over Fe–ZSM-5 catalysts. Topics in Catalysis 61 (18-19), pp.1983-1992. (10.1007/s11244-018-1024-0)
- Rogers, O. et al. 2018. The low temperature solvent-free aerobic oxidation of cyclohexene to cyclohexane diol over highly active Au/Graphite and Au/Graphene catalysts. Catalysts 8 (8), pp.311. (10.3390/catal8080311)
- Rucinska, E. et al. 2018. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: an investigation of autoxidation and catalysis. Catalysis Science and Technology 8 (11), pp.2987-2997. (10.1039/C8CY00155C)
- Underhill, R. et al. 2018. Oxidative degradation of phenol using in situ generated hydrogen peroxide combined with Fenton's process. Johnson Matthey Technology Review 62 (4), pp.417-425. (10.1595/205651318X15302623075041)
- Williams, C. et al. 2018. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catalysis , pp.2567-2576. (10.1021/acscatal.7b04417)
- Zhang, B. et al. 2018. Macroporous-mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols. Green Chemistry 20 (15), pp.3634-3642. (10.1039/C8GC01624K)
2017
- Abis, L. et al. 2017. Highly active gold and gold-palladium catalysts prepared by colloidal methods in the absence of polymer stabilizers. ChemCatChem 9 (15), pp.2914-2918. (10.1002/cctc.201700483)
- Agarwal, N. et al. 2017. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358 (6360), pp.223-227. (10.1126/science.aan6515)
- Al-Rifai, N. et al., 2017. Deactivation behaviour of supported gold palladium nanoalloy catalysts during the selective oxidation of benzyl alcohol in a micro-packed bed reactor. Industrial & Engineering Chemistry Research 56 (45), pp.12984-12993. (10.1021/acs.iecr.7b01159)
- Alsaiari, R. et al. 2017. The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science & Technology 2017 (6), pp.1433-1439. (10.1039/C6CY02448C)
- Armstrong, R. et al. 2017. How to synthesise high purity, crystalline D-glucaric acid selectively. European Journal of Organic Chemistry 2017 (45), pp.6811-6814. (10.1002/ejoc.201701343)
- Bahruji, H. et al. 2017. PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discussions 197 , pp.309-324. (10.1039/C6FD00189K)
- Cao, E. et al., 2017. A micropacked-bed multi-reactor system with in situ raman analysis for catalyst evaluation. Catalysis Today 283 , pp.195-201. (10.1016/j.cattod.2016.06.007)
- Cao, Y. et al. 2017. An investigation into bimetallic catalysts for base free oxidation of cellobiose and glucose. Journal of Chemical Technology and Biotechnology 92 (9), pp.2246-2253. (10.1002/jctb.5287)
- D'Agostino, C. et al., 2017. Increased affinity of small gold particles for glycerol oxidation over Au/TiO2 probed by NMR relaxation methods. ACS Catalysis 7 (7), pp.4235-4241. (10.1021/acscatal.7b01255)
- Douthwaite, M. et al. 2017. The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. Catalysis Science & Technology 7 (22), pp.5284-5293. (10.1039/C7CY01025G)
- Fechete, I. et al., 2017. Catalytic reactivity of surfaces: in recognition of François Gault. Catalysis Science & Technology 7 (22), pp.5181-5181. (10.1039/C7CY90088K)
- Fu, J. et al. 2017. The role of Mg(OH)2 in the so-called 'base-free' oxidation of glycerol with AuPd catalysts. Chemistry - A European Journal 24 (10), pp.2396-2402. (10.1002/chem.201704151)
- Giorgi, P. D. et al., 2017. Bicatalytic multistep reactions en route to the one-pot total synthesis of complex molecules: easy access to chromene and 1,2-dihydroquinoline derivatives from simple substrates. ChemCatChem 9 (1), pp.70-75. (10.1002/cctc.201600925)
- Hayward, J. S. et al. 2017. The effects of secondary oxides on copper-based catalysts for green methanol synthesis. ChemCatChem 9 (9), pp.1655-1662. (10.1002/cctc.201601692)
- Hutchings, G. J. et al. 2017. New insights into the activation and deactivation of Au/CeZrO4 in the low-temperature water-gas shift reaction. Angewandte Chemie International Edition 56 (50), pp.16037-16041. (10.1002/anie.201709708)
- Ishikawa, S. et al., 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19 (1), pp.225-236. (10.1039/C6GC02598F)
- Ivars-Barceló, F. et al., 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354 , pp.236-249. (10.1016/j.jcat.2017.08.020)
- Khasu, M. et al., 2017. Co3O4 morphology in the preferential oxidation of CO. Catalysis Science & Technology 7 (20), pp.4806-4817. (10.1039/C7CY01194F)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197 , pp.287-307. (10.1039/C6FD00202A)
- Lewis, R. et al. 2017. Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide. Industrial & Engineering Chemistry Research 56 (45), pp.13287-13293. (10.1021/acs.iecr.7b01800)
- Liu, X. et al., 2017. Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide. Chemistry - A European Journal 23 (49)(10.1002/chem.201605941)
- Malta, G. et al. 2017. Acetylene hydrochlorination using Au / Carbon: a journey towards single site catalysis. Chemical Communications (10.1039/C7CC05986H)
- Malta, G. et al., 2017. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355 (6332), pp.1399-1403. (10.1126/science.aal3439)
- Morad, M. et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science & Technology 7 (9), pp.1928-1936. (10.1039/C7CY00184C)
- Niemantsverdriet, H. et al., 2017. Catalysis for fuels: general discussion. Faraday Discussions 197 , pp.165-205. (10.1039/C7FD90010D)
- Peneau, V. et al., 2017. The low temperature oxidation of propane using H2O2 and Fe/ZSM-5 catalysts; insights into the active site and enhancement of catalytic turnover frequencies. ChemCatChem 9 (4), pp.642-650. (10.1002/cctc.201601241)
- Pizzutilo, E. et al., 2017. Gold-palladium bimetallic catalyst stability: consequences for hydrogen peroxide selectivity. ACS Catalysis 7 , pp.5699-5705. (10.1021/acscatal.7b01447)
- Pizzutilo, E. et al., 2017. Addressing stability challenges of using bimetallic electrocatalysts: the case of gold?palladium nanoalloys. Catalysis Science & Technology 7 (9), pp.1848-1856. (10.1039/C7CY00291B)
- Pizzutilo, E. et al., 2017. Palladium electrodissolution from model surfaces and nanoparticles. Electrochimica Acta 229 , pp.467-477. (10.1016/j.electacta.2017.01.127)
- Pizzutilo, E. et al., 2017. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production. Chemical Physics Letters 683 , pp.436-442. (10.1016/j.cplett.2017.01.071)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9 (9), pp.1621-1631. (10.1002/cctc.201601603)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8 (3), pp.2436-2447. (10.1039/C6SC04130B)
- Taylor, S. H. et al. 2017. Oxidation of polynuclear aromatic hydrocarbons using ruthenium ion catalyzed oxidation: The role of aromatic ring number in reaction kinetics and product distribution. Chemistry - a European Journal (10.1002/chem.201704133)
- Yoshida, R. et al., 2017. Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over Cu-Ni bimetallic catalysts. Catalysis Communications 97 , pp.79-82. (10.1016/j.catcom.2017.04.018)
2016
- Ab Rahim, M. H. et al., 2016. Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catalysis Science & Technology 6 (10), pp.3410-3418. (10.1039/C5CY01586C)
- Akram, A. et al., 2016. Gas phase stabiliser-free production of hydrogen peroxide using supported gold-palladium catalysts. Chemical Science 7 (9), pp.5833-5837. (10.1039/C6SC01332E)
- Al-Rifai, N. et al., 2016. Hydrodynamic effects on three phase micro-packed bed reactor performance – Gold–palladium catalysed benzyl alcohol oxidation. Chemical Engineering Science 149 , pp.129-142. (10.1016/j.ces.2016.03.018)
- Aldosari, D. O. et al., 2016. Pd-Ru/TiO2 catalyst - an active and selective catalyst for furfural hydrogenation. Catalysis Science & Technology 6 , pp.234-242. (10.1039/C5CY01650A)
- Armstrong, R. , Hutchings, G. and Taylor, S. H. 2016. An overview of recent advances of the catalytic selective oxidation of ethane to oxygenates. Catalysts 6 (5) 71. (10.3390/catal6050071)
- Bahruji, H. et al. 2016. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis 343 , pp.133-146. (10.1016/j.jcat.2016.03.017)
- Carter, J. et al. 2016. Synergy and anti-synergy between palladium and gold in nanoparticles dispersed on a reducible support. ACS Catalysis 6 (10), pp.6623-6633. (10.1021/acscatal.6b01275)
- Catlow, C. R. et al., 2016. Catalysis making the world a better place. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374 (2061) 20150089. (10.1098/rsta.2015.0089)
- Conte, M. et al., 2016. Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings. Catalysis Letters 146 (1), pp.126-135. (10.1007/s10562-015-1660-y)
- Crole, D. A. et al. 2016. Direct synthesis of hydrogen peroxide in water at ambient temperature. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472 (2190) 20160156. (10.1098/rspa.2016.0156)
- D'Agostino, C. et al., 2016. Solvent inhibition in the liquid-phase catalytic oxidation of 1,4-butanediol: understanding the catalyst behaviour from NMR relaxation time measurements. Catalysis Science & Technology 6 (21), pp.7896-7901. (10.1039/C6CY01458E)
- Davies, C. J. et al., 2016. Vinyl chloride monomer production catalysed by gold: a review. Chinese Journal of Catalysis 37 (10), pp.1600-1607. (10.1016/S1872-2067(16)62482-8)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188 , pp.427-450. (10.1039/C5FD00187K)
- Freakley, S. J. et al. 2016. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351 (6276), pp.965-968. (10.1126/science.aad5705)
- Galvanin, F. et al., 2016. Merging information from batch and continuous flow experiments for the identification of kinetic models of benzyl alcohol oxidation over Au-Pd catalyst. Computer Aided Chemical Engineering 38 , pp.961-966. (10.1016/B978-0-444-63428-3.50165-X)
- Gavriilidis, A. et al., 2016. Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. Reaction Chemistry and Engineering 1 (6), pp.595-612. (10.1039/C6RE00155F)
- He, Q. et al. 2016. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications 7 12905. (10.1038/ncomms12905)
- Hutchings, G. J. 2016. Methane activation by selective oxidation. Topics in Catalysis 59 (8-9), pp.658-662. (10.1007/s11244-016-0542-x)
- Hutchings, G. J. et al. 2016. Catalysis making the world a better place: satellite meeting. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 374 (2061), pp.-. 20150358. (10.1098/rsta.2015.0358)
- Iqbal, S. et al., 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275 , pp.35-39. (10.1016/j.cattod.2015.09.041)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272 , pp.74-79. (10.1016/j.cattod.2016.04.012)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6 (15), pp.6022-6030. (10.1039/C6CY00382F)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531 , pp.83-87. (10.1038/nature16935)
- Liu, X. et al., 2016. Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination. Catalysis Science & Technology 6 , pp.5144-5153. (10.1039/C6CY00090H)
- Liu, X. et al., 2016. One-step production of 1,3-butadiene from 2,3-butanediol dehydration. Chemistry - a European Journal 22 (35), pp.12290-12294. (10.1002/chem.201602390)
- Miedziak, P. J. et al. 2016. An investigation of the effect of carbon support on ruthenium/ carbon catalysts for lactic acid and butanone hydrogenation. Physical Chemistry Chemical Physics 18 , pp.17259-17264. (10.1039/C6CP01311B)
- Pattisson, S. et al. 2016. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes. Nature Communications 7 12855. (10.1038/ncomms12855)
- Peneau, V. et al., 2016. The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. Catalysis Science & Technology 6 (20), pp.7521-7531. (10.1039/C6CY01332E)
- Su, R. et al., 2016. Mechanistic insight into the interaction between a titanium dioxide photocatalyst and Pd co-catalyst for improved photocatalytic performance. ACS Catalysis 6 (7), pp.4239-4247. (10.1021/acscatal.6b00982)
- Villa, A. et al., 2016. Characterisation of gold catalysts. Chemical Society Reviews 45 (18), pp.4953-4994. (10.1039/C5CS00350D)
- Villa, A. et al., 2016. Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting gold-palladium nanoparticles on oxygen functionalized carbon nanofibers. Catalysis Science & Technology 6 , pp.694-697. (10.1039/C5CY01880C)
- Wu, G. et al., 2016. Oxidation of cinnamyl alcohol using bimetallic Au-Pd/TiO2catalysts: a deactivation study in a continuous flow packed bed microreactor. Catalysis Science & Technology 6 (13), pp.4749-4758. (10.1039/C6CY00232C)
- Xu, J. et al., 2016. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catalysis Today 270 , pp.93-100. (10.1016/j.cattod.2015.09.011)
- Yang, Q. et al., 2016. Exploring the mechanisms of metal co-catalysts in photocatalytic reduction reactions: Is Ag a good candidate?. Applied Catalysis A: General 518 , pp.213-220. (10.1016/j.apcata.2015.10.023)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648 , pp.163-169. (10.1016/j.susc.2015.11.010)
2015
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- Armstrong, R. et al. 2015. Low temperature catalytic partial oxidation of ethane to oxygenates by Fe– and Cu–ZSM-5 in a continuous flow reactor. Journal of Catalysis 330 , pp.84-92. (10.1016/j.jcat.2015.07.001)
- Auer, A. A. et al., 2015. MAXNET energy - focusing research in chemical energy conversion on the electrocatlytic oxygen evolution. Green 5 (1-6), pp.7-21. (10.1515/green-2015-0021)
- Cao, Y. et al., 2015. Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catalysis Science & Technology 6 , pp.107-117. (10.1039/C5CY00732A)
- Constantinou, A. et al., 2015. Continuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactor. Organic Process Research and Development 19 (12), pp.1973-1979. (10.1021/acs.oprd.5b00220)
- Edwards, J. K. et al. 2015. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today 248 , pp.3-9. (10.1016/j.cattod.2014.03.011)
- Fechete, I. et al., 2015. Preface to the special issue "Nanocatalysis science: Preparation, characterization and reactivity", honoring Jacques C. Védrine. Applied Catalysis A: General 504 , pp.1-3. (10.1016/j.apcata.2015.05.009)
- Freakley, S. J. et al. 2015. Direct synthesis of hydrogen peroxide using Au-Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions. Catalysis Today 248 , pp.10-17. (10.1016/j.cattod.2014.01.012)
- Gandarias Goikoetxea, I. et al. 2015. Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. Chemsuschem 8 (3), pp.473-480. (10.1002/cssc.201403190)
- Gupta, U. N. et al., 2015. Epoxidation of propene with graphite AuPd-supported nanoparticles. Catalysis Letters 145 (2), pp.697-701. (10.1007/s10562-014-1439-6)
- Gupta, U. N. et al., 2015. Solvent-free oxidation of dec-1-ene using gold/graphite catalyst using an in situ generated oxidant. Catalysis Science & Technology 5 (2), pp.1307-1313. (10.1039/C4CY01355G)
- Gupta, U. N. et al., 2015. Solvent-free aerobic epoxidation of Dec-1-ene using gold/graphite as a catalyst. Catalysis Letters 145 (2), pp.689-696. (10.1007/s10562-014-1425-z)
- Haider, M. H. et al., 2015. Efficient green methanol synthesis from glycerol. Nature Chemistry 7 , pp.1028-1032. (10.1038/nchem.2345)
- He, Y. et al., 2015. Oxidation of aliphatic alcohols by using precious metals supported on hydrotalcite under solvent- and base-free conditions. ChemSusChem 8 (19), pp.3314-3322. (10.1002/cssc.201500503)
- Iqbal, S. , Brett, G. and Hutchings, G. j. 2015. The role of gold catalysts in C-H bond activation for the selective oxidation of saturated hydrocarbons. Gold Catalysis Preparation, Characterization, and Applications , pp.311-339. (10.1201/b19911-12)
- Iqbal, S. et al. 2015. Ruthenium nanoparticles supported on carbon: an active catalyst for the hydrogenation of lactic acid to 1,2-propanediol. ACS Catalysis 5 (9), pp.5047-5059. (10.1021/acscatal.5b00625)
- Johnston, P. , Carthey, N. and Hutchings, G. J. 2015. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. Journal of the American Chemical Society 137 (46), pp.14548-14557. (10.1021/jacs.5b07752)
- King, G. M. et al. 2015. An investigation of the effect of the addition of tin to %Pd/TiO2 for the hydrogenation of furfuryl alcohol. ChemCatChem 7 (14), pp.2122-2129. (10.1002/cctc.201500242)
- Lari, G. M. et al., 2015. The use of carbon monoxide as a probe molecule in spectroscopic studies for determination of exposed gold sites on TiO2. Physical Chemistry Chemical Physics 17 (35), pp.23236-23244. (10.1039/C5CP02512E)
- Liu, X. et al., 2015. Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts. Applied Catalysis A: General 504 , pp.373-380. (10.1016/j.apcata.2015.02.034)
- Marin, R. P. et al., 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504 , pp.62-73. (10.1016/j.apcata.2015.02.023)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation. Chemistry - A European Journal 21 (11), pp.4285-4293. (10.1002/chem.201405831)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation [Cover Profile]. Chemistry - A European Journal 21 (11), pp.4169. (10.1002/chem.201406658)
- Peneau, V. et al. 2015. Co-oxidation of octane and benzaldehyde using molecular oxygen with Au–Pd/carbon prepared by sol-immobilisation. Catalysis Science & Technology 5 (8), pp.3953-3959. (10.1039/C5CY00453E)
- Villa, A. et al., 2015. Tailoring the selectivity of glycerol oxidation by tuning the acid-base properties of Au catalysts. Catalysis Science & Technology 5 , pp.1126-1132. (10.1039/C4CY01246A)
- Villa, A. et al., 2015. ChemInform abstract: glycerol oxidation using gold-containing catalysts. Chem Inform 46 (29)(10.1002/chin.201529292)
- Villa, A. et al., 2015. Glycerol oxidation using gold-containing catalysts. Accounts of Chemical Research 48 (5), pp.1403-1412. (10.1021/ar500426g)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5 (6), pp.3575-3587. (10.1021/acscatal.5b00480)
- Weerachawanasak, P. et al., 2015. Surface functionalized TiO
2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today 250 , pp.218-225. (10.1016/j.cattod.2014.06.005) - Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
- Wu, G. et al., 2015. Continuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactor. Industrial & Engineering Chemistry Research 54 (16), pp.4183-4189. (10.1021/ie5041176)
2014
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Alshammari, H. et al., 2014. Initiator-free hydrocarbon oxidation using supported gold nanoparticlec. Catalysis Science and Technology -Cambridge- 4 (4), pp.908-911. (10.1039/c4cy00088a)
- Brett, G. L. et al. 2014. Gold-based nanoparticulate catalysts for the oxidative esterification of 1,4-butanediol to dimethyl succinate. Topics in Catalysis 57 (6-9), pp.723-729. (10.1007/s11244-013-0229-5)
- D'Agostino, C. et al., 2014. Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. Catalysis Science & Technology 4 (5), pp.1313-1322. (10.1039/c4cy00027g)
- Dimitratos, N. , Hammond, C. and Hutchings, G. J. 2014. Gold-based nanoparticle catalysts for catalytic applications [Abstract]. Abstracts of Papers of the American Chemical Society 248 1 p..
