Professor Graham Hutchings
CBE FRS
- Available for postgraduate supervision
Teams and roles for Graham Hutchings
Regius Professor of Chemistry
Overview
- The study of gold nanocrystals as novel active heterogeneous catalysts and their characterisation.
- The design of selective oxidation and hydrogenation catalysts and their study using in situ spectroscopy.
- Designing novel heterogeneous catalysts
Links
- Physical Chemistry Research Group
- Cardiff Catalysis Institute
- Graham Hutchings' Publication List (pdf)
- Graham Hutchings' CV (pdf)
Publication
2026
- Yu, J. et al., 2026. Direct oxidative carbonylation of waste methane to acetic acid over Rh/zeolite catalysts. Applied Catalysis A: General 711 120744. (10.1016/j.apcata.2025.120744)
- Chalmers, A. T. et al., 2026. Alumina supported Cu nanoparticles derived from MOF crystallites for CO2 hydrogenation. Catalysis Science & Technology (10.1039/d5cy01235j)
- Wu, X. et al., 2026. Ethane chlorination toward vinyl chloride synthesis: mechanistic and catalytic perspectives. Angewandte Chemie International Edition (10.1002/anie.202523506)
- Kazi Aurnob, A. et al., 2026. Methane partial oxidation over Rh/ZSM-5 catalysts in a high-pressure continuous flow reactor. Catalysis Today 462 115558. (10.1016/j.cattod.2025.115558)
- Scott, A. G. et al., 2026. Evaluating palladium 4d-to-2p x-ray emission spectroscopy for characterizing catalytically relevant species. Inorganic Chemistry 65 (3), pp.1801-1811. (10.1021/acs.inorgchem.5c04266)
- Du, X. , Hutchings, G. J. and Fu, Q. 2026. Carbon layer supported molybdenum nitride for highly efficient CO2 conversion [Highlights]. Science China Chemistry (10.1007/s11426-025-3159-5)
- Lawes, N. et al. 2026. The important role of alloy–oxide interfaces in controlling methanol formation in CO2 hydrogenation. ACS Catalysis (10.1021/acscatal.5c06703)
- Brehm, J. et al. 2026. Chemo-enzymatic one-pot depolymerization of β-chitin. Chemical Science (10.1039/d5sc07429k)
- Wang, S. et al., 2026. Oxygen‐bridged dual catalytic sites enable asymmetric C─C coupling for efficient CO 2 electroreduction to ethanol. Angewandte Chemie International Edition e24425. (10.1002/anie.202524425)
- Kim, B. et al., 2026. Designing physically separated bimetallic catalysts through cooperative redox enhancement (CORE). Chemical Society Reviews (10.1039/d4cs00479e)
- Berko, M. B. et al., 2026. Continuous methane partial oxidation over Au/ZSM-5 catalysts. Catalysis Today 461 115531. (10.1016/j.cattod.2025.115531)
2025
- Gao, Z. et al., 2025. Asymmetrically Coordinated Ru-O Site Facilitates H2 Heterolytic Cleavage for Efficient Green Reductive Amination of Octanol to Octylamine: a mechanistic investigation. Applied Catalysis B: Environment and Energy 379 125708. (10.1016/j.apcatb.2025.125708)
- Smith, L. R. et al. 2025. Atom-by-atom assembly reveals structure–performance control in PdCu catalysts for CO 2 hydrogenation to methanol. Chemical Science 47 , pp.22554-22564. (10.1039/d5sc06681f)
- Liddy, T. J. et al., 2025. Metal‐Mediated Nitrogen Doping of Carbon Supports Boosts Hydrogen Production from Ammonia. Angewandte Chemie International Edition e22937. (10.1002/anie.202522937)
- Stenner, A. et al., 2025. The complex interplay of chemo- and bio-catalysis for one-pot oxidation cascades – indole oxidation in focus. Green Chemistry 28 , pp.1586-1600. (10.1039/d5gc05367f)
- Hao, C. et al., 2025. Ce-induced synergistic effect in exsolved perovskite catalyst for highly efficient and robust methane dry reforming. Nature Communications 16 (1) 10630. (10.1038/s41467-025-65619-w)
- Li, R. et al. 2025. Balancing activity and stability in phenol oxidation via in situ H2O2 generation over Fe‐modified AuPd catalysts. ChemCatChem 17 (22) e01264. (10.1002/cctc.202501264)
- Zhang, Y. et al., 2025. Direct synthesis of H2O2 by spatially separate hydrogen and oxygen activation sites on tailored Pt–Au catalysts. Angewandte Chemie International Edition e21118. (10.1002/anie.202521118)
- Li, X. et al., 2025. Partial oxidation of methane to acetic acid with oxygen using AuPd/ZSM-5. ACS Catalysis 15 (21), pp.18663-18674. (10.1021/acscatal.5c03918)
- Daniel, I. T. et al. 2025. Uncovering cooperative redox enhancement effects in bimetallic catalysis. Accounts of Chemical Research 58 (21), pp.3235-3246. (10.1021/acs.accounts.5c00446)
- Cai, Y. et al., 2025. Trace-level halogen blocks CO2 emission in Fischer-Tropsch synthesis for olefins production. Science 390 (6772), pp.516-520. (10.1126/science.aea1655)
- Li, R. et al. 2025. Oxidative degradation of phenol via in-situ generation of H2O2 in a flow reactor. Catalysis Letters 155 (11) 373. (10.1007/s10562-025-05221-3)
- Kim, B. et al., 2025. Galvanic coupling measurements are a predictive tool for cooperative redox enhancement (CORE) in thermocatalytic alcohol oxidation. ACS Catalysis 15 , pp.18063-18068. (10.1021/acscatal.5c04484)
- Sun, Z. et al., 2025. Modulating the interfacial energy of Ni–Bi molten alloys for enhanced methane decomposition to hydrogen. ACS Catalysis 15 , pp.17333-17346. (10.1021/acscatal.5c02867)
- Sun, Z. et al. 2025. Tailoring an Fe-Ov-Ce triggered phase-reversible oxygen carrier for intensified chemical looping CO2 splitting. Carbon Energy 7 (9) e70011. (10.1002/cey2.70011)
- Wang, K. et al., 2025. The effect of support calcination on carbon supported palladium catalysts for solvent-free benzyl alcohol oxidation. Catalysis Science & Technology 15 (18), pp.5346-5353. (10.1039/d5cy00027k)
- Smith, L. R. et al. 2025. Direct formation of the atomic Pd-ZnO interface by magnetron sputtering primed for methanol production from CO2. ACS Catalysis 15 (17), pp.15502-15508. (10.1021/acscatal.5c04822)
- Gao, S. et al., 2025. Ultra-fast self-powered heterojunction blue-light photodetector based on Boronate-Ester-Linked COF-5. Angewandte Chemie International Edition 64 (36) e202502364. (10.1002/anie.202502364)
- Li, Y. et al., 2025. Dynamic active site evolution in lanthanum‐based catalysts dictates ethane chlorination pathways. Angewandte Chemie International Edition 64 (34) e202505846. (10.1002/anie.202505846)
- Oh, R. et al., 2025. Electronic and compositional modulation of SMSI states for selective CO2 hydrogenation with rhodium catalysts. ACS Catalysis 15 (14), pp.12014-12024. (10.1021/acscatal.5c02436)
- Lin, D. et al. 2025. Radical-constructed intergrown titanosilicalite interfaces for efficient direct propene epoxidation with H 2 and O 2. Nature Communications 16 (1) 5515. (10.1038/s41467-025-60637-0)