- Dimitratos, N. et al. 2014. Catalysis using colloidal-supported gold-based nanoparticles. Applied Petrochemical Research 4 (1), pp.85-94. (10.1007/s13203-014-0059-9)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2014. Supported metal nanoparticles in liquid-phase oxidation reactions. In: Duprez, D. and Cavani, F. eds. Handbook Of Advanced Methods And Processes In Oxidation Catalysis: From Laboratory To Industry. London,UK: Imperial College Press. , pp.631-678. (10.1142/9781848167513_0022)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. Angewandte Chemie International Edition 53 (9), pp.2381-2384. (10.1002/anie.201308067)
- Edwards, J. K. et al. 2014. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Accounts of Chemical Research 47 (3), pp.845-854. (10.1021/ar400177c)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum promoted gold-palladium catalysts. Catalysis Science and Technology -Cambridge- 4 (9), pp.3244-3250. (10.1039/c4cy00496e)
- Forde, M. et al. 2014. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. Chemical Science 5 (9), pp.3603-3616. (10.1039/C4SC00545G)
- Forde, M. M. et al. 2014. High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano 8 (1), pp.957-969. (10.1021/nn405757q)
- Freakley, S. et al. 2014. Gold catalysis: a reflection on where we are now. Catalysis Letters 145 (1), pp.71-79. (10.1007/s10562-014-1432-0)
- Haider, M. et al. 2014. The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. Chemistry - a European Journal 20 (6), pp.1743-1752. (10.1002/chem.201302348)
- Hutchings, G. J. 2014. Au catalysts for acetylene hydrochlorination and carbon monoxide oxidation. Topics in Catalysis 57 (14-16), pp.1265-1271. (10.1007/s11244-014-0290-8)
- Hutchings, G. J. 2014. Selective oxidation using supported gold bimetallic and trimetallic nanoparticles. Catalysis Today 238 , pp.69-73. (10.1016/j.cattod.2014.01.033)
- Iqbal, S. et al. 2014. Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catalysis Science & Technology 4 (8), pp.2280-2286. (10.1039/c4cy00184b)
- Jones, W. V. et al. 2014. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness. Physical Chemistry Chemical Physics 16 , pp.26638-26644. (10.1039/C4CP04693E)
- Kiely, C. et al. 2014. Assessing and controlling the size, morphology and composition of supported bimetallic catalyst nanoparticles. Microscopy and Microanalysis 20 (S3), pp.74-75. (10.1017/S1431927614002098)
- Kondrat, S. A. et al. 2014. Base-free oxidation of glycerol using titania-supported trimetallic Au-Pd-Pt nanoparticles. Chemsuschem 7 (5), pp.1326-1334. (10.1002/cssc.201300834)
- Li, C. , Domen, K. and Hutchings, G. J. 2014. Editorial: Special issue on photocatalysis and photoelectrolysis. Journal of Catalysis 310 , pp.1. (10.1016/j.jcat.2013.12.005)
- Liu, X. et al. 2014. Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. Catalysis Science & Technology 5 , pp.217-227. (10.1039/C4CY01213E)
- Marin, R. P. et al., 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4 (7), pp.1970-1978. (10.1039/c4cy00044g)
- Meenakshisundaram, S. et al. 2014. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nature Communications 5 , pp... 3332. (10.1038/ncomms4332)
- Miedziak, P. J. et al. 2014. Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry 16 (6), pp.3132-3141. (10.1039/c4gc00087k)
- Morad, M. et al. 2014. Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. Catalysis Science and Technology 4 (9), pp.3120-3128. (10.1039/c4cy00387j)
- Notar Francesco, I. et al., 2014. Novel radical tandem 1,6-enynes thioacylation/cyclization: Au-Pd nanoparticles catalysis versus thermal activation as a function of the substrate specificity. Tetrahedron 70 (51), pp.9635-9643. (10.1016/j.tet.2014.10.077)
- Peneau, V. et al. 2014. Selective catalytic oxidation of toluene using supported Au-Pt and Pd-Pt nanoalloys [Abstract]. Abstracts of Papers of the American Chemical Society 248 1 p..
- Ryabenkova, Y. et al., 2014. Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron 70 (36), pp.6055-6058. (10.1016/j.tet.2014.02.043)
- Santonastaso, M. et al. 2014. Oxidation of benzyl alcohol using in situ generated hydrogen peroxide. Organic Process Research and Development 18 (11), pp.1455-1460. (10.1021/op500195e)
- Spivey, J. J. and Hutchings, G. J. 2014. Catalytic aromatization of methane. Chemical Society Reviews 43 (3), pp.792-803. (10.1039/C3CS60259A)
- Su, R. et al., 2014. Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification. Dalton Transactions 43 (40), pp.14976-14982. (10.1039/c4dt01309c)
- Su, R. et al. 2014. Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au-Pd alloy nanoparticles supported on titanium dioxide. Chemical Communications 50 (84), pp.12612-12614. (10.1039/C4CC04024D)
- Su, R. et al. 2014. Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8 (4), pp.3490-3497. (10.1021/nn500963m)
- Torrente-Murciano, L. et al., 2014. Enhanced Au-Pd activity in the direct synthesis of hydrogen peroxide using nanostructured titanate nanotube supports. ChemCatChem 6 (9), pp.2531-2534. (10.1002/cctc.201402361)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
2013
- Ab Rahim, M. H. et al. 2013. Systematic study of the oxidation of methane using supported gold palladium nanoparticles under mild aqueous conditions. Topics in Catalysis 56 (18-20), pp.1843-1857. (10.1007/s11244-013-0121-3)
- Ab Rahim, M. H. et al. 2013. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angewandte Chemie - International Edition 52 (4), pp.1280-1284. (10.1002/anie.201207717)
- Alshammari, H. et al., 2013. Control of the selectivity in multi-functional group molecules using supported gold–palladium nanoparticles. Green Chemistry 15 (5), pp.1244-1254. (10.1039/c3gc36828a)
- Alshammari, H. M. et al. 2013. The effect of ring size on the selective oxidation of cycloalkenes using supported metal catalysts. Catalysis Science & Technology 3 (6), pp.1531-1539. (10.1039/c3cy20864h)
- Behera, G. C. et al., 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3 (6), pp.1558-64. (10.1039/c3cy20801j)
- Brett, G. L. et al. 2013. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate. Chemsuschem 6 (10), pp.1952-1958. (10.1002/cssc.201300420)
- Budroni, G. et al., 2013. Selective deposition of palladium onto supported nickel - bimetallic catalysts for the hydrogenation of crotonaldehyde. Catalysis Science & Technology 3 (10), pp.2746-2754. (10.1039/c3cy00449j)
- Cao, E. et al., 2013. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles. Catalysis Today 203 , pp.146-152. (10.1016/j.cattod.2012.05.023)
- Conte, M. et al., 2013. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. Journal of Catalysis 297 , pp.128-136. (10.1016/j.jcat.2012.10.002)
- Conte, M. et al., 2013. Characterization of Au3+ species in Au/C catalysts for the hydrochlorination reaction of acetylene. Catalysis Letters 144 (1), pp.1-8. (10.1007/s10562-013-1138-8)
- Conte, M. et al., 2013. Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene. Catalysis Science and Technology 3 (1), pp.128-134. (10.1039/C2CY20478A)
- D'Agostino, C. et al., 2013. Solvent effect and reactivity trend in the aerobic oxidation of 1,3-Propanediols over gold supported on Titania: NMR diffusion and relaxation studies. Chemistry - A European Journal 19 (35), pp.11725-11732. (10.1002/chem.201300502)
- Dimitratos, N. , Kiely, C. J. and Hutchings, G. J. 2013. CHAPTER 1. General introduction to the field of environmental catalysis: green catalysis with supported gold and gold bimetallic nanoparticles. In: Avgouropoulos, G. and Tabakova, T. eds. Environmental Catalysis over Gold-Based Materials. Royal Society of Chemistry. , pp.1-20. (10.1039/9781849737364-00001)
- Edwards, J. K. et al. 2013. Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. Catalysis Science & Technology 3 (3), pp.812-818. (10.1039/c2cy20767b)
- Feng, J. et al., 2013. Au–Pd nanoalloys supported on Mg–Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. Dalton Transactions 42 (40), pp.14498-14508. (10.1039/c3dt51855h)
- Forde, M. M. et al. 2013. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. Journal of the American Chemical Society 135 (30), pp.11087-11099. 130716133536007. (10.1021/ja403060n)
- Freakley, S. J. et al. 2013. Effect of reaction conditions on the direct synthesis of hydrogen peroxide with a AuPd/TiO2Catalyst in a flow reactor. ACS Catalysis 3 (4), pp.487-501. (10.1021/cs400004y)
- Hammond, C. et al. 2013. Insights into the selective and catalytic oxidation of methane to methanol with Cu-promoted Fe-ZSM-5 at mild conditions [Abstract]. Presented at: 245th ACS National Meeting New Orleans, LA 7-11 April 2013. American Chemical Society.
- Hammond, C. et al. 2013. Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation: from synthesis to catalysis. ACS Catalysis 3 (4), pp.689-699. (10.1021/cs3007999)
- Hammond, C. et al. 2013. Aqueous-phase methane oxidation over Fe-MFI zeolites: promotion through isomorphous framework substitution. ACS Catalysis 3 (8), pp.1835-1844. 130702113713003. (10.1021/cs400288b)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162 , pp.365-378. (10.1039/c2fd20153d)
- Marin, R. P. et al., 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140 , pp.671-679. (10.1016/j.apcatb.2013.04.076)
- Miedziak, P. et al. 2013. Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. Catalysis Science & Technology 3 (11), pp.2910-2917. (10.1039/c3cy00263b)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Nowicka, E. et al. 2013. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics 15 (29), pp.12147-12155. (10.1039/c3cp50710f)
- Peneau, V. et al. 2013. Selective catalytic oxidation using supported gold-platinum and palladium-platinum nanoalloys prepared by sol-immobilisation. Physical Chemistry Chemical Physics 15 (26), pp.10636-10644. (10.1039/C3CP50361E)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3 (4), pp.764-772. (10.1021/cs4000359)
- Pritchard, J. C. et al. 2013. Effect of heat treatment on Au-Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. Catalysis Science & Technology 3 (2), pp.308-317. (10.1039/C2CY20234D)
- Ryabenkova, Y. et al. 2013. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today 203 , pp.139-145. (10.1016/j.cattod.2012.05.037)
2012
- Ab Rahim, M. H. et al. 2012. Gold, palladium and gold-palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science & Technology 2 (9), pp.1914-1924. (10.1039/C2CY20288C)
- Albonetti, S. et al., 2012. Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold-copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio. Catalysis Today 195 (1), pp.120-126. (10.1016/j.cattod.2012.05.039)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
- Bartley, J. K. et al. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128 , pp.31-38. (10.1016/j.apcatb.2012.03.036)
- Brett, G. L. et al. 2012. Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science & Technology 2 (1), pp.97-104. (10.1039/c1cy00254f)
- Conte, M. et al. 2012. Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Physical Chemistry Chemical Physics 14 (47), pp.16279-16285. (10.1039/c2cp43363j)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2 (1), pp.105-112. (10.1039/c1cy00299f)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164 , pp.207-213. (10.1016/j.micromeso.2012.05.001)
- Dimitratos, N. et al. 2012. Gold catalysis: helping create a sustainable future. Applied Petrochemical Research 2 (1-2), pp.7-14. (10.1007/s13203-012-0011-9)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2012. Selective liquid phase oxidation with supported metal nanoparticles. Chemical Science 3 (1), pp.20-44. (10.1039/c1sc00524c)
- Edwards, J. K. et al. 2012. The effect of heat treatment on the performance and structure of carbon-supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis 292 , pp.227-238. (10.1016/j.jcat.2012.05.018)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Forde, M. M. et al. 2012. Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. Journal of Catalysis 290 , pp.177-185. (10.1016/j.jcat.2012.03.013)
- Haider, M. et al. 2012. Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis 286 , pp.206-213. (10.1016/j.jcat.2011.11.004)
- Hall, S. R. et al., 2012. Biotemplated synthesis of catalytic Au-Pd nanoparticles. RSC Advances 2 (6), pp.2217-2220. (10.1039/c2ra01336c)
- Hammond, C. et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angewandte Chemie - International Edition 51 (21), pp.5129-5133. (10.1002/anie.201108706)
- Hammond, C. et al. 2012. Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5. Chemistry - a European Journal 18 (49), pp.15735-15745. (10.1002/chem.201202802)
- Hammond, C. et al. 2012. Cover Picture: Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5 (Chem. Eur. J. 49/2012). Chemistry - A European Journal 18 (49), pp.15557. (10.1002/chem.201290208)
- Hutchings, G. J. , Iqbal, S. and Karim, K. 2012. Carbon supported cobalt and molybdenum catalyst. WO 2012143131 A1[Patent]
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Kondrat, S. A. et al. 2012. Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science 3 (10), pp.2965-2971. (10.1039/c2sc20450a)
- Kotionova, T. et al. 2012. Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters 142 (9), pp.1114-1120. (10.1007/s10562-012-0872-7)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142 (9), pp.1049-1056. (10.1007/s10562-012-0869-2)
- Meenakshisundaram, S. et al. 2012. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews 41 (24), pp.8099-8139. (10.1039/C2CS35296F)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6 (8), pp.6600-6613. (10.1021/nn302299e)
- Ntainjua, E. et al. 2012. Direct synthesis of hydrogen peroxide using Au-Pd-exchanged and supported heteropolyacid catalysts at ambient temperature using water as solvent. Green Chemistry 14 (1), pp.170-181. (10.1039/c1gc15863e)
- Ntainjua, E. N. , Freakley, S. J. and Hutchings, G. J. 2012. Direct synthesis of hydrogen peroxide using ruthenium catalysts. Topics in Catalysis 55 (11-13), pp.718-722. (10.1007/s11244-012-9866-3)
- Owen, M. E. et al. 2012. Influence of counterions on the structure of bis(oxazoline) copper(II) complexes; an EPR and ENDOR investigation. Dalton Transactions 41 (36), pp.11085-11092. (10.1039/C2DT31273E)
- Pradhan, S. et al. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142 (3), pp.302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4 (2), pp.134-139. (10.1038/nchem.1245)
- Pradhan, S. et al. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3 (10), pp.2958-2964. (10.1039/c2sc20683h)
- Ryabenkova, Y. et al. 2012. The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis 55 (19-20), pp.1283-1288. (10.1007/s11244-012-9909-9)
- Sá, J. et al., 2012. Redispersion of gold supported on oxides. ACS Catalysis 2 (4), pp.552-560. (10.1021/cs300074g)
- Saiman, M. I. et al. 2012. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angewandte Chemie. International Edition 51 (24), pp.5981-5985. (10.1002/anie.201201059)
- Su, R. et al., 2012. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 6 (7), pp.6284-6292. (10.1021/nn301718v)
- Tiruvalam, R. et al., 2012. Some recent advances in gold-based catalysis facilitated by aberration corrected analytical electron microscopy. Journal of Physics: Conference Series 371 (1) 012028. (10.1088/1742-6596/371/1/012028)
2011
- Alotaibi, R. and Hutchings, G. J. 2011. Seeding effect on the transformation of VO(H(2)PO(4))(2) into catalyst precursors VOHPO4(A)over-cap center dot 0.5H(2)O. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA, USA 27-31 March 2011.
- Bawaked, S. M. et al. 2011. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts: an investigation of catalyst re-use. Green Chemistry 13 (1), pp.127-134. (10.1039/c0gc00550a)
- Bawaked, S. M. et al. 2011. Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catalysis Science & Technology 1 (5), pp.747-759. (10.1039/c1cy00122a)
- Bracey, C. et al. 2011. Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catalysis Science & Technology 1 (1), pp.76-85. (10.1039/c0cy00003e)
- Brett, G. L. et al. 2011. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angewandte Chemie. International Edition 50 (43), pp.10136-10139. (10.1002/anie.201101772)
- Cao, E. et al., 2011. Reaction and Raman spectroscopic studies of alcohol oxidation on gold-palladium catalysts in microstructured reactors. Chemical Engineering Journal 167 (2-3), pp.734-743. (10.1016/j.cej.2010.08.082)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13 (7), pp.2528-2538. (10.1039/c0cp01852j)
- Davies, R. J. et al. 2011. The oxidation of Fe(111). Surface Science 605 (17-18), pp.1754-1762. (10.1016/j.susc.2011.06.017)
- Dummer, N. et al. 2011. Reprint of: Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, -palladium catalysts. Catalysis Today 160 (1), pp.50-54. (10.1016/j.cattod.2010.12.014)
- Falletta, E. et al., 2011. Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts. Faraday Discussions 152 , pp.367-379. (10.1039/c1fd00063b)
- Hammond, C. et al. 2011. Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Transactions 40 (15), pp.3927-3937. (10.1039/c0dt01389g)
- Hutchings, G. J. 2011. Preface. Faraday Discussions 152 , pp.9-10. (10.1039/c1fd90029c)
- Hutchings, G. J. et al. 2011. Selective epoxidation of cyclooctene using graphite-supported gold and gold palladium catalysts. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA 27-31 March 2011.
- Hutchings, G. J. , Dimitratos, N. and Miedziak, P. J. 2011. Nanocrystalline gold catalysts for selective oxidation. Presented at: 242nd ACS National Meeting Denver, Co 28 August - 1 September 2011. Vol. 242.American Chemical Society.
- Jalama, K. et al., 2011. A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer-Tropsch reaction. Applied Catalysis A: General 395 (1-2), pp.1-9. (10.1016/j.apcata.2011.01.002)
- Jeffs, L. E. et al. 2011. On the enantioselectivity of aziridination of styrene catalysed by copper triflate and copper-exchanged zeolite Y: consequences of the phase behaviour of enantiomeric mixtures of N-arene-sulfonyl-2-phenylaziridines. Organic & Biomolecular Chemistry 9 (4), pp.1079-1084. (10.1039/c0ob00724b)
- Kesavan, L. et al. 2011. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331 (6014), pp.195-199. (10.1126/science.1198458)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281 (2), pp.279-289. (10.1016/j.jcat.2011.05.012)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283 (2), pp.161-167. (10.1016/j.jcat.2011.08.003)
- Lopez-Sanchez, J. A. et al. 2011. Reactivity studies of Au-Pd supported nanoparticles for catalytic applications. Applied Catalysis A: General 391 (1-2), pp.400-406. (10.1016/j.apcata.2010.05.010)
- Lopez-Sanchez, J. A. et al. 2011. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chemistry 3 (7), pp.551-556. (10.1038/nchem.1066)
- Lopez-Sanchez, J. A. et al., 2011. Hydrocarbon selective oxidation with heterogeneous gold catalysts. Patent WO 2011051642[Patent]
- Mantle, M. D. et al., 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115 (4), pp.1073-1079. (10.1021/jp105946q)
- Meenakshisundaram, S. et al. 2011. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. Chemistry - A European Journal 17 (23), pp.6524-6532. (10.1002/chem.201003484)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 163 (1), pp.47-54. (10.1016/j.cattod.2010.02.051)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 164 (1), pp.315-319. (10.1016/j.cattod.2010.10.028)
- Ntainjua Ndifor, E. et al. 2011. Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. Catalysis Today 178 (1), pp.47-50. (10.1016/j.cattod.2011.06.024)
- Pagliaro, M. and Hutchings, G. J. 2011. Heterogeneous catalysis for fine chemicals [Editorial]. Catalysis Science & Technology 1 (9), pp.1543. (10.1039/c1cy90035h)
- Pasini, T. et al., 2011. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chemistry 13 (8), pp.2091-2099. (10.1039/c1gc15355b)
- Sá, J. et al., 2011. Influence of methyl halide treatment on gold nanoparticles supported on activated carbon. Angewandte Chemie - International Edition 50 (38), pp.8912-8916. (10.1002/anie.201102066)
- Solsona, B. et al., 2011. The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B - Environmental 101 (3-4), pp.388-396. (10.1016/j.apcatb.2010.10.008)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1 (5), pp.740-746. (10.1039/c1cy00064k)
- Taufiq-Yap, Y. H. et al., 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141 (3), pp.400-407. (10.1007/s10562-010-0508-8)
- Taufiq-Yap, Y. et al., 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20 (6), pp.635-638. (10.1016/S1003-9953(10)60251-4)
- Thetford, A. et al. 2011. The decomposition of H2O2 over the components of Au/TiO2 catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467 (2131), pp.1885-1899. (10.1098/rspa.2010.0561)
- Tiruvalam, R. C. et al., 2011. Aberration corrected analytical electron microscopy studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. Faraday Discussions 152 , pp.63-86. (10.1039/c1fd00020a)
- Weng, W. et al., 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21 (40), pp.16136-16146. (10.1039/c1jm12456k)
- Yaseneva, P. , Bowker, M. and Hutchings, G. J. 2011. Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method. Physical Chemistry Chemical Physics 13 (41), pp.18609-18614. (10.1039/c1cp21516g)
2010
- Al Otaibi, R. et al., 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2 (4), pp.443-452. (10.1002/cctc.200900274)
- Al-Otaibi, N. M. K. and Hutchings, G. J. 2010. Aromatization of Isobutene Using H-ZSM-5/Oxide Composite Catalysts. Catalysis Letters 134 (3-4), pp.191-195. (10.1007/s10562-009-0255-x)
- Barrea, C. et al., 2010. Prenatal diagnosis of isolated total anomalous systemic venous return to the coronary sinus. Ultrasound in Obstetrics and Gynecology 35 (1), pp.117-119. (10.1002/uog.7516)
- Bartley, J. K. et al. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons(10.1002/0471227617.eoc139.pub2)
- Cole, K. J. et al., 2010. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catalysis Letters 138 (3-4), pp.143-147. (10.1007/s10562-010-0392-2)
- Dummer, N. et al. 2010. Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, palladium and gold-palladium catalysts. Catalysis Today 154 (1-2), pp.2-6. (10.1016/j.cattod.2010.03.031)
- Dummer, N. et al. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376 (1-2), pp.47-55. (10.1016/j.apcata.2009.10.004)
- Gevaert, T. et al., 2010. Maturation of stretch-induced contractile activity and its muscarinic regulation in isolated whole bladder strips from rat. Neurourology and Urodynamics 29 (5), pp.789-796. (10.1002/nau.20553)
- He, Q. et al., 2010. Identifying Potential Active Species in Au/ZnO CO Oxidation Catalysts [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1188-1189. (10.1017/S1431927610060186)
- Hutchings, G. J. 2010. Dealloying Shows the Way to New Catalysts. Chemsuschem 3 (4), pp.429-430. (10.1002/cssc.201000043)
- Hutchings, G. J. 2010. Metal-cluster catalysts: Access granted. Nature Chemistry 2 (12), pp.1005-1006. (10.1038/nchem.868)
- Lin, Z. et al. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157 (1-4), pp.211-216. (10.1016/j.cattod.2010.03.013)
- Lopez-Sanchez, J. A. et al. 2010. Using gold catalysts for upgrading glycerol from biodiesel production: Selective oxidation and synthesis of glycerol carbonate [Abstract]. Presented at: 240th ACS National Meeting Boston, USA 22-26 August 2010.
- Meenakshisundaram, S. et al. 2010. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discussions 145 , pp.341-356. (10.1039/b908172k)
- Morgan, K. et al., 2010. TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts. Journal of Catalysis 276 (1), pp.38-48. (10.1016/j.jcat.2010.08.013)
- Myakonkaya, O. et al., 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3 (3), pp.339-341. (10.1002/cssc.200900280)
- Myakonkaya, O. et al., 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350 (2), pp.443-445. (10.1016/j.jcis.2010.06.064)
- Piccinini, M. et al. 2010. Effect of the reaction conditions on the performance of Au-Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Physical Chemistry Chemical Physics 12 (10), pp.2488-2492. (10.1039/b921815g)
- Pritchard, J. C. et al. 2010. The effect of catalyst preparation method on the performance of supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry 12 (5), pp.915-921. (10.1039/b924472g)
- Pritchard, J. C. et al. 2010. Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Au−Pd Catalysts Prepared by Sol Immobilization. Langmuir 26 (21), pp.16568-16577. (10.1021/la101597q)
- Pritchard, J. C. et al. 2010. Selective oxidation using supported gold and gold palladium nanoparticles prepared by sol-immobilisation. Zeitschrift für anorganische und allgemeine Chemie 636 (11), pp.2034. (10.1002/zaac.201007002)
- Sithamparappillai, U. et al., 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20 (25), pp.5310-5318. (10.1039/c0jm00403k)
- Taufiq-Yap, Y. et al. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28 (10), pp.997-1012. (10.1080/10916460903058004)
- Weng, W. et al., 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1198-1199. (10.1017/S1431927610059805)
- Xu, C. et al., 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138 (1-2), pp.1-7. (10.1007/s10562-010-0365-5)
2009
- Bawaked, S. M. et al. 2009. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry 11 (7), pp.1037-1044. (10.1039/b823286p)
- Bracey, C. , Ellis, P. R. and Hutchings, G. J. 2009. Application of copper-gold alloys in catalysis: current status and future perspectives. Chemical Society Reviews 38 (8), pp.2231-2243. (10.1039/b817729p)
- Conte, M. et al. 2009. Corrigendum to 'Hydrochlorination of acetylene using supported bimetallic Au-based catalysts' [J. Catal. 257 (2008) 190-198]. Journal of Catalysis 266 (1), pp.164. (10.1016/j.jcat.2009.06.002)
- Dimitratos, N. et al. 2009. Oxidation of glycerol using gold-palladium alloy-supported nanocrystals. Physical Chemistry Chemical Physics 11 (25), pp.4952-4961. (10.1039/b904317a)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2009. Green Catalysis with Alternative Feedstocks. Topics in Catalysis 52 (3), pp.258-268. (10.1007/s11244-008-9162-4)
- Dimitratos, N. et al. 2009. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry 11 (8), pp.1209-1216. (10.1039/b823285g)
- Dimitratos, N. et al. 2009. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Physical Chemistry Chemical Physics 11 (25), pp.5142-5153. (10.1039/b900151b)
- Edwards, J. K. et al. 2009. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold–palladium catalysts supported on acid-pretreated TiO2. Angewandte Chemie 48 (45), pp.8512-8515. (10.1002/anie.200904115)
- Edwards, J. K. et al. 2009. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323 (5917), pp.1037-1041. (10.1126/science.1168980)
- Hutchings, G. J. 2009. A golden future. Nature Chemistry 1 (7), pp.584-584. (10.1038/nchem.388)
- Hutchings, G. J. 2009. Catalyst Synthesis Using Supercritical Carbon Dioxide: A Green Route to High Activity Materials. Topics in Catalysis 52 (8), pp.982-987. (10.1007/s11244-009-9248-7)
- Hutchings, G. J. 2009. Heterogeneous catalysts-discovery and design. Journal of Materials Chemistry 19 (9), pp.1222-1235. (10.1039/b812300b)
- Hutchings, G. J. 2009. Nanocrystalline gold catalysts: A reflection on catalyst discovery and the nature of active sites. Gold Bulletin 42 (4), pp.260-266. (10.1007/BF03214947)
- Jones, C. et al. 2009. Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity. Journal of Molecular Catalysis A: Chemical 305 (1-2), pp.121-124. (10.1016/j.molcata.2008.10.027)
- Lee, A. F. et al. 2009. In situ X-ray studies of crotyl alcohol selective oxidation over Au/Pd(111) surface alloys. Catalysis Today 145 (3-4), pp.251-257. (10.1016/j.cattod.2008.10.034)
- Lu, T. J. et al., 2009. Production of titania nanoparticles by a green process route. Powder Technology 188 (3), pp.264-271. (10.1016/j.powtec.2008.05.006)
- Meenakshisundaram, S. et al. 2009. Oxidation of Glycerol to Glycolate by using Supported Gold and Palladium Nanoparticles. Chemsuschem 2 (12), pp.1145-1151. (10.1002/cssc.200900133)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19 (45), pp.8619-8627. (10.1039/b911102f)
- Ntainjua Ndifor, E. et al. 2009. Effect of Halide and Acid Additives on the Direct Synthesis of Hydrogen Peroxide using Supported Gold-Palladium Catalysts. Chemsuschem 2 (6), pp.575-580. (10.1002/cssc.200800257)
- Ntainjua Ndifor, E. et al. 2009. The Effect of Bromide Pretreatment on the Performance of Supported Au–Pd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem 1 (4), pp.479-484. (10.1002/cctc.200900171)
- Pollington, S. D. et al., 2009. Enhanced selective glycerol oxidation in multiphase structured reactors. Catalysis Today 145 (1-2), pp.169-175. (10.1016/j.cattod.2008.04.020)
- Solsona, B. et al., 2009. TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Applied Catalysis a-General 365 (2), pp.222-230. (10.1016/j.apcata.2009.06.016)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1 (2), pp.247-251. (10.1002/cctc.200900195)
- Taufiq-Yap, Y. H. et al., 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130 (3-4), pp.327-334. (10.1007/s10562-009-0003-2)
- Weng, W. et al., 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15 (SUPPL.), pp.1412-1413. (10.1017/S1431927609092332)
- Weng, W. et al., 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15 (SUPPL.), pp.1438-1439. (10.1017/S1431927609094203)
2008
- Conte, M. et al., 2008. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. Journal of Catalysis 257 (1), pp.190-198. (10.1016/j.jcat.2008.04.024)
- Conte, M. , Carley, A. F. and Hutchings, G. J. 2008. Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene. Catalysis Letters 124 (3-4), pp.165-167. (10.1007/s10562-008-9583-5)
- Edwards, J. K. et al. 2008. Direct synthesis of hydrogen peroxide from H-2 and O-2 using supported Au-Pd catalysts. Faraday Discussions 138 , pp.225-239. (10.1039/b705915a)
- Edwards, J. K. and Hutchings, G. J. 2008. Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition 47 (48), pp.9192-9198. (10.1002/anie.200802818)
- Edwards, J. K. et al. 2008. Au-Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chemistry 10 (4), pp.388-394. (10.1039/b714553p)
- Edwin, N. N. et al., 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10 (11), pp.1162-1169. (10.1039/b809881f)
- Goh, C. K. et al., 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131 (1-4), pp.408-412. (10.1016/j.cattod.2007.10.059)
- Herzing, A. et al., 2008. Elemental mapping of nanoscale structures in the aberration-corrected analytical electron microscope. Microscopy and Microanalysis 14 (S), pp.1368-1369. (10.1017/S1431927608086674)
- Herzing, A. A. et al., 2008. Microstructural development and catalytic performance of Au-Pd nanoparticles on Al2O3 supports: The effect of heat treatment temperature and atmosphere. Chemistry of Materials 20 (4), pp.1492-1501. (10.1021/cm702762d)
- Herzing, A. A. et al., 2008. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321 (5894), pp.1331-1335. (10.1126/science.1159639)
- Herzing, A. A. et al., 2008. Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discussions 138 , pp.337-351. (10.1039/b706293c)
- Huang, H. et al., 2008. Purification of chemical feedstocks by the removal of aerial carbonyl sulfide by hydrolysis using rare earth promoted alumina catalysts. Green Chemistry 10 (5), pp.571-577. (10.1039/b717031a)
- Hutchings, G. J. 2008. CATL 16-Green chemistry using gold catalysis [Abstract]. Abstracts of Papers of the American Chemical Society 235 , pp.16.
- Hutchings, G. J. 2008. FUEL 89-Green catalysis with alternative feedstocks. Abstracts of Papers of the American Chemical Society 235 , pp.89-FUEL.
- Hutchings, G. J. 2008. I&EC 1-Green catalysis with alternative feedstocks. Abstracts of Papers of the American Chemical Society 235 , pp.1-IEC.
- Hutchings, G. J. 2008. Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis. Chemical Communications (10), pp.1148-1164. (10.1039/b712305c)
- Hutchings, G. J. 2008. Nanocrystalline gold and gold-palladium alloy oxidation catalysts: a personal reflection on the nature of the active sites. Dalton Transactions (41), pp.5523-5536. (10.1039/b804604m)
- Hutchings, G. J. 2008. PETR 38-Methanol conversion using composite catalysts. Abstracts of Papers of the American Chemical Society 235 , pp.38-PETR.
- Hutchings, G. J. 2008. Reactions of alkynes using heterogeneous and homogeneous cationic gold catalysts. Topics in Catalysis 48 (1-4), pp.55-59. (10.1007/s11244-008-9048-5)
- Hutchings, G. J. 2008. Supported gold and gold palladium catalysts for selective chemical synthesis. Catalysis Today 138 (1-2), pp.9-14. (10.1016/j.cattod.2008.04.029)
- Hutchings, G. J. , Brust, M. and Schmidbaur, H. 2008. Gold - an introductory perspective. Chemical Society Reviews 37 (9), pp.1759-1765. (10.1039/b810747p)
- Hutchings, G. J. , Brust, M. and Schmidbaur, H. 2008. Instant insight: The wonder of gold. Highlights in Chemical Technology 2008 (9)
- Jones, C. et al. 2008. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications 2008 (14), pp.1707-1709. (10.1039/b800052m)
- Lopez-Sanchez, J. A. et al. 2008. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics 10 (14), pp.1921-1930. (10.1039/b719345a)
- Ntainjua Ndifor, E. et al. 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10 (11), pp.1162-1169. (10.1039/b809881f)
- Xu, C. et al., 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49 (15), pp.2454-2456. (10.1016/j.tetlet.2008.02.030)
2007
- Al-Sayari, S. et al., 2007. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: Comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Topics in Catalysis 44 (1-2), pp.123-128. (10.1007/s11244-007-0285-9)
- Conte, M. et al., 2007. Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. Journal of Catalysis 250 (2), pp.231-239. (10.1016/j.jcat.2007.06.018)
- Conte, M. et al. 2007. Selective formation of chloroethane by the hydrochlorination of ethene using zinc catalysts. Journal of Catalysis 252 (1), pp.23-29. (10.1016/j.jcat.2007.09.002)
- Dimitratos, N. et al. 2007. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catalysis Today 122 (3-4), pp.317-324. (10.1016/j.cattod.2007.01.002)
- Enache, D. I. et al., 2007. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance. Catalysis Today 122 (3-4), pp.407-411. (10.1016/j.cattod.2007.01.003)
- Enache, D. I. et al., 2007. Intensification of the solvent-free catalytic hydroformylation of cyclododecatriene: Comparison of a stirred batch reactor and a heat-exchange reactor. Catalysis Today 128 (1-2 SP), pp.18-25. (10.1016/j.cattod.2007.08.011)
- Enache, D. I. et al., 2007. Multiphase hydrogenation of resorcinol in structured and heat exchange reactor systems. Influence of the catalyst and the reactor configuration. Catalysis Today 128 (1-2 SP), pp.26-35. (10.1016/j.cattod.2007.08.012)
- Herzing, A. A. et al., 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13 , pp.102-103. (10.1017/S143192760707660X)
- Hutchings, G. J. 2007. Catalysis by Gold: recent advances in oxidation reactions. In: Zhou, B. et al., Nanotechnology in Catalysis 3. Vol. 248, Nanostructure Science and Technology New York, NY: Springer. , pp.39-54. (10.1007/978-0-387-34688-5_4)
- Hutchings, G. J. and Taylor, S. H. 2007. Copper manganese based mixed oxides for CO oxidation at ambient temperature. Presented at: 234th ACS National Meeting Boston, MA, USA 19-23 August 2007.
- Jalama, K. et al., 2007. Effect of the addition of Au on Co/TiO2 catalyst for the Fischer-Tropsch reaction. Topics in Catalysis 44 (1-2), pp.129-136. (10.1007/s11244-007-0286-8)
- Tang, Z. et al., 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249 (2), pp.208-219. (10.1016/j.jcat.2007.04.016)
- Zhao, Y. et al., 2007. Study of carbon monoxide hydrogenation over supported Au catalysts. Studies in Surface Science and Catalysis 163 , pp.141-151. (10.1016/S0167-2991(07)80477-0)
2006
- Conte, M. et al., 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313 (5791), pp.1270-1273. (10.1126/science.1130493)
- Coquet, R. et al., 2006. Calculations on the adsorption of Au to MgO surfaces using SIESTA. Journal of Materials Chemistry 16 (20), pp.1978-1988. (10.1039/b601213b)
- Enache, D. I. et al. 2006. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science 311 (5759), pp.362-365. (10.1126/science.1120560)
- Huang, H. et al., 2006. High temperature COS hydrolysis catalysed by γ-Al2O 3. Catalysis Letters 110 (3-4), pp.243-246. (10.1007/s10562-006-0115-x)
- Solsona, B. E. et al. 2006. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A General 312 , pp.67-76. (10.1016/j.apcata.2006.06.016)
- Song, N. et al., 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106 (3-4), pp.127-131. (10.1007/s10562-005-9619-z)
- Tang, Z. et al., 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162 , pp.219-226. (10.1016/S0167-2991(06)80910-9)
2005
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3catalysts. Journal of Materials Chemistry 15 (43), pp.4595-4600. (10.1039/b509542e)
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. Journal of Catalysis 236 (1), pp.69-79. (10.1016/j.jcat.2005.09.015)
- Enache, D. I. et al., 2005. Experimental evaluation of a three-phase downflow capillary reactor. Industrial and Engineering Chemistry Research 44 (16), pp.6295-6303. (10.1021/ie049140y)
- Enache, D. I. et al., 2005. The hydrogenation of isophorone to trimethyl cyclohexanone using the downflow single capillary reactor. Catalysis Today 105 (3-4), pp.569-573. (10.1016/j.cattod.2005.06.013)
- Huang, H. et al., 2005. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters 104 (1-2), pp.17-21. (10.1007/s10562-005-7430-5)
- Hughes, M. D. et al., 2005. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437 (7062), pp.1132-1135. (10.1038/nature04190)
- Jeffery, E. L. et al., 2005. A density functional theory study of the adsorption of acetone to the (111) surface of Pt: Implications for hydrogenation catalysis. Catalysis Today 105 (1), pp.85-92. (10.1016/j.cattod.2005.04.013)
- Song, N. et al., 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236 (2), pp.282-291. (10.1016/j.jcat.2005.10.008)
- Zhao, Y. et al., 2005. Study of carbon monoxide hydrogenation over Au supported on zinc oxide catalysts. American Chemical Society, Division of Petroleum Chemistry, Preprints 50 (2), pp.206-207.