- Parmentier, T. E. et al., 2025. Influence of surface functionalities on Au/C catalysts for oxidative homocoupling of phenylboronic acid. ACS Sustainable Chemistry and Engineering 13 (25), pp.9654-9667. (10.1021/acssuschemeng.5c02262)
- Qi, H. et al. 2025. Enhancing activation of D2O for highly efficient deuteration using an Fe-P pair-site catalyst. JACS Au 5 (6), pp.2666-2676. (10.1021/jacsau.5c00257)
- Zhang, L. et al. 2025. Chemo-enzymatic phenol polymerisation via in-situ H2O2 synthesis. Catalysis Today 454 115292. (10.1016/j.cattod.2025.115292)
- Pitchers, J. R. et al. 2025. The selective oxidation of methanol to formaldehyde using novel iron molybdate catalysts prepared by supercritical antisolvent precipitation. Catalysis Science & Technology 15 (10), pp.3195-3203. (10.1039/D5CY00211G)
- Sharp, G. et al. 2025. Highly efficient benzyl alcohol valorisation via the in situ synthesis of H2O2 and associated reactive oxygen species. Green Chemistry 27 (19), pp.5567-5580. (10.1039/D5GC00680E)
- Sun, Z. et al. 2025. Concerted catalysis of single atom and nanocluster enhances bio-ethanol activation and dehydrogenation. Nature Communications 16 (1) 3935. (10.1038/s41467-025-59127-0)
- Williams, J. O. et al. 2025. The influence of reaction conditions on selective acetylene hydrogenation over sol immobilisation prepared AgPd/Al2O3 catalysts. ChemCatChem 17 (18) e202401794. (10.1002/cctc.202401794)
- Lou, Y. et al., 2025. Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters 36 (3) 110300. (10.1016/j.cclet.2024.110300)
- Weilhard, A. et al., 2025. A descriptor guiding the selection of catalyst supports for ammonia synthesis. Chemical Science 16 (11), pp.4851-4851. (10.1039/D4SC08253B)
- Li, R. et al. 2025. Promoting H2O2 direct synthesis through Fe incorporation into AuPd catalysts. Green Chemistry 27 (7), pp.2065-2077. (10.1039/D5GC00134J)
- Qi, H. et al. 2025. Tandem reductive amination and deuteration over a phosphorus-modified iron center.. Nature Communications 16 (1) 1840. (10.1038/s41467-024-55722-9)
- Chen, Y. et al., 2025. Evolution of amorphous ruthenium nanoclusters into stepped truncated nano-pyramids on graphitic surfaces boosts hydrogen production from ammonia. Chemical Science 16 , pp.2648-2660. (10.1039/D4SC06382A)
- Peng, M. et al., 2025. Thermal catalytic reforming for hydrogen production with zero CO2 emission. Science 387 (6735), pp.769-775. (10.1126/science.adt0682)
2024
- Hutchings, G. J. , Smith, L. R. and Sun, Z. 2024. A smart design of non-noble catalysts for sustainable propane dehydrogenation. Angewandte Chemie International Edition 63 (51) e202416080. (10.1002/anie.202416080)
- Ni, F. et al. 2024. The direct synthesis of H2O2 and in situ oxidation of methane: An investigation into the role of the support. Catalysis Today 442 114910. (10.1016/j.cattod.2024.114910)
- Li, X. et al., 2024. Solvent-free benzyl alcohol oxidation using spatially separated carbon-supported Au and Pd nanoparticles. ACS Catalysis 14 , pp.16551–16561. (10.1021/acscatal.4c05019)
- Hutchings, G. 2024. Guest column: time, money, and great ideas. In: Niemantverdriet, H. and Felderhof, J. K. eds. Towards Scientific Leadership: Personal Development Advice for Young Academics. De Gruyter
- Sharp, G. et al. 2024. Benzyl alcohol valorization via the in situ production of reactive oxygen species. ACS Catalysis 14 , pp.15279–15293. (10.1021/acscatal.4c04698)
- Hutchings, G. J. et al. 2024. Preface to ‘Green carbon for the chemical industry of the future’. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382 (2282) 20230274. (10.1098/rsta.2023.0274)
- Zhang, B. et al. 2024. Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester. Nature Communications 15 (1) 7837. (10.1038/s41467-024-52163-2)
- Stere, C. E. et al., 2024. Removal and oxidation of low concentration tert -butanol from potable water using nonthermal plasma coupled with metal oxide adsorption. ACS ES&T engineering 4 (9), pp.2121-2134. (10.1021/acsestengg.4c00166)
- Mugford, K. et al. 2024. Investigating physicochemical properties of MgO catalysts for the gas phase conversion of glycerol. ARKIVOC 2024 (3) 202412252. (10.24820/ark.5550190.p012.252)
- Carter, J. H. et al. 2024. Origin of carbon monoxide formation in the oxidative dehydrogenation of propane using carbon dioxide. ACS Catalysis 14 (15), pp.11881-11892. (10.1021/acscatal.4c02628)
- Shen, L. et al., 2024. Hollow Au1Cu1(111) bimetallic catalyst promotes the selective electrochemical conversion of glycerol into glycolic acid. ACS Catalysis , pp.11343–11351. (10.1021/acscatal.4c00483)
- Lawes, N. et al. 2024. CO2 hydrogenation to methanol on intermetallic PdGa and PdIn catalysts and the effect of Zn co-deposition. Applied Catalysis A: General 679 119735. (10.1016/j.apcata.2024.119735)
- Parker, L. A. et al. 2024. Investigating periodic table interpolation for the rational design of nanoalloy catalysts for green hydrogen production from ammonia decomposition. Catalysis Letters 154 , pp.1958-1969. (10.1007/s10562-023-04446-4)
- Kim, B. et al. 2024. Tafel analysis predicts cooperative redox enhancement effects in thermocatalytic alcohol dehydrogenation. ACS Catalysis 14 , pp.8488-8493. (10.1021/acscatal.3c06103)
- Hutchings, G. J. 2024. Catalysis using gold containing materials. Journal of Catalysis 432 115392. (10.1016/j.jcat.2024.115392)
- Lawes, N. et al. 2024. Zn loading effects on the selectivity of PdZn catalysts for CO2 hydrogenation to methanol. Catalysis Letters 154 (4), pp.1603-1610. (10.1007/s10562-023-04437-5)
- Lin, D. et al., 2024. Selective Oxidation by TS-1 coupled with in-situ Synthesised H2O2. Fundamental Research (10.1016/j.fmre.2024.03.023)
- Wang, W. et al., 2024. The role of adsorbed species in 1-butene isomerization: Parahydrogen-induced polarization NMR of Pd-Au catalyzed butadiene hydrogenation. ACS Catalysis 14 (4), pp.2522–2531. (10.1021/acscatal.3c05968)
- Cao, J. et al., 2024. Partially bonded aluminum site on the external surface of post-treated Au/ZSM-5 enhances methane oxidation to oxygenates. ACS Catalysis 14 , pp.1797-1807. (10.1021/acscatal.3c05030)
- Oh, R. et al., 2024. Insights into CeO2 particle size dependent selectivity control for CO2 hydrogenation using Co/CeO2 catalysts. ACS Catalysis 14 (2), pp.897–906. (10.1021/acscatal.3c05139)
- Lewis, R. J. and Hutchings, G. J. 2024. Selective oxidation using In situ-generated hydrogen peroxide. Accounts of Chemical Research 57 (1), pp.106–119. (10.1021/acs.accounts.3c00581)
2023
- Kovačič, D. et al. 2023. A comparative study of palladium-gold and palladium-tin catalysts in the direct synthesis of H2O2. Green Chemistry 25 (24), pp.10436-10446. (10.1039/d3gc03706a)