2004
- Caplan, N. A. et al., 2004. Heterogeneous Enantioselective Catalysed Carbonyl- and Imino-ene Reactions using Copper bis(oxazoline) Zeolite Y. Angewandte Chemie International Edition 43 (13), pp.1685-1688. (10.1002/anie.200352534)
- Li, X. et al., 2004. Enantioselective hydrogenation using cinchona-modified Pt/γ-Al 2O3 catalysts: Comparison of the reaction of ethyl pyruvate and buta-2,3-dione. Catalysis Letters 96 (3-4), pp.147-151. (10.1023/B:CATL.0000030112.70608.a0)
- Solsona, B. E. et al. 2004. Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry 28 (6), pp.708-711. (10.1039/b315391f)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2004. Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using α-Al2O3. New Journal of Chemistry 28 (4), pp.471-476. (10.1039/b312340p)
2003
- Hammond, C. R. et al. 2003. A study of methane activation by modified gallium- and zinc-based catalysts. Research on Chemical Intermediates 29 (7-9), pp.911-920. (10.1163/156856703322601906)
- Mirzaei, A. A. et al., 2003. Characterisation of copper-manganese oxide catalysts: Effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Applied Catalysis A: General 253 (2), pp.499-508. (10.1016/S0926-860X(03)00563-5)
- Mirzaei, A. A. et al., 2003. Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na+ acting as catalyst poison. Catalysis Communications 4 (1), pp.17-20. (10.1016/S1566-7367(02)00231-5)
- Mirzaei, A. A. et al., 2003. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate aging atmosphere on catalyst activity. Catalysis Letters 87 (3-4), pp.103-108. (10.1023/A:1023416819195)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 2003. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catalysis Today 84 (3-4), pp.113-119. (10.1016/S0920-5861(03)00264-5)
- Taylor, S. H. et al. 2003. The partial oxidation of propane to formaldehyde using uranium mixed oxide catalysts. Catalysis Today 81 (2), pp.171-178. (10.1016/S0920-5861(03)00110-X)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2003. Synthesis of methyl mercaptan and thiophene from CO/H2/H 2S using α-Al2O3. Catalysis Letters 91 (3-4), pp.181-183. (10.1023/B:CATL.0000007152.91400.95)
2002
- Hargreaves, J. S. J. et al., 2002. A study of the methane-deuterium exchange reaction over a range of metal oxides. Applied Catalysis A: General 227 (1-2), pp.191-200. (10.1016/S0926-860X(01)00935-8)
- Harris, R. H. et al. 2002. Water as a promoter of the complete oxidation of volatile organic compounds over uranium oxide catalysts. Catalysis Letters 78 (1-4), pp.369-372. (10.1023/A:1014916920128)
- Whittle, D. M. et al., 2002. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate ageing on catalyst activity. Physical Chemistry Chemical Physics 4 (23), pp.5915-5920. (10.1039/b207691h)
2001
- Cooper, C. A. et al. 2001. A combined experimental and theoretical approach to the study of methane activation over oxide catalysts. Catalysis Today 71 (1-2), pp.3-10. (10.1016/S0920-5861(01)00446-1)
- Cooper, C. A. et al. 2001. The role of gallium oxide in methane partial oxidation catalysts: an experimental and theoretical study. Studies in Surface Science and Catalysis 136 , pp.319-324.
- Taylor, S. H. et al. 2001. Water as a promoter of VOC destruction over uranium oxide catalysts. Abstracts of papers of the American Chemical Society 222 , pp.U378-U379.
- Traa, Y. et al., 2001. An EPR study on the enantioselective aziridination properties of a CuNaY zeolite. Physical Chemistry Chemical Physics 3 (6), pp.1073-1080. (10.1039/B010083H)
2000
- Piaggio, P. et al. 2000. Enantioselective epoxidation of (Z)-stilbene using a chiral Mn(III)-salen complex: effect of immobilisation on MCM-41 on product selectivity. Journal of the Chemical Society - Perkins Transactions 2 2000 (10), pp.2008-2015. (10.1039/B005752P)
- Taylor, S. H. et al. 2000. Activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catalysis Today 59 (3), pp.249-259. (10.1016/S0920-5861(00)00291-1)
- Taylor, S. H. et al. 2000. Structure and activity relationships for copper manganese and copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation [Abstract]. Abstracts of papers of the American Chemical Society 219 , pp.U534-U534.
1999
- Heneghan, C. S. et al. 1999. A temporal analysis of products study of the mechanism of VOC catalytic oxidation using uranium oxide catalysts. Catalysis Today 54 (1), pp.3-12. (10.1016/S0920-5861(99)00162-5)
- Hutchings, G. J. and Taylor, S. H. 1999. Designing oxidation catalysts. Catalysis Today 49 (1-3), pp.105-113.
- Hutchings, G. J. , Taylor, S. H. and Hudson, I. D. 1999. Designing heterogeneous oxidation catalysts. Studies in Surface Science and Catalysis 121 , pp.85-92. (10.1016/S0167-2991(99)80049-4)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 1999. Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications (15), pp.1373-1374. (10.1039/A903426I)
1998
- Hutchings, G. J. et al. 1998. Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General 166 (1), pp.143-152. (10.1016/S0926-860X(97)00248-2)
- Taylor, S. H. et al. 1998. The partial oxidation of methane to methanol: an approach to catalyst design. Catalysis Today 42 (3), pp.217-224. (10.1016/S0920-5861(98)00095-9)
1997
- Hudson, I. D. et al., 1997. New class of uranium oxide catalysts for the oxidative destruction of volatile organic compounds in the vapour phase. Presented at: 90th Annual Meeting Air Waste Management Association Toronto, Canada 8-13 June 1997. Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition. Toronto, Canada: Air & Waste Management Association
- Hutchings, G. J. et al. 1997. A novel approach to the scientific design of oxide catalysts for the partial oxidation of methane to methanol. Studies in Surface Science and Catalysis 107 , pp.41-46. (10.1016/S0167-2991(97)80314-X)
- Hutchings, G. J. et al. 1997. The catalytic combustion of volatile chloro-organic compounds using uranium oxide catalysts. Preprints - American Chemical Society, Division of Petroleum Chemistry 42 (1), pp.142-145.
1996
- Hutchings, G. J. et al. 1996. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature 384 (6607), pp.341-343. (10.1038/384341a0)
1985
- Hutchings, G. J. 1985. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis 96 (1), pp.292-295. (10.1016/0021-9517(85)90383-5)
Articles
- Ab Rahim, M. H. et al., 2016. Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catalysis Science & Technology 6 (10), pp.3410-3418. (10.1039/C5CY01586C)
- Ab Rahim, M. H. et al. 2013. Systematic study of the oxidation of methane using supported gold palladium nanoparticles under mild aqueous conditions. Topics in Catalysis 56 (18-20), pp.1843-1857. (10.1007/s11244-013-0121-3)
- Ab Rahim, M. H. et al. 2013. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angewandte Chemie - International Edition 52 (4), pp.1280-1284. (10.1002/anie.201207717)
- Ab Rahim, M. H. et al. 2012. Gold, palladium and gold-palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science & Technology 2 (9), pp.1914-1924. (10.1039/C2CY20288C)
- Abedin, M. A. et al., 2020. Probing the surface acidity of supported aluminum bromide catalysts. Catalysts 10 (8) 869. (10.3390/catal10080869)
- Abis, L. et al. 2019. Plasmonic oxidation of glycerol using AuPd/TiO2 catalysts. Catalysis Science and Technology 9 (20), pp.5686-5691. (10.1039/C9CY01409H)
- Abis, L. et al. 2020. Plasmonic oxidation of glycerol using Au/TiO2 catalysts prepared by sol-immobilisation. Catalysis Letters 150 (1), pp.49-55. (10.1007/s10562-019-02952-y)
- Abis, L. et al. 2020. The effect of polymer addition on base catalysed glycerol oxidation using gold and gold-palladium bimetallic catalysts. Topics in Catalysis 63 , pp.394-402. (10.1007/s11244-019-01212-y)
- Abis, L. et al. 2017. Highly active gold and gold-palladium catalysts prepared by colloidal methods in the absence of polymer stabilizers. ChemCatChem 9 (15), pp.2914-2918. (10.1002/cctc.201700483)
- Adishev, A. et al., 2018. Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions 208 , pp.471-495. (10.1039/C8FD90015A)
- Agarwal, N. et al. 2017. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358 (6360), pp.223-227. (10.1126/science.aan6515)
- Agarwal, N. et al. 2021. The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today 381 , pp.76-85. (10.1016/j.cattod.2020.09.001)
- Akram, A. et al., 2016. Gas phase stabiliser-free production of hydrogen peroxide using supported gold-palladium catalysts. Chemical Science 7 (9), pp.5833-5837. (10.1039/C6SC01332E)
- Akram, A. et al. 2020. The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology 10 (24), pp.8203-8212. (10.1039/D0CY01163K)
- Al Otaibi, R. et al., 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2 (4), pp.443-452. (10.1002/cctc.200900274)
- Al-Otaibi, N. M. K. and Hutchings, G. J. 2010. Aromatization of Isobutene Using H-ZSM-5/Oxide Composite Catalysts. Catalysis Letters 134 (3-4), pp.191-195. (10.1007/s10562-009-0255-x)
- Al-Rifai, N. et al., 2016. Hydrodynamic effects on three phase micro-packed bed reactor performance – Gold–palladium catalysed benzyl alcohol oxidation. Chemical Engineering Science 149 , pp.129-142. (10.1016/j.ces.2016.03.018)
- Al-Rifai, N. et al., 2017. Deactivation behaviour of supported gold palladium nanoalloy catalysts during the selective oxidation of benzyl alcohol in a micro-packed bed reactor. Industrial & Engineering Chemistry Research 56 (45), pp.12984-12993. (10.1021/acs.iecr.7b01159)
- Al-Sayari, S. et al., 2007. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: Comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Topics in Catalysis 44 (1-2), pp.123-128. (10.1007/s11244-007-0285-9)
- Albonetti, S. et al., 2012. Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold-copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio. Catalysis Today 195 (1), pp.120-126. (10.1016/j.cattod.2012.05.039)
- Aldosari, D. O. et al., 2016. Pd-Ru/TiO2 catalyst - an active and selective catalyst for furfural hydrogenation. Catalysis Science & Technology 6 , pp.234-242. (10.1039/C5CY01650A)
- Aldridge, J. K. et al. 2020. Ambient temperature CO oxidation using palladium-platinum bimetallic catalysts supported on tin oxide/alumina. Catalysts 10 (11) 1223. (10.3390/catal10111223)
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Alotaibi, F. et al., 2019. Direct synthesis of hydrogen peroxide using Cs-containing heteropolyacid-supported palladium-copper catalysts. Catalysis Letters 149 (4), pp.998-1006. (10.1007/s10562-019-02680-3)
- Alsaiari, R. et al. 2017. The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science & Technology 2017 (6), pp.1433-1439. (10.1039/C6CY02448C)
- Alshammari, H. et al., 2014. Initiator-free hydrocarbon oxidation using supported gold nanoparticlec. Catalysis Science and Technology -Cambridge- 4 (4), pp.908-911. (10.1039/c4cy00088a)
- Alshammari, H. et al., 2013. Control of the selectivity in multi-functional group molecules using supported gold–palladium nanoparticles. Green Chemistry 15 (5), pp.1244-1254. (10.1039/c3gc36828a)
- Alshammari, H. M. et al. 2013. The effect of ring size on the selective oxidation of cycloalkenes using supported metal catalysts. Catalysis Science & Technology 3 (6), pp.1531-1539. (10.1039/c3cy20864h)
- Armstrong, R. et al. 2015. Low temperature catalytic partial oxidation of ethane to oxygenates by Fe– and Cu–ZSM-5 in a continuous flow reactor. Journal of Catalysis 330 , pp.84-92. (10.1016/j.jcat.2015.07.001)
- Armstrong, R. , Hutchings, G. and Taylor, S. H. 2016. An overview of recent advances of the catalytic selective oxidation of ethane to oxygenates. Catalysts 6 (5) 71. (10.3390/catal6050071)
- Armstrong, R. et al. 2017. How to synthesise high purity, crystalline D-glucaric acid selectively. European Journal of Organic Chemistry 2017 (45), pp.6811-6814. (10.1002/ejoc.201701343)
- Armstrong, R. et al. 2018. The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts. ChemPhysChem 19 (4), pp.469-478. (10.1002/cphc.201701046)
- Armstrong, R. D. et al. 2019. Quantitative determination of Pt- catalyzed D-glucose oxidation products using 2D NMR. ACS Catalysis 9 (1), pp.325-335. (10.1021/acscatal.8b03838)
- Arrigo, R. et al., 2018. Theory as a driving force to understand reactions on nanoparticles: general discussion. Faraday Discussions 208 , pp.147-185. (10.1039/C8FD90013B)
- Auer, A. A. et al., 2015. MAXNET energy - focusing research in chemical energy conversion on the electrocatlytic oxygen evolution. Green 5 (1-6), pp.7-21. (10.1515/green-2015-0021)
- Bahruji, H. et al. 2017. PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discussions 197 , pp.309-324. (10.1039/C6FD00189K)
- Bahruji, H. et al. 2018. Hydrogenation of CO2 to dimethyl ether over brønsted acidic PdZn catalysts. Industrial and Engineering Chemistry Research 57 (20), pp.6821-6829. (10.1021/acs.iecr.8b00230)
- Bahruji, H. et al. 2016. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis 343 , pp.133-146. (10.1016/j.jcat.2016.03.017)
- Bahruji, H. et al. 2018. Correction to: Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Topics in Catalysis (10.1007/s11244-018-1081-4)
- Bahruji, H. et al. 2018. Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Topics in Catalysis 61 (3-4), pp.144-153. (10.1007/s11244-018-0885-6)
- Baletto, F. et al., 2018. Application of new nanoparticle structures as catalysts: general discussion. Faraday Discussions 208 , pp.575-593. (10.1039/C8FD90016G)
- Barrea, C. et al., 2010. Prenatal diagnosis of isolated total anomalous systemic venous return to the coronary sinus. Ultrasound in Obstetrics and Gynecology 35 (1), pp.117-119. (10.1002/uog.7516)
- Bartley, J. K. et al. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128 , pp.31-38. (10.1016/j.apcatb.2012.03.036)
- Bawaked, S. M. et al. 2011. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts: an investigation of catalyst re-use. Green Chemistry 13 (1), pp.127-134. (10.1039/c0gc00550a)
- Bawaked, S. M. et al. 2009. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry 11 (7), pp.1037-1044. (10.1039/b823286p)
- Bawaked, S. M. et al. 2011. Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catalysis Science & Technology 1 (5), pp.747-759. (10.1039/c1cy00122a)
- Behera, G. C. et al., 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3 (6), pp.1558-64. (10.1039/c3cy20801j)
- Bowker, M. et al. 2020. CO2 hydrogenation to CH3OH over PdZn catalysts, with reduced CH4 production. ChemCatChem 12 (23), pp.6024-6032. (10.1002/cctc.202000974)
- Bracey, C. et al. 2011. Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catalysis Science & Technology 1 (1), pp.76-85. (10.1039/c0cy00003e)
- Bracey, C. , Ellis, P. R. and Hutchings, G. J. 2009. Application of copper-gold alloys in catalysis: current status and future perspectives. Chemical Society Reviews 38 (8), pp.2231-2243. (10.1039/b817729p)
- Brehm, J. et al. 2022. The direct synthesis of hydrogen peroxide over AuPd nanoparticles: an investigation into metal loading. Catalysis Letters 152 , pp.254-262. (10.1007/s10562-021-03632-6)
- Brett, G. L. et al. 2011. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angewandte Chemie. International Edition 50 (43), pp.10136-10139. (10.1002/anie.201101772)
- Brett, G. L. et al. 2012. Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science & Technology 2 (1), pp.97-104. (10.1039/c1cy00254f)
- Brett, G. L. et al. 2013. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate. Chemsuschem 6 (10), pp.1952-1958. (10.1002/cssc.201300420)
- Brett, G. L. et al. 2014. Gold-based nanoparticulate catalysts for the oxidative esterification of 1,4-butanediol to dimethyl succinate. Topics in Catalysis 57 (6-9), pp.723-729. (10.1007/s11244-013-0229-5)
- Budroni, G. et al., 2013. Selective deposition of palladium onto supported nickel - bimetallic catalysts for the hydrogenation of crotonaldehyde. Catalysis Science & Technology 3 (10), pp.2746-2754. (10.1039/c3cy00449j)
- Cai, R. et al., 2020. Gas-phase deposition of gold nanoclusters to produce heterogeneous glycerol oxidation catalysts. ACS Applied Nano Materials 3 (6), pp.4997-5001. (10.1021/acsanm.0c01140)
- Cao, E. et al., 2017. A micropacked-bed multi-reactor system with in situ raman analysis for catalyst evaluation. Catalysis Today 283 , pp.195-201. (10.1016/j.cattod.2016.06.007)
- Cao, E. et al., 2011. Reaction and Raman spectroscopic studies of alcohol oxidation on gold-palladium catalysts in microstructured reactors. Chemical Engineering Journal 167 (2-3), pp.734-743. (10.1016/j.cej.2010.08.082)
- Cao, E. et al., 2013. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles. Catalysis Today 203 , pp.146-152. (10.1016/j.cattod.2012.05.023)
- Cao, Y. et al., 2015. Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catalysis Science & Technology 6 , pp.107-117. (10.1039/C5CY00732A)
- Cao, Y. et al. 2017. An investigation into bimetallic catalysts for base free oxidation of cellobiose and glucose. Journal of Chemical Technology and Biotechnology 92 (9), pp.2246-2253. (10.1002/jctb.5287)
- Caplan, N. A. et al., 2004. Heterogeneous Enantioselective Catalysed Carbonyl- and Imino-ene Reactions using Copper bis(oxazoline) Zeolite Y. Angewandte Chemie International Edition 43 (13), pp.1685-1688. (10.1002/anie.200352534)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13 (7), pp.2528-2538. (10.1039/c0cp01852j)
- Carter, J. et al. 2016. Synergy and anti-synergy between palladium and gold in nanoparticles dispersed on a reducible support. ACS Catalysis 6 (10), pp.6623-6633. (10.1021/acscatal.6b01275)
- Carter, J. H. and Hutchings, G. J. 2018. Recent advances in the gold-catalysed low-temperature water-gas shift reaction. Catalysts 8 (12), pp.627-627. (10.3390/catal8120627)
- Carter, J. H. et al. 2019. Enhanced activity and stability of Gold/Ceria-Titania for the low-temperature water-gas shift reaction. Frontiers in Chemistry 7 443. (10.3389/fchem.2019.00443)
- Caswell, T. et al. 2020. Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology 10 (7), pp.2083-2091. (10.1039/C9CY02473E)
- Catlow, C. R. et al., 2016. Catalysis making the world a better place. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374 (2061) 20150089. (10.1098/rsta.2015.0089)
- Catlow, C. R. et al. 2020. Science to enable the circular economy. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 378 (2176)(10.1098/rsta.2020.0060)
- Cattaneo, S. et al. 2019. Synthesis of highly uniform and composition-controlled gold-palladium supported nanoparticles in continuous flow. Nanoscale 17 , pp.8247-8259. (10.1039/C8NR09917K)
- Cattaneo, S. et al. 2020. Continuous flow synthesis of bimetallic AuPd catalysts for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ChemNanoMat 6 (3), pp.420-426. (10.1002/cnma.201900704)
- Cattaneo, S. et al. 2018. Cinnamaldehyde hydrogenation using Au-Pd catalysts prepared by sol immobilisation. Catalysis Science and Technology 8 , pp.1677-1685. (10.1039/C7CY02556D)
- Chachvalvutikul, A. et al. 2021. Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light-responsive Bi2WO6/ZnIn2S4 heterojunction. Applied Surface Science 544 148885. (10.1016/j.apsusc.2020.148885)
- Chow, Y. K. et al. 2018. A kinetic study of methane partial oxidation over FeZSM-5 using N2O as an oxidant. ChemPhysChem 19 (4), pp.402-411. (10.1002/cphc.201701202)
- Chow, Y. K. et al. 2018. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catalysis Science and Technology 2018 (8), pp.154-163. (10.1039/C7CY01769C)
- Cole, K. J. et al., 2010. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catalysis Letters 138 (3-4), pp.143-147. (10.1007/s10562-010-0392-2)
- Constantinou, A. et al., 2015. Continuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactor. Organic Process Research and Development 19 (12), pp.1973-1979. (10.1021/acs.oprd.5b00220)
- Conte, M. et al., 2016. Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings. Catalysis Letters 146 (1), pp.126-135. (10.1007/s10562-015-1660-y)
- Conte, M. et al., 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313 (5791), pp.1270-1273. (10.1126/science.1130493)
- Conte, M. et al. 2009. Corrigendum to 'Hydrochlorination of acetylene using supported bimetallic Au-based catalysts' [J. Catal. 257 (2008) 190-198]. Journal of Catalysis 266 (1), pp.164. (10.1016/j.jcat.2009.06.002)
- Conte, M. et al., 2008. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. Journal of Catalysis 257 (1), pp.190-198. (10.1016/j.jcat.2008.04.024)
- Conte, M. et al., 2007. Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. Journal of Catalysis 250 (2), pp.231-239. (10.1016/j.jcat.2007.06.018)
- Conte, M. , Carley, A. F. and Hutchings, G. J. 2008. Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene. Catalysis Letters 124 (3-4), pp.165-167. (10.1007/s10562-008-9583-5)
- Conte, M. et al., 2013. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. Journal of Catalysis 297 , pp.128-136. (10.1016/j.jcat.2012.10.002)
- Conte, M. et al., 2013. Characterization of Au3+ species in Au/C catalysts for the hydrochlorination reaction of acetylene. Catalysis Letters 144 (1), pp.1-8. (10.1007/s10562-013-1138-8)
- Conte, M. et al., 2013. Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene. Catalysis Science and Technology 3 (1), pp.128-134. (10.1039/C2CY20478A)
- Conte, M. et al. 2007. Selective formation of chloroethane by the hydrochlorination of ethene using zinc catalysts. Journal of Catalysis 252 (1), pp.23-29. (10.1016/j.jcat.2007.09.002)
- Conte, M. et al. 2012. Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Physical Chemistry Chemical Physics 14 (47), pp.16279-16285. (10.1039/c2cp43363j)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2 (1), pp.105-112. (10.1039/c1cy00299f)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164 , pp.207-213. (10.1016/j.micromeso.2012.05.001)
- Cooper, C. A. et al. 2001. A combined experimental and theoretical approach to the study of methane activation over oxide catalysts. Catalysis Today 71 (1-2), pp.3-10. (10.1016/S0920-5861(01)00446-1)
- Cooper, C. A. et al. 2001. The role of gallium oxide in methane partial oxidation catalysts: an experimental and theoretical study. Studies in Surface Science and Catalysis 136 , pp.319-324.
- Coquet, R. et al., 2006. Calculations on the adsorption of Au to MgO surfaces using SIESTA. Journal of Materials Chemistry 16 (20), pp.1978-1988. (10.1039/b601213b)
- Crole, D. A. et al. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ni/TiO2 catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200062. (10.1098/rsta.2020.0062)
- Crole, D. A. et al. 2016. Direct synthesis of hydrogen peroxide in water at ambient temperature. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472 (2190) 20160156. (10.1098/rspa.2016.0156)
- Crombie, C. M. et al. 2021. The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catalysis Letters 151 , pp.164-171. (10.1007/s10562-020-03281-1)
- Crombie, C. M. et al. 2021. The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catalysis Letters 151 , pp.2762-2774. (10.1007/s10562-020-03511-6)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11 , pp.2701–2714. (10.1021/acscatal.0c04586)
- D'Agostino, C. et al., 2018. Product inhibition in the glycerol oxidation over Au/TiO2 catalyst quantified by NMR relaxation. ACS Catalysis 8 (8), pp.7334-7339. (10.1021/acscatal.8b01516)
- D'Agostino, C. et al., 2017. Increased affinity of small gold particles for glycerol oxidation over Au/TiO2 probed by NMR relaxation methods. ACS Catalysis 7 (7), pp.4235-4241. (10.1021/acscatal.7b01255)
- D'Agostino, C. et al., 2016. Solvent inhibition in the liquid-phase catalytic oxidation of 1,4-butanediol: understanding the catalyst behaviour from NMR relaxation time measurements. Catalysis Science & Technology 6 (21), pp.7896-7901. (10.1039/C6CY01458E)
- D'Agostino, C. et al., 2013. Solvent effect and reactivity trend in the aerobic oxidation of 1,3-Propanediols over gold supported on Titania: NMR diffusion and relaxation studies. Chemistry - A European Journal 19 (35), pp.11725-11732. (10.1002/chem.201300502)
- D'Agostino, C. et al., 2014. Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. Catalysis Science & Technology 4 (5), pp.1313-1322. (10.1039/c4cy00027g)
- Dai, X. et al., 2019. Efficient elimination of chlorinated organics on a phosphoric acid modified CeO2 catalyst: a hydrolytic destruction route. Environmental Science and Technology 53 (21), pp.12697-12705. (10.1021/acs.est.9b05088)
- Davies, C. J. et al., 2016. Vinyl chloride monomer production catalysed by gold: a review. Chinese Journal of Catalysis 37 (10), pp.1600-1607. (10.1016/S1872-2067(16)62482-8)
- Davies, R. J. et al. 2011. The oxidation of Fe(111). Surface Science 605 (17-18), pp.1754-1762. (10.1016/j.susc.2011.06.017)
- Dawson, S. R. et al. 2021. Sulfur promotion in Au/C catalyzed acetylene hydrochlorination. Small 17 (16) 2007221. (10.1002/smll.202007221)
- Devlia, J. et al., 2020. The formation of methanol from glycerol bio-waste over doped ceria based catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200059. (10.1098/rsta.2020.0059)
- Dimitratos, N. et al. 2012. Gold catalysis: helping create a sustainable future. Applied Petrochemical Research 2 (1-2), pp.7-14. (10.1007/s13203-012-0011-9)
- Dimitratos, N. , Hammond, C. and Hutchings, G. J. 2014. Gold-based nanoparticle catalysts for catalytic applications [Abstract]. Abstracts of Papers of the American Chemical Society 248 1 p..
- Dimitratos, N. et al. 2014. Catalysis using colloidal-supported gold-based nanoparticles. Applied Petrochemical Research 4 (1), pp.85-94. (10.1007/s13203-014-0059-9)
- Dimitratos, N. et al. 2009. Oxidation of glycerol using gold-palladium alloy-supported nanocrystals. Physical Chemistry Chemical Physics 11 (25), pp.4952-4961. (10.1039/b904317a)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2009. Green Catalysis with Alternative Feedstocks. Topics in Catalysis 52 (3), pp.258-268. (10.1007/s11244-008-9162-4)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2012. Selective liquid phase oxidation with supported metal nanoparticles. Chemical Science 3 (1), pp.20-44. (10.1039/c1sc00524c)
- Dimitratos, N. et al. 2009. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry 11 (8), pp.1209-1216. (10.1039/b823285g)
- Dimitratos, N. et al. 2007. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catalysis Today 122 (3-4), pp.317-324. (10.1016/j.cattod.2007.01.002)
- Dimitratos, N. et al. 2009. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Physical Chemistry Chemical Physics 11 (25), pp.5142-5153. (10.1039/b900151b)
- Dodekatos, G. et al., 2018. Glycerol oxidation using MgO and Al2O3 supported gold and gold-palladium nanoparticles prepared in the absence of polymer stabilisers. ChemCatChem 10 (6), pp.1351-1359. (10.1002/cctc.201800074)
- Douthwaite, M. et al. 2017. The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. Catalysis Science & Technology 7 (22), pp.5284-5293. (10.1039/C7CY01025G)
- Dummer, N. et al. 2010. Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, palladium and gold-palladium catalysts. Catalysis Today 154 (1-2), pp.2-6. (10.1016/j.cattod.2010.03.031)
- Dummer, N. et al. 2011. Reprint of: Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, -palladium catalysts. Catalysis Today 160 (1), pp.50-54. (10.1016/j.cattod.2010.12.014)
- Dummer, N. et al. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376 (1-2), pp.47-55. (10.1016/j.apcata.2009.10.004)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. Angewandte Chemie International Edition 53 (9), pp.2381-2384. (10.1002/anie.201308067)
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3catalysts. Journal of Materials Chemistry 15 (43), pp.4595-4600. (10.1039/b509542e)
- Edwards, J. K. et al. 2008. Direct synthesis of hydrogen peroxide from H-2 and O-2 using supported Au-Pd catalysts. Faraday Discussions 138 , pp.225-239. (10.1039/b705915a)
- Edwards, J. K. et al. 2014. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Accounts of Chemical Research 47 (3), pp.845-854. (10.1021/ar400177c)
- Edwards, J. K. et al. 2015. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today 248 , pp.3-9. (10.1016/j.cattod.2014.03.011)
- Edwards, J. K. and Hutchings, G. J. 2008. Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition 47 (48), pp.9192-9198. (10.1002/anie.200802818)
- Edwards, J. K. et al. 2009. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold–palladium catalysts supported on acid-pretreated TiO2. Angewandte Chemie 48 (45), pp.8512-8515. (10.1002/anie.200904115)
- Edwards, J. K. et al. 2013. Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. Catalysis Science & Technology 3 (3), pp.812-818. (10.1039/c2cy20767b)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum promoted gold-palladium catalysts. Catalysis Science and Technology -Cambridge- 4 (9), pp.3244-3250. (10.1039/c4cy00496e)
- Edwards, J. K. et al. 2012. The effect of heat treatment on the performance and structure of carbon-supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis 292 , pp.227-238. (10.1016/j.jcat.2012.05.018)
- Edwards, J. K. et al. 2009. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323 (5917), pp.1037-1041. (10.1126/science.1168980)
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. Journal of Catalysis 236 (1), pp.69-79. (10.1016/j.jcat.2005.09.015)
- Edwards, J. K. et al. 2008. Au-Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chemistry 10 (4), pp.388-394. (10.1039/b714553p)
- Edwin, N. N. et al., 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10 (11), pp.1162-1169. (10.1039/b809881f)
- Enache, D. I. et al., 2007. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance. Catalysis Today 122 (3-4), pp.407-411. (10.1016/j.cattod.2007.01.003)
- Enache, D. I. et al., 2007. Intensification of the solvent-free catalytic hydroformylation of cyclododecatriene: Comparison of a stirred batch reactor and a heat-exchange reactor. Catalysis Today 128 (1-2 SP), pp.18-25. (10.1016/j.cattod.2007.08.011)
- Enache, D. I. et al. 2006. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science 311 (5759), pp.362-365. (10.1126/science.1120560)
- Enache, D. I. et al., 2005. Experimental evaluation of a three-phase downflow capillary reactor. Industrial and Engineering Chemistry Research 44 (16), pp.6295-6303. (10.1021/ie049140y)
- Enache, D. I. et al., 2007. Multiphase hydrogenation of resorcinol in structured and heat exchange reactor systems. Influence of the catalyst and the reactor configuration. Catalysis Today 128 (1-2 SP), pp.26-35. (10.1016/j.cattod.2007.08.012)
- Enache, D. I. et al., 2005. The hydrogenation of isophorone to trimethyl cyclohexanone using the downflow single capillary reactor. Catalysis Today 105 (3-4), pp.569-573. (10.1016/j.cattod.2005.06.013)
- Engel, R. V. et al. 2018. Oxidative carboxylation of 1-decene to 1,2-decylene carbonate. Topics in Catalysis 61 (5-6), pp.509-518. (10.1007/s11244-018-0900-y)
- Engel, R. V. et al. 2019. Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catalysis Today 333 , pp.154-160. (10.1016/j.cattod.2018.09.005)
- Evans, C. D. et al. 2020. Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. Journal of Chemical Physics 152 (13) 134705. (10.1063/1.5128595)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188 , pp.427-450. (10.1039/C5FD00187K)
- Falletta, E. et al., 2011. Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts. Faraday Discussions 152 , pp.367-379. (10.1039/c1fd00063b)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Fechete, I. et al., 2015. Preface to the special issue "Nanocatalysis science: Preparation, characterization and reactivity", honoring Jacques C. Védrine. Applied Catalysis A: General 504 , pp.1-3. (10.1016/j.apcata.2015.05.009)
- Fechete, I. et al., 2017. Catalytic reactivity of surfaces: in recognition of François Gault. Catalysis Science & Technology 7 (22), pp.5181-5181. (10.1039/C7CY90088K)
- Feng, J. et al., 2013. Au–Pd nanoalloys supported on Mg–Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. Dalton Transactions 42 (40), pp.14498-14508. (10.1039/c3dt51855h)
- Forde, M. et al. 2014. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. Chemical Science 5 (9), pp.3603-3616. (10.1039/C4SC00545G)
- Forde, M. M. et al. 2013. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. Journal of the American Chemical Society 135 (30), pp.11087-11099. 130716133536007. (10.1021/ja403060n)
- Forde, M. M. et al. 2012. Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. Journal of Catalysis 290 , pp.177-185. (10.1016/j.jcat.2012.03.013)
- Forde, M. M. et al. 2014. High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano 8 (1), pp.957-969. (10.1021/nn405757q)
- Freakley, S. et al. 2014. Gold catalysis: a reflection on where we are now. Catalysis Letters 145 (1), pp.71-79. (10.1007/s10562-014-1432-0)
- Freakley, S. J. et al., 2020. Gold–palladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. Catalysis Science and Technology 10 (17), pp.5935-5944. (10.1039/D0CY00915F)
- Freakley, S. J. et al. 2021. Methane oxidation to methanol in water. Accounts of Chemical Research 54 (11), pp.2614–2623. (10.1021/acs.accounts.1c00129)
- Freakley, S. J. et al. 2016. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351 (6276), pp.965-968. (10.1126/science.aad5705)
- Freakley, S. J. et al. 2019. A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2. Nature Communications 10 (1) 4178. (10.1038/s41467-019-12120-w)
- Freakley, S. J. et al. 2015. Direct synthesis of hydrogen peroxide using Au-Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions. Catalysis Today 248 , pp.10-17. (10.1016/j.cattod.2014.01.012)
- Freakley, S. J. et al. 2013. Effect of reaction conditions on the direct synthesis of hydrogen peroxide with a AuPd/TiO2Catalyst in a flow reactor. ACS Catalysis 3 (4), pp.487-501. (10.1021/cs400004y)
- Fu, J. et al. 2017. The role of Mg(OH)2 in the so-called 'base-free' oxidation of glycerol with AuPd catalysts. Chemistry - A European Journal 24 (10), pp.2396-2402. (10.1002/chem.201704151)
- Galvanin, F. et al., 2016. Merging information from batch and continuous flow experiments for the identification of kinetic models of benzyl alcohol oxidation over Au-Pd catalyst. Computer Aided Chemical Engineering 38 , pp.961-966. (10.1016/B978-0-444-63428-3.50165-X)
- Galvanin, F. et al., 2018. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal 342 , pp.196-210. (10.1016/j.cej.2017.11.165)
- Gandarias Goikoetxea, I. et al. 2015. Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. Chemsuschem 8 (3), pp.473-480. (10.1002/cssc.201403190)
- Gavriilidis, A. et al., 2016. Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. Reaction Chemistry and Engineering 1 (6), pp.595-612. (10.1039/C6RE00155F)
- Gevaert, T. et al., 2010. Maturation of stretch-induced contractile activity and its muscarinic regulation in isolated whole bladder strips from rat. Neurourology and Urodynamics 29 (5), pp.789-796. (10.1002/nau.20553)
- Giorgi, P. D. et al., 2017. Bicatalytic multistep reactions en route to the one-pot total synthesis of complex molecules: easy access to chromene and 1,2-dihydroquinoline derivatives from simple substrates. ChemCatChem 9 (1), pp.70-75. (10.1002/cctc.201600925)
- Goh, C. K. et al., 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131 (1-4), pp.408-412. (10.1016/j.cattod.2007.10.059)
- Gong, X. et al. 2020. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catalysis Science and Technology 10 (14), pp.4635-4644. (10.1039/D0CY01079K)
- Gupta, U. N. et al., 2015. Epoxidation of propene with graphite AuPd-supported nanoparticles. Catalysis Letters 145 (2), pp.697-701. (10.1007/s10562-014-1439-6)
- Gupta, U. N. et al., 2015. Solvent-free oxidation of dec-1-ene using gold/graphite catalyst using an in situ generated oxidant. Catalysis Science & Technology 5 (2), pp.1307-1313. (10.1039/C4CY01355G)
- Gupta, U. N. et al., 2015. Solvent-free aerobic epoxidation of Dec-1-ene using gold/graphite as a catalyst. Catalysis Letters 145 (2), pp.689-696. (10.1007/s10562-014-1425-z)
- Haider, M. et al. 2014. The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. Chemistry - a European Journal 20 (6), pp.1743-1752. (10.1002/chem.201302348)
- Haider, M. et al. 2012. Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis 286 , pp.206-213. (10.1016/j.jcat.2011.11.004)
- Haider, M. H. et al., 2015. Efficient green methanol synthesis from glycerol. Nature Chemistry 7 , pp.1028-1032. (10.1038/nchem.2345)
- Hall, S. R. et al., 2012. Biotemplated synthesis of catalytic Au-Pd nanoparticles. RSC Advances 2 (6), pp.2217-2220. (10.1039/c2ra01336c)
- Hammond, C. et al. 2013. Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation: from synthesis to catalysis. ACS Catalysis 3 (4), pp.689-699. (10.1021/cs3007999)
- Hammond, C. et al. 2013. Aqueous-phase methane oxidation over Fe-MFI zeolites: promotion through isomorphous framework substitution. ACS Catalysis 3 (8), pp.1835-1844. 130702113713003. (10.1021/cs400288b)
- Hammond, C. et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angewandte Chemie - International Edition 51 (21), pp.5129-5133. (10.1002/anie.201108706)
- Hammond, C. et al. 2012. Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5. Chemistry - a European Journal 18 (49), pp.15735-15745. (10.1002/chem.201202802)
- Hammond, C. et al. 2012. Cover Picture: Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5 (Chem. Eur. J. 49/2012). Chemistry - A European Journal 18 (49), pp.15557. (10.1002/chem.201290208)
- Hammond, C. et al. 2011. Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Transactions 40 (15), pp.3927-3937. (10.1039/c0dt01389g)
- Hammond, C. R. et al. 2003. A study of methane activation by modified gallium- and zinc-based catalysts. Research on Chemical Intermediates 29 (7-9), pp.911-920. (10.1163/156856703322601906)
- Hardacre, C. et al., 2020. Synchrotron radiation and catalytic science. Synchrotron Radiation News 33 (1), pp.10-14. (10.1080/08940886.2020.1701368)
- Hargreaves, J. S. J. et al., 2002. A study of the methane-deuterium exchange reaction over a range of metal oxides. Applied Catalysis A: General 227 (1-2), pp.191-200. (10.1016/S0926-860X(01)00935-8)
- Harris, R. H. et al. 2002. Water as a promoter of the complete oxidation of volatile organic compounds over uranium oxide catalysts. Catalysis Letters 78 (1-4), pp.369-372. (10.1023/A:1014916920128)
- Hayward, J. S. et al. 2017. The effects of secondary oxides on copper-based catalysts for green methanol synthesis. ChemCatChem 9 (9), pp.1655-1662. (10.1002/cctc.201601692)
- He, Q. et al., 2010. Identifying Potential Active Species in Au/ZnO CO Oxidation Catalysts [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1188-1189. (10.1017/S1431927610060186)
- He, Q. et al. 2016. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications 7 12905. (10.1038/ncomms12905)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162 , pp.365-378. (10.1039/c2fd20153d)
- He, Y. et al., 2015. Oxidation of aliphatic alcohols by using precious metals supported on hydrotalcite under solvent- and base-free conditions. ChemSusChem 8 (19), pp.3314-3322. (10.1002/cssc.201500503)
- Heneghan, C. S. et al. 1999. A temporal analysis of products study of the mechanism of VOC catalytic oxidation using uranium oxide catalysts. Catalysis Today 54 (1), pp.3-12. (10.1016/S0920-5861(99)00162-5)
- Herzing, A. et al., 2008. Elemental mapping of nanoscale structures in the aberration-corrected analytical electron microscope. Microscopy and Microanalysis 14 (S), pp.1368-1369. (10.1017/S1431927608086674)
- Herzing, A. A. et al., 2008. Microstructural development and catalytic performance of Au-Pd nanoparticles on Al2O3 supports: The effect of heat treatment temperature and atmosphere. Chemistry of Materials 20 (4), pp.1492-1501. (10.1021/cm702762d)
- Herzing, A. A. et al., 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13 , pp.102-103. (10.1017/S143192760707660X)
- Herzing, A. A. et al., 2008. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321 (5894), pp.1331-1335. (10.1126/science.1159639)
- Herzing, A. A. et al., 2008. Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discussions 138 , pp.337-351. (10.1039/b706293c)
- Hirayama, J. et al., 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123 (13), pp.7879-7888. (10.1021/acs.jpcc.8b07108)
- Huang, H. et al., 2005. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters 104 (1-2), pp.17-21. (10.1007/s10562-005-7430-5)
- Huang, H. et al., 2006. High temperature COS hydrolysis catalysed by γ-Al2O 3. Catalysis Letters 110 (3-4), pp.243-246. (10.1007/s10562-006-0115-x)
- Huang, H. et al., 2008. Purification of chemical feedstocks by the removal of aerial carbonyl sulfide by hydrolysis using rare earth promoted alumina catalysts. Green Chemistry 10 (5), pp.571-577. (10.1039/b717031a)
- Hughes, M. D. et al., 2005. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437 (7062), pp.1132-1135. (10.1038/nature04190)
- Hutchings, G. 2021. Spiers memorial lecture: understanding reaction mechanisms in heterogeneously catalysed reactions. Faraday Discussions 229 , pp.9-34. (10.1039/D1FD00023C)
- Hutchings, G. et al. 2018. Selective hydrogenation of levulinic acid using Ru/C catalysts prepared by sol-immobilsation. Topics in Catalysis 61 (9-11), pp.833-843.