- Wang, S. et al., 2023. H2-reduced phosphomolybdate promotes room-temperature aerobic oxidation of methane to methanol. Nature Catalysis 6 , pp.895-905. (10.1038/s41929-023-01011-5)
- Daniel, I. et al. 2023. Electrochemical polarization of disparate catalytic sites drives thermochemical rate enhancement. ACS Catalysis 13 (21), pp.14189-14198. (10.1021/acscatal.3c03364)
- Ni, F. et al. 2023. Selective oxidation of methane to methanol via in situ H2O2 synthesis. ACS Organic & Inorganic Au 3 (4), pp.177-183. (10.1021/acsorginorgau.3c00001)
- Zhou, D. et al., 2023. Atmospheric gas and heating transmission electron microscopy with water vapor control. Microscopy and Microanalysis 29 (Supple), pp.1591-1592. (10.1093/micmic/ozad067.818)
- Evans, C. D. et al. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153 , pp.2026-2035. (10.1007/s10562-022-04111-2)
- Carter, J. H. et al., 2023. The selective oxidation of methane to methanol using in situ generated H 2 O 2 over palladium-based bimetallic catalysts †. Catalysis Science & Technology (10.1039/d3cy00116d)
- Cao, J. et al., 2023. Methane conversion to methanol using Au/ZSM-5 is promoted by carbon. ACS Catalysis 13 (11), pp.7199-7209. (10.1021/acscatal.3c01226)
- Stenner, A. et al. 2023. Chemo-enzymatic one-pot oxidation of cyclohexane via in-situ H2O2 production over supported AuPdPt catalysts. ChemCatChem 15 (10) e202300162. (10.1002/cctc.202300162)
- Lin, R. et al. 2023. Approaching theoretical performances of electrocatalytic hydrogen peroxide generation by cobalt‐nitrogen moieties. Angewandte Chemie International Edition 62 (21) e202301433. (10.1002/anie.202301433)
- Dummer, N. F. et al. 2023. Methane oxidation to methanol. Chemical Reviews 9 , pp.6359-6411. (10.1021/acs.chemrev.2c00439)
- Li, X. et al., 2023. Hydrogenolysis of 5-hydroxymethylfurfural by in situ produced hydrogen from water on an iron catalyst. Catalysis Science & Technology 13 (11), pp.3366-3374. (10.1039/D3CY00027C)
- Hutchings, G. et al. 2023. Modern developments in catalysis - Volume 2. World Scientific Publishing Europe Ltd. (10.1142/q0354)
- Hutchings, G. et al. 2023. Back Matter. In: Hutchings, G. et al., Modern Developments in Catalysis. London, UK: World Scientific Publishing Europe Ltd.. , pp.595 - 607. (10.1142/9781800612013_bmatter)
- Hutchings, G. et al. 2023. Front Matter. In: Hutchings, G. et al., Modern Developments in Catalysis. Vol. 2, London, UK: World Scientific Publishing Europe Ltd. , pp.i–xxxi. (10.1142/9781800612013_fmatter)
- Ruiz Esquius, J. et al. 2023. Lithium-directed transformation of amorphous iridium (oxy)hydroxides to produce active water oxidation catalysts. Journal of the American Chemical Society 145 (11), pp.6398-6409. (10.1021/jacs.2c13567)
- Zhao, L. et al. 2023. Insights into the effect of metal ratio on cooperative redox enhancement effects over au- and pd-mediated alcohol oxidation. ACS Catalysis 13 (5), pp.2892-2903. (10.1021/acscatal.2c06284)
- Lazaridou, A. et al. 2023. Recognizing the best catalyst for a reaction. Nature Reviews Chemistry (10.1038/s41570-023-00470-5)
- Delarmelina, M. et al. 2023. The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment. Physical Chemistry Chemical Physics 25 , pp.4161-4176. (10.1039/D2CP03140J)
- Lewis, R. J. et al. 2023. Selective Ammoximation of Ketones via In Situ H2O2 Synthesis. ACS Catalysis 13 , pp.1934-1945. (10.1021/acscatal.2c05799)
- Richards, T. et al. 2023. The direct synthesis of Hydrogen Peroxide over supported Pd-based catalysts: an investigation into the role of the support and secondary metal modifiers. Catalysis Letters 153 , pp.32-40. (10.1007/s10562-022-03967-8)
- Tong, T. et al. 2023. Uncovering structure - activity relationships in pt/ceo2 catalysts for hydrogen-borrowing amination. ACS Catalysis 13 (2), pp.1207-1220. (10.1021/acscatal.2c04347)
- Ou, X. et al., 2023. Catalytic treatment of high ionic strength wastewater from shale gas production. In: Modern Developments in Catalysis. Vol. 2, World Scientific Publishing Europe Ltd.. , pp.1-52. (10.1142/9781800612013_0001)
2022
- Lewis, R. J. et al. 2022. Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalysts. Green Chemistry 24 , pp.9496-9507. (10.1039/D2GC02689A)
- Daniel, I. T. et al. 2022. Kinetic analysis to describe co-operative redox enhancement effects exhibited by bimetallic Au-Pd systems in aerobic oxidation. Catalysis Science & Technology (10.1039/D2CY01474B)
- Barnes, A. et al. 2022. Improving catalytic activity towards the direct synthesis of H2O2 through Cu incorporation into AuPd catalysts. Catalysts 12 (11) 1396. (10.3390/catal12111396)
- Bowker, M. et al. 2022. Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck-Cardiff centre on the fundamentals of heterogeneous catalysis (funcat). Angewandte Chemie International Edition (10.1002/anie.202209016)
- Pattisson, S. et al. 2022. Lowering the operating temperature of gold acetylene hydrochlorination catalysts using oxidized carbon supports. ACS Catalysis 12 , pp.14086–14095. (10.1021/acscatal.2c04242)
- Brehm, J. et al., 2022. Enhancing the Chemo-Enzymatic One-Pot Oxidation of Cyclohexane via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 12 (19), pp.11776–11789. (10.1021/acscatal.2c03051)
- Hutchings, G. J. et al. 2022. Facile synthesis of a porous 3D g-C3N4 photocatalyst for the degradation of organics in shale gas brines. Catalysis Communications 169 106480. (10.1016/j.catcom.2022.106480)
- Carter, J. H. et al. 2022. Reversible growth of gold nanoparticles in the low-temperature water-gas shift reaction. ACS Nano 16 , pp.15197-15205. (10.1021/acsnano.2c06504)
- Tigwell, M. et al. 2022. Investigating catalytic properties which influence dehydration and oxidative dehydrogenation in aerobic glycerol oxidation over Pt/TiO2. Journal of Physical Chemistry C 126 (37), pp.15651-15661. (10.1021/acs.jpcc.2c03680)
- Lewis, R. J. et al. 2022. N-heterocyclic carbene modified palladium catalysts for the direct synthesis of hydrogen peroxide. Journal of the American Chemical Society 144 (34), pp.15431-15436. (10.1021/jacs.2c04828)
- Smith, L. R. et al. 2022. Recent advances on the valorization of glycerol into alcohols. Energies 15 (17) e6250. (10.3390/en15176250)
- Pudge, G. J. F. et al. 2022. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science & Technology 12 , pp.4552-4560. (10.1039/D2CY00699E)
- Taylor, S. et al. 2022. Selective oxidation of methane to oxygenates using heterogeneous catalysts. In: Li, L. and Hargreaves, J. eds. Heterogeneous Catalysis for Sustainable Energy. Weinheim: Wiley. , pp.183-203.