- Hutchings, G. J. 2014. Au catalysts for acetylene hydrochlorination and carbon monoxide oxidation. Topics in Catalysis 57 (14-16), pp.1265-1271. (10.1007/s11244-014-0290-8)
- Hutchings, G. J. 2018. Heterogeneous gold catalysis. ACS Central Science 4 (9), pp.1095-1101. (10.1021/acscentsci.8b00306)
- Hutchings, G. J. and Catlow, C. R. 2018. Designing heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2216) 20180514. (10.1098/rspa.2018.0514)
- Hutchings, G. J. , Catlow, C. and Turner, N. 2018. Providing sustainable catalytic solutions for a rapidly changing world [RETRACTED]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2215) 20180414. (10.1098/rspa.2018.0414)
- Hutchings, G. J. 2009. A golden future. Nature Chemistry 1 (7), pp.584-584. (10.1038/nchem.388)
- Hutchings, G. J. 2009. Catalyst Synthesis Using Supercritical Carbon Dioxide: A Green Route to High Activity Materials. Topics in Catalysis 52 (8), pp.982-987. (10.1007/s11244-009-9248-7)
- Hutchings, G. J. 2008. CATL 16-Green chemistry using gold catalysis [Abstract]. Abstracts of Papers of the American Chemical Society 235 , pp.16.
- Hutchings, G. J. 2010. Dealloying Shows the Way to New Catalysts. Chemsuschem 3 (4), pp.429-430. (10.1002/cssc.201000043)
- Hutchings, G. J. 2008. FUEL 89-Green catalysis with alternative feedstocks. Abstracts of Papers of the American Chemical Society 235 , pp.89-FUEL.
- Hutchings, G. J. 2009. Heterogeneous catalysts-discovery and design. Journal of Materials Chemistry 19 (9), pp.1222-1235. (10.1039/b812300b)
- Hutchings, G. J. 2008. I&EC 1-Green catalysis with alternative feedstocks. Abstracts of Papers of the American Chemical Society 235 , pp.1-IEC.
- Hutchings, G. J. 2010. Metal-cluster catalysts: Access granted. Nature Chemistry 2 (12), pp.1005-1006. (10.1038/nchem.868)
- Hutchings, G. J. 2016. Methane activation by selective oxidation. Topics in Catalysis 59 (8-9), pp.658-662. (10.1007/s11244-016-0542-x)
- Hutchings, G. J. 2008. Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis. Chemical Communications (10), pp.1148-1164. (10.1039/b712305c)
- Hutchings, G. J. 2008. Nanocrystalline gold and gold-palladium alloy oxidation catalysts: a personal reflection on the nature of the active sites. Dalton Transactions (41), pp.5523-5536. (10.1039/b804604m)
- Hutchings, G. J. 2009. Nanocrystalline gold catalysts: A reflection on catalyst discovery and the nature of active sites. Gold Bulletin 42 (4), pp.260-266. (10.1007/BF03214947)
- Hutchings, G. J. 2008. PETR 38-Methanol conversion using composite catalysts. Abstracts of Papers of the American Chemical Society 235 , pp.38-PETR.
- Hutchings, G. J. 2011. Preface. Faraday Discussions 152 , pp.9-10. (10.1039/c1fd90029c)
- Hutchings, G. J. 2008. Reactions of alkynes using heterogeneous and homogeneous cationic gold catalysts. Topics in Catalysis 48 (1-4), pp.55-59. (10.1007/s11244-008-9048-5)
- Hutchings, G. J. 2014. Selective oxidation using supported gold bimetallic and trimetallic nanoparticles. Catalysis Today 238 , pp.69-73. (10.1016/j.cattod.2014.01.033)
- Hutchings, G. J. 2008. Supported gold and gold palladium catalysts for selective chemical synthesis. Catalysis Today 138 (1-2), pp.9-14. (10.1016/j.cattod.2008.04.029)
- Hutchings, G. J. 1985. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis 96 (1), pp.292-295. (10.1016/0021-9517(85)90383-5)
- Hutchings, G. J. , Brust, M. and Schmidbaur, H. 2008. Gold - an introductory perspective. Chemical Society Reviews 37 (9), pp.1759-1765. (10.1039/b810747p)
- Hutchings, G. J. , Brust, M. and Schmidbaur, H. 2008. Instant insight: The wonder of gold. Highlights in Chemical Technology 2008 (9)
- Hutchings, G. J. et al. 2017. New insights into the activation and deactivation of Au/CeZrO4 in the low-temperature water-gas shift reaction. Angewandte Chemie International Edition 56 (50), pp.16037-16041. (10.1002/anie.201709708)
- Hutchings, G. J. et al. 2016. Catalysis making the world a better place: satellite meeting. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 374 (2061), pp.-. 20150358. (10.1098/rsta.2015.0358)
- Hutchings, G. J. et al. 1997. A novel approach to the scientific design of oxide catalysts for the partial oxidation of methane to methanol. Studies in Surface Science and Catalysis 107 , pp.41-46. (10.1016/S0167-2991(97)80314-X)
- Hutchings, G. J. et al. 1996. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature 384 (6607), pp.341-343. (10.1038/384341a0)
- Hutchings, G. J. et al. 1997. The catalytic combustion of volatile chloro-organic compounds using uranium oxide catalysts. Preprints - American Chemical Society, Division of Petroleum Chemistry 42 (1), pp.142-145.
- Hutchings, G. J. and Lewis, R. 2019. A review of recent advances in the direct synthesis of H2O2. ChemCatChem 11 (1), pp.298-308. (10.1002/cctc.201801435)
- Hutchings, G. J. et al. 1998. Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General 166 (1), pp.143-152. (10.1016/S0926-860X(97)00248-2)
- Hutchings, G. J. and Taylor, S. H. 1999. Designing oxidation catalysts. Catalysis Today 49 (1-3), pp.105-113.
- Hutchings, G. J. , Taylor, S. H. and Hudson, I. D. 1999. Designing heterogeneous oxidation catalysts. Studies in Surface Science and Catalysis 121 , pp.85-92. (10.1016/S0167-2991(99)80049-4)
- Iqbal, S. et al., 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275 , pp.35-39. (10.1016/j.cattod.2015.09.041)
- Iqbal, S. , Brett, G. and Hutchings, G. j. 2015. The role of gold catalysts in C-H bond activation for the selective oxidation of saturated hydrocarbons. Gold Catalysis Preparation, Characterization, and Applications , pp.311-339. (10.1201/b19911-12)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272 , pp.74-79. (10.1016/j.cattod.2016.04.012)
- Iqbal, S. et al. 2015. Ruthenium nanoparticles supported on carbon: an active catalyst for the hydrogenation of lactic acid to 1,2-propanediol. ACS Catalysis 5 (9), pp.5047-5059. (10.1021/acscatal.5b00625)
- Iqbal, S. et al. 2014. Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catalysis Science & Technology 4 (8), pp.2280-2286. (10.1039/c4cy00184b)
- Ishikawa, S. et al., 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19 (1), pp.225-236. (10.1039/C6GC02598F)
- Ivars-Barceló, F. et al., 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354 , pp.236-249. (10.1016/j.jcat.2017.08.020)
- Jalama, K. et al., 2007. Effect of the addition of Au on Co/TiO2 catalyst for the Fischer-Tropsch reaction. Topics in Catalysis 44 (1-2), pp.129-136. (10.1007/s11244-007-0286-8)
- Jalama, K. et al., 2011. A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer-Tropsch reaction. Applied Catalysis A: General 395 (1-2), pp.1-9. (10.1016/j.apcata.2011.01.002)
- Jarvis, J. et al., 2020. Inhibiting the dealkylation of basic arenes during n-alkane direct aromatization reactions and understanding the C6 ring closure mechanism. ACS Catalysis 10 , pp.8428-8443. (10.1021/acscatal.0c02361)
- Jeffery, E. L. et al., 2005. A density functional theory study of the adsorption of acetone to the (111) surface of Pt: Implications for hydrogenation catalysis. Catalysis Today 105 (1), pp.85-92. (10.1016/j.cattod.2005.04.013)
- Jeffs, L. E. et al. 2011. On the enantioselectivity of aziridination of styrene catalysed by copper triflate and copper-exchanged zeolite Y: consequences of the phase behaviour of enantiomeric mixtures of N-arene-sulfonyl-2-phenylaziridines. Organic & Biomolecular Chemistry 9 (4), pp.1079-1084. (10.1039/c0ob00724b)
- Jiao, Y. et al., 2020. The effect of T-atom ratio and TPAOH concentration on the pore structure and titanium position in MFI-Type titanosilicate during dissolution-recrystallization process. Microporous and Mesoporous Materials 305 110397. (10.1016/j.micromeso.2020.110397)
- Jiao, Y. et al., 2018. Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. Catalysis Science and Technology 8 , pp.2211-2217. (10.1039/C7CY02571H)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Johnston, P. , Carthey, N. and Hutchings, G. J. 2015. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. Journal of the American Chemical Society 137 (46), pp.14548-14557. (10.1021/jacs.5b07752)
- Jones, C. et al. 2009. Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity. Journal of Molecular Catalysis A: Chemical 305 (1-2), pp.121-124. (10.1016/j.molcata.2008.10.027)
- Jones, C. et al. 2008. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications 2008 (14), pp.1707-1709. (10.1039/b800052m)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6 (15), pp.6022-6030. (10.1039/C6CY00382F)
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4 (1), pp.12-23. (10.1080/2055074X.2018.1433598)
- Jones, M. et al. 2018. Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons. Journal of Catalysis 364 , pp.102-111. (10.1016/j.jcat.2018.05.012)
- Jones, W. V. et al. 2014. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness. Physical Chemistry Chemical Physics 16 , pp.26638-26644. (10.1039/C4CP04693E)
- Ju, Q. et al., 2020. Ruthenium triazine composite: a good match for increasing hydrogen evolution activity through contact electrification. Advanced Energy Materials 10 (21) 2000067. (10.1002/aenm.202000067)
- Kanitkar, S. et al., 2018. Low temperature direct conversion of methane using a solid superacid. ChemCatChem 10 (21), pp.5033-5038. (10.1002/cctc.201801310)
- Kesavan, L. et al. 2011. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331 (6014), pp.195-199. (10.1126/science.1198458)
- Khasu, M. et al., 2017. Co3O4 morphology in the preferential oxidation of CO. Catalysis Science & Technology 7 (20), pp.4806-4817. (10.1039/C7CY01194F)
- Kiely, C. et al. 2014. Assessing and controlling the size, morphology and composition of supported bimetallic catalyst nanoparticles. Microscopy and Microanalysis 20 (S3), pp.74-75. (10.1017/S1431927614002098)
- King, G. M. et al. 2015. An investigation of the effect of the addition of tin to %Pd/TiO2 for the hydrogenation of furfuryl alcohol. ChemCatChem 7 (14), pp.2122-2129. (10.1002/cctc.201500242)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281 (2), pp.279-289. (10.1016/j.jcat.2011.05.012)
- Kondrat, S. A. et al. 2014. Base-free oxidation of glycerol using titania-supported trimetallic Au-Pd-Pt nanoparticles. Chemsuschem 7 (5), pp.1326-1334. (10.1002/cssc.201300834)
- Kondrat, S. A. et al. 2012. Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science 3 (10), pp.2965-2971. (10.1039/c2sc20450a)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197 , pp.287-307. (10.1039/C6FD00202A)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317 , pp.12-20. (10.1016/j.cattod.2018.03.046)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531 , pp.83-87. (10.1038/nature16935)
- Kotionova, T. et al. 2012. Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters 142 (9), pp.1114-1120. (10.1007/s10562-012-0872-7)
- Lari, G. M. et al., 2015. The use of carbon monoxide as a probe molecule in spectroscopic studies for determination of exposed gold sites on TiO2. Physical Chemistry Chemical Physics 17 (35), pp.23236-23244. (10.1039/C5CP02512E)
- Ledendecker, M. et al., 2020. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catalysis 10 (10), pp.5928-5938. (10.1021/acscatal.0c01305)
- Lee, A. F. et al. 2009. In situ X-ray studies of crotyl alcohol selective oxidation over Au/Pd(111) surface alloys. Catalysis Today 145 (3-4), pp.251-257. (10.1016/j.cattod.2008.10.034)
- Lewis, R. et al. 2017. Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide. Industrial & Engineering Chemistry Research 56 (45), pp.13287-13293. (10.1021/acs.iecr.7b01800)
- Lewis, R. et al. 2019. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11 (6), pp.1673-1680. (10.1002/cctc.201900100)
- Lewis, R. J. et al. 2019. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catalysis Letters 149 (11), pp.3066-3075. (10.1007/s10562-019-02876-7)
- Li, C. , Domen, K. and Hutchings, G. J. 2014. Editorial: Special issue on photocatalysis and photoelectrolysis. Journal of Catalysis 310 , pp.1. (10.1016/j.jcat.2013.12.005)
- Li, X. et al., 2004. Enantioselective hydrogenation using cinchona-modified Pt/γ-Al 2O3 catalysts: Comparison of the reaction of ethyl pyruvate and buta-2,3-dione. Catalysis Letters 96 (3-4), pp.147-151. (10.1023/B:CATL.0000030112.70608.a0)
- Lin, Z. et al. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157 (1-4), pp.211-216. (10.1016/j.cattod.2010.03.013)
- Liu, S. et al., 2020. Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A 8 , pp.15725-15733. (10.1039/D0TA00334D)
- Liu, X. et al., 2016. Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination. Catalysis Science & Technology 6 , pp.5144-5153. (10.1039/C6CY00090H)
- Liu, X. et al., 2017. Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide. Chemistry - A European Journal 23 (49)(10.1002/chem.201605941)
- Liu, X. et al., 2015. Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts. Applied Catalysis A: General 504 , pp.373-380. (10.1016/j.apcata.2015.02.034)
- Liu, X. et al. 2014. Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. Catalysis Science & Technology 5 , pp.217-227. (10.1039/C4CY01213E)
- Liu, X. et al., 2016. One-step production of 1,3-butadiene from 2,3-butanediol dehydration. Chemistry - a European Journal 22 (35), pp.12290-12294. (10.1002/chem.201602390)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283 (2), pp.161-167. (10.1016/j.jcat.2011.08.003)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142 (9), pp.1049-1056. (10.1007/s10562-012-0869-2)
- Lopez-Sanchez, J. A. et al. 2011. Reactivity studies of Au-Pd supported nanoparticles for catalytic applications. Applied Catalysis A: General 391 (1-2), pp.400-406. (10.1016/j.apcata.2010.05.010)
- Lopez-Sanchez, J. A. et al. 2011. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chemistry 3 (7), pp.551-556. (10.1038/nchem.1066)
- Lopez-Sanchez, J. A. et al. 2008. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics 10 (14), pp.1921-1930. (10.1039/b719345a)
- Lu, T. J. et al., 2009. Production of titania nanoparticles by a green process route. Powder Technology 188 (3), pp.264-271. (10.1016/j.powtec.2008.05.006)
- Macino, M. et al. 2019. Tuning of catalytic sites in Pt/TiO2 catalysts for chemoselective hydrogenation of 3-nitrostyrene. Nature Catalysis 2 , pp.873-881. (10.1038/s41929-019-0334-3)
- Malta, G. et al. 2020. Can gold be an effective catalyst for the Deacon reaction?. Catalysis Letters 150 , pp.2991-2995. (10.1007/s10562-020-03204-0)
- Malta, G. et al. 2017. Acetylene hydrochlorination using Au / Carbon: a journey towards single site catalysis. Chemical Communications (10.1039/C7CC05986H)
- Malta, G. et al. 2018. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: An X-ray absorption and inelastic neutron scattering study. ACS Catalysis 8 (9), pp.8493-8505. (10.1021/acscatal.8b02232)
- Malta, G. et al., 2017. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355 (6332), pp.1399-1403. (10.1126/science.aal3439)
- Malta, G. et al. 2020. In situ K-edge X-ray absorption spectroscopy of the ligand environment of single-site Au/C catalysts during acetylene hydrochlorination. Chemical Science 11 (27), pp.7040-7052. (10.1039/D0SC02152K)
- Mantle, M. D. et al., 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115 (4), pp.1073-1079. (10.1021/jp105946q)
- Marin, R. P. et al., 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504 , pp.62-73. (10.1016/j.apcata.2015.02.023)
- Marin, R. P. et al., 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4 (7), pp.1970-1978. (10.1039/c4cy00044g)
- Marin, R. P. et al., 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140 , pp.671-679. (10.1016/j.apcatb.2013.04.076)
- Marquart, W. et al., 2018. Oxygenate formation over K/β-Mo2C catalysts in the Fischer-Tropsch synthesis. Catalysis Science and Technology 8 (15), pp.3806-3817. (10.1039/C8CY01181H)
- McVicker, R. et al. 2020. Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today 342 , pp.32-38. (10.1016/j.cattod.2018.12.017)
- Meenakshisundaram, S. et al. 2009. Oxidation of Glycerol to Glycolate by using Supported Gold and Palladium Nanoparticles. Chemsuschem 2 (12), pp.1145-1151. (10.1002/cssc.200900133)
- Meenakshisundaram, S. et al. 2012. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews 41 (24), pp.8099-8139. (10.1039/C2CS35296F)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120 (8), pp.3890-3938. (10.1021/acs.chemrev.9b00662)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6 (8), pp.6600-6613. (10.1021/nn302299e)
- Meenakshisundaram, S. et al. 2014. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nature Communications 5 , pp... 3332. (10.1038/ncomms4332)
- Meenakshisundaram, S. et al. 2010. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discussions 145 , pp.341-356. (10.1039/b908172k)
- Meenakshisundaram, S. et al. 2011. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. Chemistry - A European Journal 17 (23), pp.6524-6532. (10.1002/chem.201003484)
- Miedziak, P. et al. 2018. Gold as a catalyst for the ring opening of 2,5-Dimethylfuran. Catalysis Letters 148 (7), pp.2109-2116. (10.1007/s10562-018-2415-3)
- Miedziak, P. et al. 2013. Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. Catalysis Science & Technology 3 (11), pp.2910-2917. (10.1039/c3cy00263b)
- Miedziak, P. J. et al. 2022. The over-riding role of autocatalysis in alllylic oxidation. Catalysis Letters 152 , pp.1003-1008. (10.1007/s10562-021-03707-4)
- Miedziak, P. J. et al. 2014. Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry 16 (6), pp.3132-3141. (10.1039/c4gc00087k)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 163 (1), pp.47-54. (10.1016/j.cattod.2010.02.051)
- Miedziak, P. J. et al. 2016. An investigation of the effect of carbon support on ruthenium/ carbon catalysts for lactic acid and butanone hydrogenation. Physical Chemistry Chemical Physics 18 , pp.17259-17264. (10.1039/C6CP01311B)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 164 (1), pp.315-319. (10.1016/j.cattod.2010.10.028)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19 (45), pp.8619-8627. (10.1039/b911102f)