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Sun, S. et al. 2022. Selective oxidation of methane to methanol and methyl hydroperoxide over palladium modified MoO3 photocatalyst under ambient conditions. Catalysis Science & Technology 12 (11), pp.3727-3736. (10.1039/D2CY00240J)
- Chen, B. et al., 2022. The reaction pathways of 5-hydroxymethylfurfural conversion in a continuous flow reactor using copper catalysts. Catalysis Science & Technology 12 (9), pp.3016-3027. (10.1039/D1CY02197D)
- Santos, A. et al. 2022. The oxidative degradation of phenol via in situ H2O2 synthesis using Pd supported Fe-modified ZSM-5 catalysts. Catalysis Science & Technology 12 (9), pp.2943-2953. (10.1039/D2CY00283C)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12 (9), pp.5371-5379. (10.1021/acscatal.2c00552)
- Lewis, R. J. et al. 2022. Highly efficient catalytic production of oximes from ketones using in situ–generated H2O2. Science 376 (6593), pp.615-620. (10.1126/science.abl4822)
- Douthwaite, M. et al. 2022. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications 164 106430. (10.1016/j.catcom.2022.106430)
- Miedziak, P. J. et al. 2022. The over-riding role of autocatalysis in alllylic oxidation. Catalysis Letters 152 , pp.1003-1008. (10.1007/s10562-021-03707-4)
- Fortunato, G. V. et al., 2022. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nature Communications 13 1973. (10.1038/s41467-022-29536-6)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122 (6), pp.6795-6849. (10.1021/acs.chemrev.1c00493)
- Huang, X. et al. 2022. Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 603 , pp.271-275. (10.1038/s41586-022-04397-7)
- Ye, T. et al., 2022. Iron-chromium mixed metal oxides catalyse the oxidative dehydrogenation of propane using carbon dioxide. Catalysis Communications 162 106383. (10.1016/j.catcom.2021.106383)
- Barnes, A. et al. 2022. Enhancing catalytic performance of AuPd catalysts towards the direct synthesis of H2O2 through incorporation of base metals. Catalysis Science & Technology 12 , pp.1986-1995. (10.1039/D1CY01962G)
- Brehm, J. et al. 2022. The direct synthesis of hydrogen peroxide over AuPd nanoparticles: an investigation into metal loading. Catalysis Letters 152 , pp.254-262. (10.1007/s10562-021-03632-6)
- Qi, G. et al., 2022. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nature Catalysis 5 (10.1038/s41929-021-00725-8)
- Richards, N. et al. 2022. Effect of the preparation method of LaSrCoFeOx perovskites on the activity of N2O decomposition. Catalysis Letters 152 , pp.213-226. (10.1007/s10562-021-03619-3)
2021
- Lewis, R. J. et al. 2021. Improving the performance of Pd based catalysts for the direct synthesis of hydrogen peroxide via acid incorporation during catalyst synthesis. Catalysis Communications 161 106358. (10.1016/j.catcom.2021.106358)
- Tariq, A. et al. 2021. Combination of Cu/ZnO methanol synthesis catalysts and ZSM-5 zeolites to produce oxygenates from CO2 and H2. Topics in Catalysis 64 , pp.965-973. (10.1007/s11244-021-01447-8)
- Carter, J. et al. 2021. Direct and oxidative dehydrogenation of propane: From catalyst design to industrial application. Green Chemistry 23 (24), pp.9747-9799. (10.1039/D1GC03700E)
- Santos, A. et al. 2021. The degradation of phenol via in situ H2O2 production over supported Pd-based catalysts. Catalysis Science & Technology 11 (24), pp.7866-7874. (10.1039/D1CY01897C)
- Sun, S. et al. 2021. Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. Catalysis Science & Technology 11 (24), pp.8052-8064. (10.1039/D1CY01643A)
- Najafishirtari, S. et al., 2021. A perspective on heterogeneous catalysts for the selective oxidation of alcohols. Chemistry - A European Journal 27 (68), pp.16809-16833. (10.1002/chem.202102868)
- Agarwal, N. et al. 2021. The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today 381 , pp.76-85. (10.1016/j.cattod.2020.09.001)
- Yang, N. et al. 2021. Influence of stabilizers on the performance of Au/TiO2 catalysts for CO oxidation. ACS Catalysis 11 (18), pp.11607-11615. (10.1021/acscatal.1c02820)
- Nowicka, E. et al., 2021. Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H2WO4, H3PO4 and H2O2: A route for upgrading heavy oil fractions. New Journal of Chemistry 45 (31), pp.13885-13892. (10.1039/D1NJ01986D)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4 , pp.575-585. (10.1038/s41929-021-00642-w)
- Yang, P. et al., 2021. Coordinately unsaturated O2c–Ti5c–O2c sites promote the reactivity of Pt/TiO2 catalysts in the solvent-free oxidation of octanol. Catalysis Science & Technology 11 (14), pp.4898-4910. (10.1039/D1CY00686J)
- Ruiz Esquius, J. et al. 2021. Identification of C2-C5 products from CO2 hydrogenation over PdZn/TiO2-ZSM-5 hybrid catalysts. Faraday Discussions 230 , pp.52-67. (10.1039/D0FD00135J)
- Wilbers, D. et al., 2021. Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. Green Chemistry 23 (11), pp.4170-4180. (10.1039/D0GC04320F)
- Freakley, S. J. et al. 2021. Methane oxidation to methanol in water. Accounts of Chemical Research 54 (11), pp.2614–2623. (10.1021/acs.accounts.1c00129)
- Lai, K. et al., 2021. LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. Cell 184 (10)(10.1016/j.cell.2021.04.001)
- Hutchings, G. 2021. Spiers memorial lecture: understanding reaction mechanisms in heterogeneously catalysed reactions. Faraday Discussions 229 , pp.9-34. (10.1039/D1FD00023C)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Dawson, S. R. et al. 2021. Sulfur promotion in Au/C catalyzed acetylene hydrochlorination. Small 17 (16) 2007221. (10.1002/smll.202007221)
- Smith, L. R. et al. 2021. Gas phase clycerol valorization over ceria nanostructures with well-defined morphologies. ACS Catalysis 11 , pp.4893-4907. (10.1021/acscatal.0c05606)
- Chachvalvutikul, A. et al. 2021. Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light-responsive Bi2WO6/ZnIn2S4 heterojunction. Applied Surface Science 544 148885. (10.1016/j.apsusc.2020.148885)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11 , pp.2701–2714. (10.1021/acscatal.0c04586)
- Palacios, M. et al., 2021. Characterisation and activity of mixed metal oxide catalysts for the gas-phase selective oxidation of toluene. Catalysis Today 363 , pp.73-84. (10.1016/j.cattod.2019.06.001)
- Crombie, C. M. et al. 2021. The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catalysis Letters 151 , pp.164-171. (10.1007/s10562-020-03281-1)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47 , pp.303-324. (10.1007/s11164-020-04333-2)
- Crombie, C. M. et al. 2021. The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catalysis Letters 151 , pp.2762-2774. (10.1007/s10562-020-03511-6)
2020
- Parker, L. A. et al. 2020. Ammonia decomposition enhancement by Cs-Promoted Fe/Al2O3 catalysts. Catalysis Letters 150 , pp.3369-3376. (10.1007/s10562-020-03247-3)
- Akram, A. et al. 2020. The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology 10 (24), pp.8203-8212. (10.1039/D0CY01163K)
- Ruiz Esquius, J. et al. 2020. Preparation of solid solution and layered IrOx–Ni(OH)2 oxygen evolution catalysts: toward optimizing iridium efficiency for OER. ACS Catalysis 10 (24), pp.14640-14648. (10.1021/acscatal.0c03866)
- Bowker, M. et al. 2020. CO2 hydrogenation to CH3OH over PdZn catalysts, with reduced CH4 production. ChemCatChem 12 (23), pp.6024-6032. (10.1002/cctc.202000974)
- Aldridge, J. K. et al. 2020. Ambient temperature CO oxidation using palladium-platinum bimetallic catalysts supported on tin oxide/alumina. Catalysts 10 (11) 1223. (10.3390/catal10111223)
- Shen, H. et al., 2020. Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel. Cell Reports Physical Science 1 (11) 100255. (10.1016/j.xcrp.2020.100255)
- Pattisson, S. et al. 2020. Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts. Catalysis Today 357 , pp.3-7. (10.1016/j.cattod.2019.04.053)
- Malta, G. et al. 2020. Can gold be an effective catalyst for the Deacon reaction?. Catalysis Letters 150 , pp.2991-2995. (10.1007/s10562-020-03204-0)
- Jiao, Y. et al., 2020. The effect of T-atom ratio and TPAOH concentration on the pore structure and titanium position in MFI-Type titanosilicate during dissolution-recrystallization process. Microporous and Mesoporous Materials 305 110397. (10.1016/j.micromeso.2020.110397)
- Freakley, S. J. et al., 2020. Gold–palladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. Catalysis Science and Technology 10 (17), pp.5935-5944. (10.1039/D0CY00915F)
- Abedin, M. A. et al., 2020. Probing the surface acidity of supported aluminum bromide catalysts. Catalysts 10 (8) 869. (10.3390/catal10080869)
- Abis, L. et al. 2020. The effect of polymer addition on base catalysed glycerol oxidation using gold and gold-palladium bimetallic catalysts. Topics in Catalysis 63 , pp.394-402. (10.1007/s11244-019-01212-y)
- Catlow, C. R. et al. 2020. Science to enable the circular economy. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 378 (2176)(10.1098/rsta.2020.0060)
- Crole, D. A. et al. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ni/TiO2 catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200062. (10.1098/rsta.2020.0062)
- Devlia, J. et al., 2020. The formation of methanol from glycerol bio-waste over doped ceria based catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200059. (10.1098/rsta.2020.0059)
- Gong, X. et al. 2020. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catalysis Science and Technology 10 (14), pp.4635-4644. (10.1039/D0CY01079K)
- Malta, G. et al. 2020. In situ K-edge X-ray absorption spectroscopy of the ligand environment of single-site Au/C catalysts during acetylene hydrochlorination. Chemical Science 11 (27), pp.7040-7052. (10.1039/D0SC02152K)
- Rogers, O. et al. 2020. Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the role of homogeneous vanadium species. Catalysis Science and Technology 10 (13), pp.4210-4218. (10.1039/D0CY00914H)
- Sun, X. et al. 2020. Facile synthesis of precious-metal single-site catalysts using organic solvents. Nature Chemistry 12 , pp.560-567. (10.1038/s41557-020-0446-z)
- Cai, R. et al., 2020. Gas-phase deposition of gold nanoclusters to produce heterogeneous glycerol oxidation catalysts. ACS Applied Nano Materials 3 (6), pp.4997-5001. (10.1021/acsanm.0c01140)
- Ju, Q. et al., 2020. Ruthenium triazine composite: a good match for increasing hydrogen evolution activity through contact electrification. Advanced Energy Materials 10 (21) 2000067. (10.1002/aenm.202000067)
- Richards, N. et al. 2020. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition. Applied Catalysis B: Environmental 264 118501. (10.1016/j.apcatb.2019.118501)
- Ledendecker, M. et al., 2020. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catalysis 10 (10), pp.5928-5938. (10.1021/acscatal.0c01305)
- Richards, N. et al. 2020. Lowering the operating temperature of perovskite catalysts for N2O decomposition through control of preparation methods. ACS Catalysis 10 (10), pp.5430-5442. (10.1021/acscatal.0c00698)
- Pudkon, W. et al., 2020. Enhanced visible-light-driven photocatalytic H2 production and Cr(vi) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method. Catalysis Science and Technology 10 (9), pp.2838-2854. (10.1039/D0CY00234H)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120 (8), pp.3890-3938. (10.1021/acs.chemrev.9b00662)
- Caswell, T. et al. 2020. Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology 10 (7), pp.2083-2091. (10.1039/C9CY02473E)
- Evans, C. D. et al. 2020. Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. Journal of Chemical Physics 152 (13) 134705. (10.1063/1.5128595)
- Cattaneo, S. et al. 2020. Continuous flow synthesis of bimetallic AuPd catalysts for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ChemNanoMat 6 (3), pp.420-426. (10.1002/cnma.201900704)
- Rucinska, E. et al. 2020. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: An optimization of metal ratio and investigation of the deactivation mechanism under autoxidation conditions. Topics in Catalysis 63 , pp.99-112. (10.1007/s11244-020-01231-0)
- Wang, S. et al., 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd–Ga and Pd–In catalysts. Catalysis Science and Technology 10 , pp.1925-1932. (10.1039/C9CY02210D)
- Zhang, B. et al., 2020. Seed- and solvent-free synthesis of ZSM-5 with tuneable Si/Al ratios for biomass hydrogenation. Green Chemistry 22 (5), pp.1630-1638. (10.1039/C9GC03622A)
- Liu, S. et al., 2020. Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A 8 , pp.15725-15733. (10.1039/D0TA00334D)
- McVicker, R. et al. 2020. Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today 342 , pp.32-38. (10.1016/j.cattod.2018.12.017)
- Abis, L. et al. 2020. Plasmonic oxidation of glycerol using Au/TiO2 catalysts prepared by sol-immobilisation. Catalysis Letters 150 (1), pp.49-55. (10.1007/s10562-019-02952-y)
- Thaore, V. B. et al., 2020. Sustainable production of glucaric acid from corn stover via glucose oxidation: an assessment of homogeneous and heterogeneous catalytic oxidation production routes. Chemical Engineering Research and Design 153 , pp.337-349. (10.1016/j.cherd.2019.10.042)
- Ruiz Esquius, J. et al. 2020. Effect of base on the facile hydrothermal preparation of highly active IrOx oxygen evolution catalysts. ACS Applied Energy Materials 3 (1), pp.800-809. (10.1021/acsaem.9b01642)
- Hardacre, C. et al., 2020. Synchrotron radiation and catalytic science. Synchrotron Radiation News 33 (1), pp.10-14. (10.1080/08940886.2020.1701368)
- Jarvis, J. et al., 2020. Inhibiting the dealkylation of basic arenes during n-alkane direct aromatization reactions and understanding the C6 ring closure mechanism. ACS Catalysis 10 , pp.8428-8443. (10.1021/acscatal.0c02361)
2019
- Venezia, B. et al., 2019. Slurry loop tubular membrane reactor for the catalysed aerobic oxidation of benzyl alcohol. Chemical Engineering Journal 378 122250. (10.1016/j.cej.2019.122250)
- Waldron, C. et al., 2019. Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors. Chemical Engineering Journal 377 119976. (10.1016/j.cej.2018.09.137)
- Dai, X. et al., 2019. Efficient elimination of chlorinated organics on a phosphoric acid modified CeO2 catalyst: a hydrolytic destruction route. Environmental Science and Technology 53 (21), pp.12697-12705. (10.1021/acs.est.9b05088)
- Lewis, R. J. et al. 2019. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catalysis Letters 149 (11), pp.3066-3075. (10.1007/s10562-019-02876-7)
- Macino, M. et al. 2019. Tuning of catalytic sites in Pt/TiO2 catalysts for chemoselective hydrogenation of 3-nitrostyrene. Nature Catalysis 2 , pp.873-881. (10.1038/s41929-019-0334-3)
- Abis, L. et al. 2019. Plasmonic oxidation of glycerol using AuPd/TiO2 catalysts. Catalysis Science and Technology 9 (20), pp.5686-5691. (10.1039/C9CY01409H)
- Pudkon, W. et al., 2019. Microwave synthesis of ZnIn2S4/WS2 composites for photocatalytic hydrogen production and hexavalent chromium reduction. Catalysis Science and Technology 9 (20), pp.5698-5711. (10.1039/C9CY01553A)
- Freakley, S. J. et al. 2019. A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2. Nature Communications 10 (1) 4178. (10.1038/s41467-019-12120-w)
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36 , pp.15-24. (10.1016/j.jechem.2019.01.015)
- Shen, Y. et al., 2019. Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversion. Journal of Physical Chemistry C 123 (32), pp.19734-19741. (10.1021/acs.jpcc.9b05475)