- Mirzaei, A. A. et al., 2003. Characterisation of copper-manganese oxide catalysts: Effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Applied Catalysis A: General 253 (2), pp.499-508. (10.1016/S0926-860X(03)00563-5)
- Mirzaei, A. A. et al., 2003. Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na+ acting as catalyst poison. Catalysis Communications 4 (1), pp.17-20. (10.1016/S1566-7367(02)00231-5)
- Mirzaei, A. A. et al., 2003. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate aging atmosphere on catalyst activity. Catalysis Letters 87 (3-4), pp.103-108. (10.1023/A:1023416819195)
- Morad, M. et al. 2014. Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. Catalysis Science and Technology 4 (9), pp.3120-3128. (10.1039/c4cy00387j)
- Morad, M. et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science & Technology 7 (9), pp.1928-1936. (10.1039/C7CY00184C)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Morgan, K. et al., 2010. TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts. Journal of Catalysis 276 (1), pp.38-48. (10.1016/j.jcat.2010.08.013)
- Myakonkaya, O. et al., 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3 (3), pp.339-341. (10.1002/cssc.200900280)
- Myakonkaya, O. et al., 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350 (2), pp.443-445. (10.1016/j.jcis.2010.06.064)
- Niemantsverdriet, H. et al., 2017. Catalysis for fuels: general discussion. Faraday Discussions 197 , pp.165-205. (10.1039/C7FD90010D)
- Notar Francesco, I. et al., 2014. Novel radical tandem 1,6-enynes thioacylation/cyclization: Au-Pd nanoparticles catalysis versus thermal activation as a function of the substrate specificity. Tetrahedron 70 (51), pp.9635-9643. (10.1016/j.tet.2014.10.077)
- Nowicka, E. et al. 2019. Benzyl alcohol oxidation with Pd-Zn/TiO2: computational and experimental studies. Science and Technology of Advanced Materials 20 (1), pp.367-378. (10.1080/14686996.2019.1598237)
- Nowicka, E. et al. 2018. Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catalysis Science and Technology 8 (22), pp.5848-5857. (10.1039/C8CY01100A)
- Nowicka, E. et al. 2018. Mechanistic insights into selective oxidation of polyaromatic compounds using RICO chemistry. Chemistry - A European Journal 24 (47), pp.12359-12369. (10.1002/chem.201800423)
- Nowicka, E. et al. 2013. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics 15 (29), pp.12147-12155. (10.1039/c3cp50710f)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation. Chemistry - A European Journal 21 (11), pp.4285-4293. (10.1002/chem.201405831)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation [Cover Profile]. Chemistry - A European Journal 21 (11), pp.4169. (10.1002/chem.201406658)
- Nowicka, E. et al. 2018. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based catalysts. ACS Catalysis 8 , pp.3454-3468. (10.1021/acscatal.7b03805)
- Ntainjua, E. et al. 2012. Direct synthesis of hydrogen peroxide using Au-Pd-exchanged and supported heteropolyacid catalysts at ambient temperature using water as solvent. Green Chemistry 14 (1), pp.170-181. (10.1039/c1gc15863e)
- Ntainjua, E. N. , Freakley, S. J. and Hutchings, G. J. 2012. Direct synthesis of hydrogen peroxide using ruthenium catalysts. Topics in Catalysis 55 (11-13), pp.718-722. (10.1007/s11244-012-9866-3)
- Ntainjua Ndifor, E. et al. 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10 (11), pp.1162-1169. (10.1039/b809881f)
- Ntainjua Ndifor, E. et al. 2011. Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. Catalysis Today 178 (1), pp.47-50. (10.1016/j.cattod.2011.06.024)
- Ntainjua Ndifor, E. et al. 2009. Effect of Halide and Acid Additives on the Direct Synthesis of Hydrogen Peroxide using Supported Gold-Palladium Catalysts. Chemsuschem 2 (6), pp.575-580. (10.1002/cssc.200800257)
- Ntainjua Ndifor, E. et al. 2009. The Effect of Bromide Pretreatment on the Performance of Supported Au–Pd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem 1 (4), pp.479-484. (10.1002/cctc.200900171)
- Nyathi, T. M. et al. 2019. Impact of nanoparticle-support interactions in Co3O4/Al2O3 catalysts for the preferential oxidation of carbon monoxide. ACS Catalysis 9 (8), pp.7166-7178. (10.1021/acscatal.9b00685)
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36 , pp.15-24. (10.1016/j.jechem.2019.01.015)
- Owen, M. E. et al. 2012. Influence of counterions on the structure of bis(oxazoline) copper(II) complexes; an EPR and ENDOR investigation. Dalton Transactions 41 (36), pp.11085-11092. (10.1039/C2DT31273E)
- Pagliaro, M. and Hutchings, G. J. 2011. Heterogeneous catalysis for fine chemicals [Editorial]. Catalysis Science & Technology 1 (9), pp.1543. (10.1039/c1cy90035h)
- Palacios, M. et al., 2021. Characterisation and activity of mixed metal oxide catalysts for the gas-phase selective oxidation of toluene. Catalysis Today 363 , pp.73-84. (10.1016/j.cattod.2019.06.001)
- Parker, L. A. et al. 2020. Ammonia decomposition enhancement by Cs-Promoted Fe/Al2O3 catalysts. Catalysis Letters 150 , pp.3369-3376. (10.1007/s10562-020-03247-3)
- Parmentier, T. et al. 2018. Homocoupling of phenylboronic acid using atomically dispersed gold on carbon catalysts: catalyst evolution before reaction. ChemCatChem 10 (8), pp.1853-1859. (10.1002/cctc.201701840)
- Pasini, T. et al., 2011. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chemistry 13 (8), pp.2091-2099. (10.1039/c1gc15355b)
- Pattisson, S. et al. 2016. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes. Nature Communications 7 12855. (10.1038/ncomms12855)
- Pattisson, S. et al. 2020. Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts. Catalysis Today 357 , pp.3-7. (10.1016/j.cattod.2019.04.053)
- Peneau, V. et al., 2017. The low temperature oxidation of propane using H2O2 and Fe/ZSM-5 catalysts; insights into the active site and enhancement of catalytic turnover frequencies. ChemCatChem 9 (4), pp.642-650. (10.1002/cctc.201601241)
- Peneau, V. et al. 2013. Selective catalytic oxidation using supported gold-platinum and palladium-platinum nanoalloys prepared by sol-immobilisation. Physical Chemistry Chemical Physics 15 (26), pp.10636-10644. (10.1039/C3CP50361E)
- Peneau, V. et al. 2014. Selective catalytic oxidation of toluene using supported Au-Pt and Pd-Pt nanoalloys [Abstract]. Abstracts of Papers of the American Chemical Society 248 1 p..
- Peneau, V. et al., 2016. The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. Catalysis Science & Technology 6 (20), pp.7521-7531. (10.1039/C6CY01332E)
- Peneau, V. et al. 2015. Co-oxidation of octane and benzaldehyde using molecular oxygen with Au–Pd/carbon prepared by sol-immobilisation. Catalysis Science & Technology 5 (8), pp.3953-3959. (10.1039/C5CY00453E)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3 (4), pp.764-772. (10.1021/cs4000359)
- Piaggio, P. et al. 2000. Enantioselective epoxidation of (Z)-stilbene using a chiral Mn(III)-salen complex: effect of immobilisation on MCM-41 on product selectivity. Journal of the Chemical Society - Perkins Transactions 2 2000 (10), pp.2008-2015. (10.1039/B005752P)
- Piccinini, M. et al. 2010. Effect of the reaction conditions on the performance of Au-Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Physical Chemistry Chemical Physics 12 (10), pp.2488-2492. (10.1039/b921815g)
- Pizzutilo, E. et al., 2017. Gold-palladium bimetallic catalyst stability: consequences for hydrogen peroxide selectivity. ACS Catalysis 7 , pp.5699-5705. (10.1021/acscatal.7b01447)
- Pizzutilo, E. et al., 2017. Addressing stability challenges of using bimetallic electrocatalysts: the case of gold?palladium nanoalloys. Catalysis Science & Technology 7 (9), pp.1848-1856. (10.1039/C7CY00291B)
- Pizzutilo, E. et al., 2017. Palladium electrodissolution from model surfaces and nanoparticles. Electrochimica Acta 229 , pp.467-477. (10.1016/j.electacta.2017.01.127)
- Pizzutilo, E. et al., 2017. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production. Chemical Physics Letters 683 , pp.436-442. (10.1016/j.cplett.2017.01.071)
- Pollington, S. D. et al., 2009. Enhanced selective glycerol oxidation in multiphase structured reactors. Catalysis Today 145 (1-2), pp.169-175. (10.1016/j.cattod.2008.04.020)
- Pradhan, S. et al. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142 (3), pp.302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4 (2), pp.134-139. (10.1038/nchem.1245)
- Pradhan, S. et al. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3 (10), pp.2958-2964. (10.1039/c2sc20683h)
- Pritchard, J. C. et al. 2010. The effect of catalyst preparation method on the performance of supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry 12 (5), pp.915-921. (10.1039/b924472g)
- Pritchard, J. C. et al. 2010. Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Au−Pd Catalysts Prepared by Sol Immobilization. Langmuir 26 (21), pp.16568-16577. (10.1021/la101597q)
- Pritchard, J. C. et al. 2010. Selective oxidation using supported gold and gold palladium nanoparticles prepared by sol-immobilisation. Zeitschrift für anorganische und allgemeine Chemie 636 (11), pp.2034. (10.1002/zaac.201007002)
- Pritchard, J. C. et al. 2013. Effect of heat treatment on Au-Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. Catalysis Science & Technology 3 (2), pp.308-317. (10.1039/C2CY20234D)
- Pudkon, W. et al., 2020. Enhanced visible-light-driven photocatalytic H2 production and Cr(vi) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method. Catalysis Science and Technology 10 (9), pp.2838-2854. (10.1039/D0CY00234H)
- Pudkon, W. et al., 2019. Microwave synthesis of ZnIn2S4/WS2 composites for photocatalytic hydrogen production and hexavalent chromium reduction. Catalysis Science and Technology 9 (20), pp.5698-5711. (10.1039/C9CY01553A)
- Qu, R. et al. 2018. Supported bimetallic AuPd nanoparticles as a catalyst for the selective hydrogenation of nitroarenes. Nanomaterials 8 (9) 690. (10.3390/nano8090690)
- Richards, N. et al. 2020. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition. Applied Catalysis B: Environmental 264 118501. (10.1016/j.apcatb.2019.118501)
- Richards, N. et al. 2020. Lowering the operating temperature of perovskite catalysts for N2O decomposition through control of preparation methods. ACS Catalysis 10 (10), pp.5430-5442. (10.1021/acscatal.0c00698)
- Richards, N. et al. 2018. Investigating the influence of Fe speciation on N2O decomposition over Fe–ZSM-5 catalysts. Topics in Catalysis 61 (18-19), pp.1983-1992. (10.1007/s11244-018-1024-0)
- Richards, N. et al. 2022. Effect of the preparation method of LaSrCoFeOx perovskites on the activity of N2O decomposition. Catalysis Letters 152 , pp.213-226. (10.1007/s10562-021-03619-3)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4 , pp.575-585. (10.1038/s41929-021-00642-w)
- Rogers, O. et al. 2020. Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the role of homogeneous vanadium species. Catalysis Science and Technology 10 (13), pp.4210-4218. (10.1039/D0CY00914H)
- Rogers, O. et al. 2018. The low temperature solvent-free aerobic oxidation of cyclohexene to cyclohexane diol over highly active Au/Graphite and Au/Graphene catalysts. Catalysts 8 (8), pp.311. (10.3390/catal8080311)
- Rucinska, E. et al. 2018. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: an investigation of autoxidation and catalysis. Catalysis Science and Technology 8 (11), pp.2987-2997. (10.1039/C8CY00155C)
- Rucinska, E. et al. 2020. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: An optimization of metal ratio and investigation of the deactivation mechanism under autoxidation conditions. Topics in Catalysis 63 , pp.99-112. (10.1007/s11244-020-01231-0)
- Ruiz Esquius, J. et al. 2020. Preparation of solid solution and layered IrOx–Ni(OH)2 oxygen evolution catalysts: toward optimizing iridium efficiency for OER. ACS Catalysis 10 (24), pp.14640-14648. (10.1021/acscatal.0c03866)
- Ruiz Esquius, J. et al. 2021. Identification of C2-C5 products from CO2 hydrogenation over PdZn/TiO2-ZSM-5 hybrid catalysts. Faraday Discussions 230 , pp.52-67. (10.1039/D0FD00135J)
- Ruiz Esquius, J. et al. 2020. Effect of base on the facile hydrothermal preparation of highly active IrOx oxygen evolution catalysts. ACS Applied Energy Materials 3 (1), pp.800-809. (10.1021/acsaem.9b01642)
- Ryabenkova, Y. et al. 2013. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today 203 , pp.139-145. (10.1016/j.cattod.2012.05.037)
- Ryabenkova, Y. et al. 2012. The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis 55 (19-20), pp.1283-1288. (10.1007/s11244-012-9909-9)
- Ryabenkova, Y. et al., 2014. Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron 70 (36), pp.6055-6058. (10.1016/j.tet.2014.02.043)
- Sá, J. et al., 2011. Influence of methyl halide treatment on gold nanoparticles supported on activated carbon. Angewandte Chemie - International Edition 50 (38), pp.8912-8916. (10.1002/anie.201102066)
- Sá, J. et al., 2012. Redispersion of gold supported on oxides. ACS Catalysis 2 (4), pp.552-560. (10.1021/cs300074g)
- Saiman, M. I. et al. 2012. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angewandte Chemie. International Edition 51 (24), pp.5981-5985. (10.1002/anie.201201059)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Santonastaso, M. et al. 2014. Oxidation of benzyl alcohol using in situ generated hydrogen peroxide. Organic Process Research and Development 18 (11), pp.1455-1460. (10.1021/op500195e)
- Santos Hernandez, A. et al. 2019. The direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions. Industrial & Engineering Chemistry Research 58 (28), pp.12623-12631. (10.1021/acs.iecr.9b02211)
- Shen, H. et al., 2020. Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel. Cell Reports Physical Science 1 (11) 100255. (10.1016/j.xcrp.2020.100255)
- Shen, Y. et al., 2019. Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversion. Journal of Physical Chemistry C 123 (32), pp.19734-19741. (10.1021/acs.jpcc.9b05475)
- Sithamparappillai, U. et al., 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20 (25), pp.5310-5318. (10.1039/c0jm00403k)
- Smith, L. R. et al. 2021. Gas phase clycerol valorization over ceria nanostructures with well-defined morphologies. ACS Catalysis 11 , pp.4893-4907. (10.1021/acscatal.0c05606)
- Smith, L. R. et al. 2019. New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology 9 , pp.1464-1475. 6. (10.1039/C8CY02214C)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9 (9), pp.1621-1631. (10.1002/cctc.201601603)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8 (3), pp.2436-2447. (10.1039/C6SC04130B)
- Smith, P. J. et al. 2019. Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies 12 (7) 1359. (10.3390/en12071359)
- Solsona, B. et al., 2011. The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B - Environmental 101 (3-4), pp.388-396. (10.1016/j.apcatb.2010.10.008)
- Solsona, B. et al., 2009. TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Applied Catalysis a-General 365 (2), pp.222-230. (10.1016/j.apcata.2009.06.016)
- Solsona, B. E. et al. 2004. Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry 28 (6), pp.708-711. (10.1039/b315391f)
- Solsona, B. E. et al. 2006. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A General 312 , pp.67-76. (10.1016/j.apcata.2006.06.016)
- Song, N. et al., 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236 (2), pp.282-291. (10.1016/j.jcat.2005.10.008)
- Song, N. et al., 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106 (3-4), pp.127-131. (10.1007/s10562-005-9619-z)
- Spivey, J. J. and Hutchings, G. J. 2014. Catalytic aromatization of methane. Chemical Society Reviews 43 (3), pp.792-803. (10.1039/C3CS60259A)
- Su, R. et al., 2014. Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification. Dalton Transactions 43 (40), pp.14976-14982. (10.1039/c4dt01309c)
- Su, R. et al., 2016. Mechanistic insight into the interaction between a titanium dioxide photocatalyst and Pd co-catalyst for improved photocatalytic performance. ACS Catalysis 6 (7), pp.4239-4247. (10.1021/acscatal.6b00982)
- Su, R. et al. 2014. Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au-Pd alloy nanoparticles supported on titanium dioxide. Chemical Communications 50 (84), pp.12612-12614. (10.1039/C4CC04024D)
- Su, R. et al., 2012. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 6 (7), pp.6284-6292. (10.1021/nn301718v)
- Su, R. et al. 2014. Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8 (4), pp.3490-3497. (10.1021/nn500963m)
- Sun, X. et al. 2020. Facile synthesis of precious-metal single-site catalysts using organic solvents. Nature Chemistry 12 , pp.560-567. (10.1038/s41557-020-0446-z)
- Tang, Z. et al., 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162 , pp.219-226. (10.1016/S0167-2991(06)80910-9)
- Tang, Z. et al., 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249 (2), pp.208-219. (10.1016/j.jcat.2007.04.016)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1 (2), pp.247-251. (10.1002/cctc.200900195)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1 (5), pp.740-746. (10.1039/c1cy00064k)
- Tariq, A. et al. 2021. Combination of Cu/ZnO methanol synthesis catalysts and ZSM-5 zeolites to produce oxygenates from CO2 and H2. Topics in Catalysis 64 , pp.965-973. (10.1007/s11244-021-01447-8)
- Taufiq-Yap, Y. H. et al., 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130 (3-4), pp.327-334. (10.1007/s10562-009-0003-2)
- Taufiq-Yap, Y. H. et al., 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141 (3), pp.400-407. (10.1007/s10562-010-0508-8)
- Taufiq-Yap, Y. et al., 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20 (6), pp.635-638. (10.1016/S1003-9953(10)60251-4)
- Taufiq-Yap, Y. et al. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28 (10), pp.997-1012. (10.1080/10916460903058004)
- Taylor, S. H. et al. 1998. The partial oxidation of methane to methanol: an approach to catalyst design. Catalysis Today 42 (3), pp.217-224. (10.1016/S0920-5861(98)00095-9)
- Taylor, S. H. et al. 2001. Water as a promoter of VOC destruction over uranium oxide catalysts. Abstracts of papers of the American Chemical Society 222 , pp.U378-U379.
- Taylor, S. H. et al. 2000. Activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catalysis Today 59 (3), pp.249-259. (10.1016/S0920-5861(00)00291-1)
- Taylor, S. H. et al. 2000. Structure and activity relationships for copper manganese and copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation [Abstract]. Abstracts of papers of the American Chemical Society 219 , pp.U534-U534.
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 2003. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catalysis Today 84 (3-4), pp.113-119. (10.1016/S0920-5861(03)00264-5)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 1999. Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications (15), pp.1373-1374. (10.1039/A903426I)
- Taylor, S. H. et al. 2003. The partial oxidation of propane to formaldehyde using uranium mixed oxide catalysts. Catalysis Today 81 (2), pp.171-178. (10.1016/S0920-5861(03)00110-X)
- Taylor, S. H. et al. 2017. Oxidation of polynuclear aromatic hydrocarbons using ruthenium ion catalyzed oxidation: The role of aromatic ring number in reaction kinetics and product distribution. Chemistry - a European Journal (10.1002/chem.201704133)
- Thaore, V. B. et al., 2020. Sustainable production of glucaric acid from corn stover via glucose oxidation: an assessment of homogeneous and heterogeneous catalytic oxidation production routes. Chemical Engineering Research and Design 153 , pp.337-349. (10.1016/j.cherd.2019.10.042)
- Thetford, A. et al. 2011. The decomposition of H2O2 over the components of Au/TiO2 catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467 (2131), pp.1885-1899. (10.1098/rspa.2010.0561)
- Tiruvalam, R. et al., 2012. Some recent advances in gold-based catalysis facilitated by aberration corrected analytical electron microscopy. Journal of Physics: Conference Series 371 (1) 012028. (10.1088/1742-6596/371/1/012028)
- Tiruvalam, R. C. et al., 2011. Aberration corrected analytical electron microscopy studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. Faraday Discussions 152 , pp.63-86. (10.1039/c1fd00020a)
- Torrente-Murciano, L. et al., 2014. Enhanced Au-Pd activity in the direct synthesis of hydrogen peroxide using nanostructured titanate nanotube supports. ChemCatChem 6 (9), pp.2531-2534. (10.1002/cctc.201402361)
- Traa, Y. et al., 2001. An EPR study on the enantioselective aziridination properties of a CuNaY zeolite. Physical Chemistry Chemical Physics 3 (6), pp.1073-1080. (10.1039/B010083H)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47 , pp.303-324. (10.1007/s11164-020-04333-2)
- Underhill, R. et al. 2018. Oxidative degradation of phenol using in situ generated hydrogen peroxide combined with Fenton's process. Johnson Matthey Technology Review 62 (4), pp.417-425. (10.1595/205651318X15302623075041)
- Venezia, B. et al., 2019. Slurry loop tubular membrane reactor for the catalysed aerobic oxidation of benzyl alcohol. Chemical Engineering Journal 378 122250. (10.1016/j.cej.2019.122250)
- Villa, A. et al., 2015. Tailoring the selectivity of glycerol oxidation by tuning the acid-base properties of Au catalysts. Catalysis Science & Technology 5 , pp.1126-1132. (10.1039/C4CY01246A)
- Villa, A. et al., 2016. Characterisation of gold catalysts. Chemical Society Reviews 45 (18), pp.4953-4994. (10.1039/C5CS00350D)
- Villa, A. et al., 2015. ChemInform abstract: glycerol oxidation using gold-containing catalysts. Chem Inform 46 (29)(10.1002/chin.201529292)
- Villa, A. et al., 2015. Glycerol oxidation using gold-containing catalysts. Accounts of Chemical Research 48 (5), pp.1403-1412. (10.1021/ar500426g)
- Villa, A. et al., 2016. Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting gold-palladium nanoparticles on oxygen functionalized carbon nanofibers. Catalysis Science & Technology 6 , pp.694-697. (10.1039/C5CY01880C)
- Waldron, C. et al., 2019. Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors. Chemical Engineering Journal 377 119976. (10.1016/j.cej.2018.09.137)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5 (6), pp.3575-3587. (10.1021/acscatal.5b00480)
- Wang, S. et al., 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd–Ga and Pd–In catalysts. Catalysis Science and Technology 10 , pp.1925-1932. (10.1039/C9CY02210D)
- Weerachawanasak, P. et al., 2015. Surface functionalized TiO
2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today 250 , pp.218-225. (10.1016/j.cattod.2014.06.005) - Weng, W. et al., 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15 (SUPPL.), pp.1412-1413. (10.1017/S1431927609092332)
- Weng, W. et al., 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15 (SUPPL.), pp.1438-1439. (10.1017/S1431927609094203)
- Weng, W. et al., 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21 (40), pp.16136-16146. (10.1039/c1jm12456k)
- Weng, W. et al., 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1198-1199. (10.1017/S1431927610059805)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
- Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
- Whittle, D. M. et al., 2002. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate ageing on catalyst activity. Physical Chemistry Chemical Physics 4 (23), pp.5915-5920. (10.1039/b207691h)
- Wilbers, D. et al., 2021. Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. Green Chemistry 23 (11), pp.4170-4180. (10.1039/D0GC04320F)
- Williams, C. et al. 2018. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catalysis , pp.2567-2576. (10.1021/acscatal.7b04417)
- Wu, G. et al., 2016. Oxidation of cinnamyl alcohol using bimetallic Au-Pd/TiO2catalysts: a deactivation study in a continuous flow packed bed microreactor. Catalysis Science & Technology 6 (13), pp.4749-4758. (10.1039/C6CY00232C)
- Wu, G. et al., 2015. Continuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactor. Industrial & Engineering Chemistry Research 54 (16), pp.4183-4189. (10.1021/ie5041176)
- Xu, C. et al., 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49 (15), pp.2454-2456. (10.1016/j.tetlet.2008.02.030)
- Xu, C. et al., 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138 (1-2), pp.1-7. (10.1007/s10562-010-0365-5)
- Xu, J. et al., 2016. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catalysis Today 270 , pp.93-100. (10.1016/j.cattod.2015.09.011)
- Yang, Q. et al., 2016. Exploring the mechanisms of metal co-catalysts in photocatalytic reduction reactions: Is Ag a good candidate?. Applied Catalysis A: General 518 , pp.213-220. (10.1016/j.apcata.2015.10.023)
- Yaseneva, P. , Bowker, M. and Hutchings, G. J. 2011. Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method. Physical Chemistry Chemical Physics 13 (41), pp.18609-18614. (10.1039/c1cp21516g)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648 , pp.163-169. (10.1016/j.susc.2015.11.010)
- Yoshida, R. et al., 2017. Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over Cu-Ni bimetallic catalysts. Catalysis Communications 97 , pp.79-82. (10.1016/j.catcom.2017.04.018)
- Zhan, S. et al., 2019. Editorial of Environmental Catalysis_18NCC. Catalysis Today 327 , pp.1-1. (10.1016/j.cattod.2019.01.046)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2004. Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using α-Al2O3. New Journal of Chemistry 28 (4), pp.471-476. (10.1039/b312340p)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2003. Synthesis of methyl mercaptan and thiophene from CO/H2/H 2S using α-Al2O3. Catalysis Letters 91 (3-4), pp.181-183. (10.1023/B:CATL.0000007152.91400.95)
- Zhang, B. et al. 2018. Macroporous-mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols. Green Chemistry 20 (15), pp.3634-3642. (10.1039/C8GC01624K)
- Zhang, B. et al., 2020. Seed- and solvent-free synthesis of ZSM-5 with tuneable Si/Al ratios for biomass hydrogenation. Green Chemistry 22 (5), pp.1630-1638. (10.1039/C9GC03622A)
- Zhao, Y. et al., 2005. Study of carbon monoxide hydrogenation over Au supported on zinc oxide catalysts. American Chemical Society, Division of Petroleum Chemistry, Preprints 50 (2), pp.206-207.
- Zhao, Y. et al., 2007. Study of carbon monoxide hydrogenation over supported Au catalysts. Studies in Surface Science and Catalysis 163 , pp.141-151. (10.1016/S0167-2991(07)80477-0)
Book sections
- Bartley, J. K. et al. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons(10.1002/0471227617.eoc139.pub2)
- Dimitratos, N. , Kiely, C. J. and Hutchings, G. J. 2013. CHAPTER 1. General introduction to the field of environmental catalysis: green catalysis with supported gold and gold bimetallic nanoparticles. In: Avgouropoulos, G. and Tabakova, T. eds. Environmental Catalysis over Gold-Based Materials. Royal Society of Chemistry. , pp.1-20. (10.1039/9781849737364-00001)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2014. Supported metal nanoparticles in liquid-phase oxidation reactions. In: Duprez, D. and Cavani, F. eds. Handbook Of Advanced Methods And Processes In Oxidation Catalysis: From Laboratory To Industry. London,UK: Imperial College Press. , pp.631-678. (10.1142/9781848167513_0022)
- Hutchings, G. J. 2007. Catalysis by Gold: recent advances in oxidation reactions. In: Zhou, B. et al., Nanotechnology in Catalysis 3. Vol. 248, Nanostructure Science and Technology New York, NY: Springer. , pp.39-54. (10.1007/978-0-387-34688-5_4)
Conferences
- Agarwal, N. et al. 2018. Low temperature selective methane oxidation to methanol utilizing molecular oxygen with gold palladium colloidal catalysts. Presented at: 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water New Orleans, LA, USA 18-22 March 2018. Abstracts of Papers of the American Chemical Society. Vol. 255.American Chemical Society. , pp.35.
- Alotaibi, R. and Hutchings, G. J. 2011. Seeding effect on the transformation of VO(H(2)PO(4))(2) into catalyst precursors VOHPO4(A)over-cap center dot 0.5H(2)O. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA, USA 27-31 March 2011.
- Hammond, C. et al. 2013. Insights into the selective and catalytic oxidation of methane to methanol with Cu-promoted Fe-ZSM-5 at mild conditions [Abstract]. Presented at: 245th ACS National Meeting New Orleans, LA 7-11 April 2013. American Chemical Society.
- Hudson, I. D. et al., 1997. New class of uranium oxide catalysts for the oxidative destruction of volatile organic compounds in the vapour phase. Presented at: 90th Annual Meeting Air Waste Management Association Toronto, Canada 8-13 June 1997. Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition. Toronto, Canada: Air & Waste Management Association
- Hutchings, G. J. et al. 2011. Selective epoxidation of cyclooctene using graphite-supported gold and gold palladium catalysts. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA 27-31 March 2011.
- Hutchings, G. J. , Dimitratos, N. and Miedziak, P. J. 2011. Nanocrystalline gold catalysts for selective oxidation. Presented at: 242nd ACS National Meeting Denver, Co 28 August - 1 September 2011. Vol. 242.American Chemical Society.
- Hutchings, G. J. and Taylor, S. H. 2007. Copper manganese based mixed oxides for CO oxidation at ambient temperature. Presented at: 234th ACS National Meeting Boston, MA, USA 19-23 August 2007.
- Lopez-Sanchez, J. A. et al. 2010. Using gold catalysts for upgrading glycerol from biodiesel production: Selective oxidation and synthesis of glycerol carbonate [Abstract]. Presented at: 240th ACS National Meeting Boston, USA 22-26 August 2010.
Patents
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
- Hutchings, G. J. , Iqbal, S. and Karim, K. 2012. Carbon supported cobalt and molybdenum catalyst. WO 2012143131 A1[Patent]
- Lopez-Sanchez, J. A. et al., 2011. Hydrocarbon selective oxidation with heterogeneous gold catalysts. Patent WO 2011051642[Patent]
Research
- The study of gold nanocrystals as novel active heterogeneous catalysts and their characterisation.
- The design of selective oxidation and hydrogenation catalysts and their study using in situ spectroscopy.
- Designing novel heterogeneous catalysts
Supported gold and gold palladium alloy catalysts have been found to be particularly effective for a number of selective oxidation reactions. Supporting gold on graphite or activated carbon makes catalysts that can oxidise alkenes with molecular oxygen under mild conditions. New gold palladium catalysts have been designed that can be used under inherently safe, non-explosive conditions. The gold palladium nanocrystals have been found to have both core shell structure as well as being homogenous alloys and can give exceptionally high rates of synthesis without making water as a by-product. The same catalysts have been shown to be equally effective for the oxidation of primary alcohols using oxygen under mild solvent-free conditions. We have found that benzyl alcohol can be oxidised using oxygen under mild reaction conditions (100-160 °C) in the absence of solvent to give benzaldehyde in high selectivity will a yield of over 90%. Other alcohols can also be reacted and, in particular, primary alcohols, which are normally very unreactive can readily be oxidised. This work has been extended to new oxidation target reactions, including hydrocarbon oxidation. We have found that toluene can be selectively oxidized to benzoyl benzoate using supported gold palladium alloy catalysts prepared using a sol-immobilisation method. In addition we have found a non complex method for removing residual ligands that can remain on the surface of metal nanoparticles prepared using the sol- immobilsation method. Research in the group is now actively investigating the oxidation of methane and other alkanes.
Links
For more information on specific projects available with Professor Graham Hutchings please review the Catalysis and interfacial science section of our research project themes.
Biography
Education and Qualifications:
1972 - BSc in Chemistry with First Class Honours, University College London
1975 - PhD in Biological Chemistry, University College London. Supervisor: Prof C Vernon
2002 - DSc (University of London)
Professional Appointments:
1975 - 1984 ICI Petrochemicals Division
1975 - 1978 Technical Officer, Research Department Wilton, Teeside
1978 - 1981 Plant Manager and Production Support manager, Oil Works, Teeside
1981 - 1983 Senior Research Officer, AECI, Modderfontein, S Africa (Seconded)
1983 - 1984 Chief Research Officer, AECI, Modderfontein, S Africa (Seconded)
1984 - 1987 University of Witwatersrand, S Africa
1984 - 1987 Lecturer (1984-6),Senior Lecturer (1986-7)in Chemistry
1987 - Professor
1987 - 1997 University of Liverpool
1987 - 1994 Assistant Director of the Leverhulme Centre for Innovative Catalysis
1994 - 1997 Deputy Director and Professor
1997 - present Cardiff University
1997 - 2006 Head of School and Professor of Physical Chemistry
2006 - 2019 Distinguished Research Professor
2008 - 2019 Director: Cardiff Catalysis Institute
2010 - 2012 Pro Vice-Chancellor Research
2016 - present Regius Professor of Chemistry
Honours and awards
Prizes/ Distinctions
*Langmuir Distinguished Lecturer Award, Division of Colloid and Surface,Science, ACS, August 1996.
*Member of the Fachbeirat of the Fritz-Haber-Institut, Berlin, 1999-2015.
*Member of Sasol (South Africa) Heterogeneous Catalysis Advisory Board : 2000-2009.
*Member of NIOK International Review Group 2000, 2006, 2010 (Chair).
*DGMK 2001 – Kolleg Lectureship, Germany, 2001.
*Invited Professor in Residence at the Université Pierre et Marie Curie, Paris, 2003-4.
*IChemE Entech Medal 2004.
*Appointed RAE panel member for Chemistry (Panel 18) 2005-2008.
*RSC 2004 Award for Heterogeneous Catalysis.
*2006 François Gault Lecturer of the European Federation of Catalysis Societies
*I Chem E Impact Award for Applied Catalysis 2005.
*RSC Green Chemistry Lecturer 2007.
*IChemE Environwise Award for Green Chemistry 2007.
*Winner Dow Methane Challenge 24th January 2008.
*Elected Fellow of the Royal Society 2009
*RSC Award for Surfaces and Interfaces 2009
*I Chem E Sustainability Award 2009
*Appointed chair of SCORE 2010-2013
*Elected member Academia Europaea September 2010
*Elected Founding Fellow Learned Society of Wales
*Appointed REF Panel member and Deputy Chair for Chemistry (Panel B8) 2011-2014.
*Appointed President Elect of the Faraday Division of RSC 2010 President 2012-2015.
*IPMI Henry J. Albert Award 2011
*France Great Britain Chemistry Prize 2011
*Dechema Alvin Mittasch Award 2012
*International Association of Catalysis Societies Heinz Heinemann Award 2012
*Thompson Reuters Citation Laureate September 2012
*Distinguished Visiting Lecturer, Catalysis Society of South Africa, 2013.
*Royal Society Davy Medal 2013
*Dewar Lectureship, Queen Mary College, London.
*Thompson Reuters Most Cited Scientist Award 2014
*Xingda Lecturer University of Peking 2015
*Institute of Chemical Engineering Innovative Product Global Award 2015
*Cardiff University International Impact Award 2016
*Appointed Inaugural Regius Professor of Chemistry, 2016, in honour of the Queen’s 90th Birthday
*C N R Rao Award Lecture Bangalore 2017
*Menelaus Medal of the Learned Society of Wales 2017
*Royal Society of Chemistry Industry-Academia Collaboration Award 2017 for the discovery of the gold catalyst for VCM.
*ENI Award for Advanced Environmental Solutions 2017
*Royal Society of Chemistry Faraday Lectureship Prize 2018
*Appointed CBE in the Queen’s Birthday Honours 2018
*Zhang Dayu Lecture DICP, China 2018
*Awarded 2019 Distinguished Scientist CAS President's International Fellowship Initiative (PIFI)
Supervisions
Heterogeneous catalysis
Gold catalysis