- Engel, R. V. et al. 2019. Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catalysis Today 333 , pp.154-160. (10.1016/j.cattod.2018.09.005)
- Nyathi, T. M. et al. 2019. Impact of nanoparticle-support interactions in Co3O4/Al2O3 catalysts for the preferential oxidation of carbon monoxide. ACS Catalysis 9 (8), pp.7166-7178. (10.1021/acscatal.9b00685)
- Santos Hernandez, A. et al. 2019. The direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions. Industrial & Engineering Chemistry Research 58 (28), pp.12623-12631. (10.1021/acs.iecr.9b02211)
- Carter, J. H. et al. 2019. Enhanced activity and stability of Gold/Ceria-Titania for the low-temperature water-gas shift reaction. Frontiers in Chemistry 7 443. (10.3389/fchem.2019.00443)
- Zhan, S. et al., 2019. Editorial of Environmental Catalysis_18NCC. Catalysis Today 327 , pp.1-1. (10.1016/j.cattod.2019.01.046)
- Nowicka, E. et al. 2019. Benzyl alcohol oxidation with Pd-Zn/TiO2: computational and experimental studies. Science and Technology of Advanced Materials 20 (1), pp.367-378. (10.1080/14686996.2019.1598237)
- Smith, P. J. et al. 2019. Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies 12 (7) 1359. (10.3390/en12071359)
- Hirayama, J. et al., 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123 (13), pp.7879-7888. (10.1021/acs.jpcc.8b07108)
- Smith, L. R. et al. 2019. New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology 9 , pp.1464-1475. 6. (10.1039/C8CY02214C)
- Lewis, R. et al. 2019. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11 (6), pp.1673-1680. (10.1002/cctc.201900100)
- Alotaibi, F. et al., 2019. Direct synthesis of hydrogen peroxide using Cs-containing heteropolyacid-supported palladium-copper catalysts. Catalysis Letters 149 (4), pp.998-1006. (10.1007/s10562-019-02680-3)
- Hutchings, G. J. and Lewis, R. 2019. A review of recent advances in the direct synthesis of H2O2. ChemCatChem 11 (1), pp.298-308. (10.1002/cctc.201801435)
- Armstrong, R. D. et al. 2019. Quantitative determination of Pt- catalyzed D-glucose oxidation products using 2D NMR. ACS Catalysis 9 (1), pp.325-335. (10.1021/acscatal.8b03838)
- Cattaneo, S. et al. 2019. Synthesis of highly uniform and composition-controlled gold-palladium supported nanoparticles in continuous flow. Nanoscale 17 , pp.8247-8259. (10.1039/C8NR09917K)
2018
- Carter, J. H. and Hutchings, G. J. 2018. Recent advances in the gold-catalysed low-temperature water-gas shift reaction. Catalysts 8 (12), pp.627-627. (10.3390/catal8120627)
- Nowicka, E. et al. 2018. Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catalysis Science and Technology 8 (22), pp.5848-5857. (10.1039/C8CY01100A)
- Bahruji, H. et al. 2018. Correction to: Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Topics in Catalysis (10.1007/s11244-018-1081-4)
- Kanitkar, S. et al., 2018. Low temperature direct conversion of methane using a solid superacid. ChemCatChem 10 (21), pp.5033-5038. (10.1002/cctc.201801310)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317 , pp.12-20. (10.1016/j.cattod.2018.03.046)
- Richards, N. et al. 2018. Investigating the influence of Fe speciation on N2O decomposition over Fe–ZSM-5 catalysts. Topics in Catalysis 61 (18-19), pp.1983-1992. (10.1007/s11244-018-1024-0)
- Underhill, R. et al. 2018. Oxidative degradation of phenol using in situ generated hydrogen peroxide combined with Fenton's process. Johnson Matthey Technology Review 62 (4), pp.417-425. (10.1595/205651318X15302623075041)
- Malta, G. et al. 2018. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: An X-ray absorption and inelastic neutron scattering study. ACS Catalysis 8 (9), pp.8493-8505. (10.1021/acscatal.8b02232)
- Qu, R. et al. 2018. Supported bimetallic AuPd nanoparticles as a catalyst for the selective hydrogenation of nitroarenes. Nanomaterials 8 (9) 690. (10.3390/nano8090690)
- Nowicka, E. et al. 2018. Mechanistic insights into selective oxidation of polyaromatic compounds using RICO chemistry. Chemistry - A European Journal 24 (47), pp.12359-12369. (10.1002/chem.201800423)
- Hutchings, G. J. and Catlow, C. R. 2018. Designing heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2216) 20180514. (10.1098/rspa.2018.0514)
- Arrigo, R. et al., 2018. Theory as a driving force to understand reactions on nanoparticles: general discussion. Faraday Discussions 208 , pp.147-185. (10.1039/C8FD90013B)
- Adishev, A. et al., 2018. Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions 208 , pp.471-495. (10.1039/C8FD90015A)
- Baletto, F. et al., 2018. Application of new nanoparticle structures as catalysts: general discussion. Faraday Discussions 208 , pp.575-593. (10.1039/C8FD90016G)
- Marquart, W. et al., 2018. Oxygenate formation over K/β-Mo2C catalysts in the Fischer-Tropsch synthesis. Catalysis Science and Technology 8 (15), pp.3806-3817. (10.1039/C8CY01181H)
- Zhang, B. et al. 2018. Macroporous-mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols. Green Chemistry 20 (15), pp.3634-3642. (10.1039/C8GC01624K)
- Rogers, O. et al. 2018. The low temperature solvent-free aerobic oxidation of cyclohexene to cyclohexane diol over highly active Au/Graphite and Au/Graphene catalysts. Catalysts 8 (8), pp.311. (10.3390/catal8080311)
- Hutchings, G. J. , Catlow, C. and Turner, N. 2018. Providing sustainable catalytic solutions for a rapidly changing world [RETRACTED]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2215) 20180414. (10.1098/rspa.2018.0414)
- Miedziak, P. et al. 2018. Gold as a catalyst for the ring opening of 2,5-Dimethylfuran. Catalysis Letters 148 (7), pp.2109-2116. (10.1007/s10562-018-2415-3)
- Galvanin, F. et al., 2018. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal 342 , pp.196-210. (10.1016/j.cej.2017.11.165)
- Hutchings, G. et al. 2018. Selective hydrogenation of levulinic acid using Ru/C catalysts prepared by sol-immobilsation. Topics in Catalysis 61 (9-11), pp.833-843.
- Jones, M. et al. 2018. Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons. Journal of Catalysis 364 , pp.102-111. (10.1016/j.jcat.2018.05.012)
- Bahruji, H. et al. 2018. Hydrogenation of CO2 to dimethyl ether over brønsted acidic PdZn catalysts. Industrial and Engineering Chemistry Research 57 (20), pp.6821-6829. (10.1021/acs.iecr.8b00230)
- Rucinska, E. et al. 2018. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: an investigation of autoxidation and catalysis. Catalysis Science and Technology 8 (11), pp.2987-2997. (10.1039/C8CY00155C)
- Engel, R. V. et al. 2018. Oxidative carboxylation of 1-decene to 1,2-decylene carbonate. Topics in Catalysis 61 (5-6), pp.509-518. (10.1007/s11244-018-0900-y)
- Parmentier, T. et al. 2018. Homocoupling of phenylboronic acid using atomically dispersed gold on carbon catalysts: catalyst evolution before reaction. ChemCatChem 10 (8), pp.1853-1859. (10.1002/cctc.201701840)
- Bahruji, H. et al. 2018. Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Topics in Catalysis 61 (3-4), pp.144-153. (10.1007/s11244-018-0885-6)
- Jiao, Y. et al., 2018. Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. Catalysis Science and Technology 8 , pp.2211-2217. (10.1039/C7CY02571H)
- Dodekatos, G. et al., 2018. Glycerol oxidation using MgO and Al2O3 supported gold and gold-palladium nanoparticles prepared in the absence of polymer stabilisers. ChemCatChem 10 (6), pp.1351-1359. (10.1002/cctc.201800074)
- Agarwal, N. et al. 2018. Low temperature selective methane oxidation to methanol utilizing molecular oxygen with gold palladium colloidal catalysts. Presented at: 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water New Orleans, LA, USA 18-22 March 2018. Abstracts of Papers of the American Chemical Society. Vol. 255.American Chemical Society. , pp.35.
- Nowicka, E. et al. 2018. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based catalysts. ACS Catalysis 8 , pp.3454-3468. (10.1021/acscatal.7b03805)
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4 (1), pp.12-23. (10.1080/2055074X.2018.1433598)
- Armstrong, R. et al. 2018. The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts. ChemPhysChem 19 (4), pp.469-478. (10.1002/cphc.201701046)
- Chow, Y. K. et al. 2018. A kinetic study of methane partial oxidation over FeZSM-5 using N2O as an oxidant. ChemPhysChem 19 (4), pp.402-411. (10.1002/cphc.201701202)
- Williams, C. et al. 2018. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catalysis , pp.2567-2576. (10.1021/acscatal.7b04417)
- Cattaneo, S. et al. 2018. Cinnamaldehyde hydrogenation using Au-Pd catalysts prepared by sol immobilisation. Catalysis Science and Technology 8 , pp.1677-1685. (10.1039/C7CY02556D)
- Chow, Y. K. et al. 2018. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catalysis Science and Technology 2018 (8), pp.154-163. (10.1039/C7CY01769C)
- D'Agostino, C. et al., 2018. Product inhibition in the glycerol oxidation over Au/TiO2 catalyst quantified by NMR relaxation. ACS Catalysis 8 (8), pp.7334-7339. (10.1021/acscatal.8b01516)
- Hutchings, G. J. 2018. Heterogeneous gold catalysis. ACS Central Science 4 (9), pp.1095-1101. (10.1021/acscentsci.8b00306)
2017
- Hutchings, G. J. et al. 2017. New insights into the activation and deactivation of Au/CeZrO4 in the low-temperature water-gas shift reaction. Angewandte Chemie International Edition 56 (50), pp.16037-16041. (10.1002/anie.201709708)
- Armstrong, R. et al. 2017. How to synthesise high purity, crystalline D-glucaric acid selectively. European Journal of Organic Chemistry 2017 (45), pp.6811-6814. (10.1002/ejoc.201701343)
- Douthwaite, M. et al. 2017. The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. Catalysis Science & Technology 7 (22), pp.5284-5293. (10.1039/C7CY01025G)
- Fechete, I. et al., 2017. Catalytic reactivity of surfaces: in recognition of François Gault. Catalysis Science & Technology 7 (22), pp.5181-5181. (10.1039/C7CY90088K)
- Al-Rifai, N. et al., 2017. Deactivation behaviour of supported gold palladium nanoalloy catalysts during the selective oxidation of benzyl alcohol in a micro-packed bed reactor. Industrial & Engineering Chemistry Research 56 (45), pp.12984-12993. (10.1021/acs.iecr.7b01159)
- Taylor, S. H. et al. 2017. Oxidation of polynuclear aromatic hydrocarbons using ruthenium ion catalyzed oxidation: The role of aromatic ring number in reaction kinetics and product distribution. Chemistry - a European Journal (10.1002/chem.201704133)
- Lewis, R. et al. 2017. Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide. Industrial & Engineering Chemistry Research 56 (45), pp.13287-13293. (10.1021/acs.iecr.7b01800)
- Agarwal, N. et al. 2017. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358 (6360), pp.223-227. (10.1126/science.aan6515)
- Ivars-Barceló, F. et al., 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354 , pp.236-249. (10.1016/j.jcat.2017.08.020)
- Khasu, M. et al., 2017. Co3O4 morphology in the preferential oxidation of CO. Catalysis Science & Technology 7 (20), pp.4806-4817. (10.1039/C7CY01194F)
- Malta, G. et al. 2017. Acetylene hydrochlorination using Au / Carbon: a journey towards single site catalysis. Chemical Communications (10.1039/C7CC05986H)
- Liu, X. et al., 2017. Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide. Chemistry - A European Journal 23 (49)(10.1002/chem.201605941)
- Cao, Y. et al. 2017. An investigation into bimetallic catalysts for base free oxidation of cellobiose and glucose. Journal of Chemical Technology and Biotechnology 92 (9), pp.2246-2253. (10.1002/jctb.5287)
- Pizzutilo, E. et al., 2017. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production. Chemical Physics Letters 683 , pp.436-442. (10.1016/j.cplett.2017.01.071)
- Abis, L. et al. 2017. Highly active gold and gold-palladium catalysts prepared by colloidal methods in the absence of polymer stabilizers. ChemCatChem 9 (15), pp.2914-2918. (10.1002/cctc.201700483)
- Pizzutilo, E. et al., 2017. Gold-palladium bimetallic catalyst stability: consequences for hydrogen peroxide selectivity. ACS Catalysis 7 , pp.5699-5705. (10.1021/acscatal.7b01447)
- Yoshida, R. et al., 2017. Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over Cu-Ni bimetallic catalysts. Catalysis Communications 97 , pp.79-82. (10.1016/j.catcom.2017.04.018)
- D'Agostino, C. et al., 2017. Increased affinity of small gold particles for glycerol oxidation over Au/TiO2 probed by NMR relaxation methods. ACS Catalysis 7 (7), pp.4235-4241. (10.1021/acscatal.7b01255)
- Hayward, J. S. et al. 2017. The effects of secondary oxides on copper-based catalysts for green methanol synthesis. ChemCatChem 9 (9), pp.1655-1662. (10.1002/cctc.201601692)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9 (9), pp.1621-1631. (10.1002/cctc.201601603)
- Morad, M. et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science & Technology 7 (9), pp.1928-1936. (10.1039/C7CY00184C)
- Niemantsverdriet, H. et al., 2017. Catalysis for fuels: general discussion. Faraday Discussions 197 , pp.165-205. (10.1039/C7FD90010D)
- Bahruji, H. et al. 2017. PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discussions 197 , pp.309-324. (10.1039/C6FD00189K)
- Cao, E. et al., 2017. A micropacked-bed multi-reactor system with in situ raman analysis for catalyst evaluation. Catalysis Today 283 , pp.195-201. (10.1016/j.cattod.2016.06.007)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197 , pp.287-307. (10.1039/C6FD00202A)
- Malta, G. et al., 2017. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355 (6332), pp.1399-1403. (10.1126/science.aal3439)
- Pizzutilo, E. et al., 2017. Addressing stability challenges of using bimetallic electrocatalysts: the case of gold?palladium nanoalloys. Catalysis Science & Technology 7 (9), pp.1848-1856. (10.1039/C7CY00291B)
- Alsaiari, R. et al. 2017. The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science & Technology 2017 (6), pp.1433-1439. (10.1039/C6CY02448C)
- Pizzutilo, E. et al., 2017. Palladium electrodissolution from model surfaces and nanoparticles. Electrochimica Acta 229 , pp.467-477. (10.1016/j.electacta.2017.01.127)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8 (3), pp.2436-2447. (10.1039/C6SC04130B)
- Peneau, V. et al., 2017. The low temperature oxidation of propane using H2O2 and Fe/ZSM-5 catalysts; insights into the active site and enhancement of catalytic turnover frequencies. ChemCatChem 9 (4), pp.642-650. (10.1002/cctc.201601241)
- Fu, J. et al. 2017. The role of Mg(OH)2 in the so-called 'base-free' oxidation of glycerol with AuPd catalysts. Chemistry - A European Journal 24 (10), pp.2396-2402. (10.1002/chem.201704151)
- Giorgi, P. D. et al., 2017. Bicatalytic multistep reactions en route to the one-pot total synthesis of complex molecules: easy access to chromene and 1,2-dihydroquinoline derivatives from simple substrates. ChemCatChem 9 (1), pp.70-75. (10.1002/cctc.201600925)
- Ishikawa, S. et al., 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19 (1), pp.225-236. (10.1039/C6GC02598F)
2016
- Gavriilidis, A. et al., 2016. Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. Reaction Chemistry and Engineering 1 (6), pp.595-612. (10.1039/C6RE00155F)
- Bahruji, H. et al. 2016. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis 343 , pp.133-146. (10.1016/j.jcat.2016.03.017)
- Davies, C. J. et al., 2016. Vinyl chloride monomer production catalysed by gold: a review. Chinese Journal of Catalysis 37 (10), pp.1600-1607. (10.1016/S1872-2067(16)62482-8)
- Peneau, V. et al., 2016. The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. Catalysis Science & Technology 6 (20), pp.7521-7531. (10.1039/C6CY01332E)
- Iqbal, S. et al., 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275 , pp.35-39. (10.1016/j.cattod.2015.09.041)
- Carter, J. et al. 2016. Synergy and anti-synergy between palladium and gold in nanoparticles dispersed on a reducible support. ACS Catalysis 6 (10), pp.6623-6633. (10.1021/acscatal.6b01275)
- D'Agostino, C. et al., 2016. Solvent inhibition in the liquid-phase catalytic oxidation of 1,4-butanediol: understanding the catalyst behaviour from NMR relaxation time measurements. Catalysis Science & Technology 6 (21), pp.7896-7901. (10.1039/C6CY01458E)
- Pattisson, S. et al. 2016. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes. Nature Communications 7 12855. (10.1038/ncomms12855)
- Xu, J. et al., 2016. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catalysis Today 270 , pp.93-100. (10.1016/j.cattod.2015.09.011)
- He, Q. et al. 2016. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications 7 12905. (10.1038/ncomms12905)
- Akram, A. et al., 2016. Gas phase stabiliser-free production of hydrogen peroxide using supported gold-palladium catalysts. Chemical Science 7 (9), pp.5833-5837. (10.1039/C6SC01332E)
- Al-Rifai, N. et al., 2016. Hydrodynamic effects on three phase micro-packed bed reactor performance – Gold–palladium catalysed benzyl alcohol oxidation. Chemical Engineering Science 149 , pp.129-142. (10.1016/j.ces.2016.03.018)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188 , pp.427-450. (10.1039/C5FD00187K)
- Crole, D. A. et al. 2016. Direct synthesis of hydrogen peroxide in water at ambient temperature. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472 (2190) 20160156. (10.1098/rspa.2016.0156)
- Galvanin, F. et al., 2016. Merging information from batch and continuous flow experiments for the identification of kinetic models of benzyl alcohol oxidation over Au-Pd catalyst. Computer Aided Chemical Engineering 38 , pp.961-966. (10.1016/B978-0-444-63428-3.50165-X)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648 , pp.163-169. (10.1016/j.susc.2015.11.010)
- Wu, G. et al., 2016. Oxidation of cinnamyl alcohol using bimetallic Au-Pd/TiO2catalysts: a deactivation study in a continuous flow packed bed microreactor. Catalysis Science & Technology 6 (13), pp.4749-4758. (10.1039/C6CY00232C)
- Yang, Q. et al., 2016. Exploring the mechanisms of metal co-catalysts in photocatalytic reduction reactions: Is Ag a good candidate?. Applied Catalysis A: General 518 , pp.213-220. (10.1016/j.apcata.2015.10.023)
- Su, R. et al., 2016. Mechanistic insight into the interaction between a titanium dioxide photocatalyst and Pd co-catalyst for improved photocatalytic performance. ACS Catalysis 6 (7), pp.4239-4247. (10.1021/acscatal.6b00982)
- Ab Rahim, M. H. et al., 2016. Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catalysis Science & Technology 6 (10), pp.3410-3418. (10.1039/C5CY01586C)
- Armstrong, R. , Hutchings, G. and Taylor, S. H. 2016. An overview of recent advances of the catalytic selective oxidation of ethane to oxygenates. Catalysts 6 (5) 71. (10.3390/catal6050071)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6 (15), pp.6022-6030. (10.1039/C6CY00382F)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272 , pp.74-79. (10.1016/j.cattod.2016.04.012)
- Miedziak, P. J. et al. 2016. An investigation of the effect of carbon support on ruthenium/ carbon catalysts for lactic acid and butanone hydrogenation. Physical Chemistry Chemical Physics 18 , pp.17259-17264. (10.1039/C6CP01311B)
- Hutchings, G. J. 2016. Methane activation by selective oxidation. Topics in Catalysis 59 (8-9), pp.658-662. (10.1007/s11244-016-0542-x)
- Liu, X. et al., 2016. Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination. Catalysis Science & Technology 6 , pp.5144-5153. (10.1039/C6CY00090H)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531 , pp.83-87. (10.1038/nature16935)
- Hutchings, G. J. et al. 2016. Catalysis making the world a better place: satellite meeting. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 374 (2061), pp.-. 20150358. (10.1098/rsta.2015.0358)
- Freakley, S. J. et al. 2016. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351 (6276), pp.965-968. (10.1126/science.aad5705)
- Catlow, C. R. et al., 2016. Catalysis making the world a better place. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374 (2061) 20150089. (10.1098/rsta.2015.0089)
- Aldosari, D. O. et al., 2016. Pd-Ru/TiO2 catalyst - an active and selective catalyst for furfural hydrogenation. Catalysis Science & Technology 6 , pp.234-242. (10.1039/C5CY01650A)
- Conte, M. et al., 2016. Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings. Catalysis Letters 146 (1), pp.126-135. (10.1007/s10562-015-1660-y)
- Liu, X. et al., 2016. One-step production of 1,3-butadiene from 2,3-butanediol dehydration. Chemistry - a European Journal 22 (35), pp.12290-12294. (10.1002/chem.201602390)
- Villa, A. et al., 2016. Characterisation of gold catalysts. Chemical Society Reviews 45 (18), pp.4953-4994. (10.1039/C5CS00350D)
- Villa, A. et al., 2016. Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting gold-palladium nanoparticles on oxygen functionalized carbon nanofibers. Catalysis Science & Technology 6 , pp.694-697. (10.1039/C5CY01880C)
2015
- Haider, M. H. et al., 2015. Efficient green methanol synthesis from glycerol. Nature Chemistry 7 , pp.1028-1032. (10.1038/nchem.2345)
- Constantinou, A. et al., 2015. Continuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactor. Organic Process Research and Development 19 (12), pp.1973-1979. (10.1021/acs.oprd.5b00220)
- Liu, X. et al., 2015. Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts. Applied Catalysis A: General 504 , pp.373-380. (10.1016/j.apcata.2015.02.034)
- Marin, R. P. et al., 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504 , pp.62-73. (10.1016/j.apcata.2015.02.023)
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- He, Y. et al., 2015. Oxidation of aliphatic alcohols by using precious metals supported on hydrotalcite under solvent- and base-free conditions. ChemSusChem 8 (19), pp.3314-3322. (10.1002/cssc.201500503)
- Iqbal, S. et al. 2015. Ruthenium nanoparticles supported on carbon: an active catalyst for the hydrogenation of lactic acid to 1,2-propanediol. ACS Catalysis 5 (9), pp.5047-5059. (10.1021/acscatal.5b00625)
- Cao, Y. et al., 2015. Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catalysis Science & Technology 6 , pp.107-117. (10.1039/C5CY00732A)
- Lari, G. M. et al., 2015. The use of carbon monoxide as a probe molecule in spectroscopic studies for determination of exposed gold sites on TiO2. Physical Chemistry Chemical Physics 17 (35), pp.23236-23244. (10.1039/C5CP02512E)
- Peneau, V. et al. 2015. Co-oxidation of octane and benzaldehyde using molecular oxygen with Au–Pd/carbon prepared by sol-immobilisation. Catalysis Science & Technology 5 (8), pp.3953-3959. (10.1039/C5CY00453E)
- Weerachawanasak, P. et al., 2015. Surface functionalized TiO
2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today 250 , pp.218-225. (10.1016/j.cattod.2014.06.005) - King, G. M. et al. 2015. An investigation of the effect of the addition of tin to %Pd/TiO2 for the hydrogenation of furfuryl alcohol. ChemCatChem 7 (14), pp.2122-2129. (10.1002/cctc.201500242)
- Freakley, S. J. et al. 2015. Direct synthesis of hydrogen peroxide using Au-Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions. Catalysis Today 248 , pp.10-17. (10.1016/j.cattod.2014.01.012)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5 (6), pp.3575-3587. (10.1021/acscatal.5b00480)
- Villa, A. et al., 2015. Glycerol oxidation using gold-containing catalysts. Accounts of Chemical Research 48 (5), pp.1403-1412. (10.1021/ar500426g)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation. Chemistry - A European Journal 21 (11), pp.4285-4293. (10.1002/chem.201405831)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation [Cover Profile]. Chemistry - A European Journal 21 (11), pp.4169. (10.1002/chem.201406658)
- Wu, G. et al., 2015. Continuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactor. Industrial & Engineering Chemistry Research 54 (16), pp.4183-4189. (10.1021/ie5041176)
- Gandarias Goikoetxea, I. et al. 2015. Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. Chemsuschem 8 (3), pp.473-480. (10.1002/cssc.201403190)
- Auer, A. A. et al., 2015. MAXNET energy - focusing research in chemical energy conversion on the electrocatlytic oxygen evolution. Green 5 (1-6), pp.7-21. (10.1515/green-2015-0021)
- Armstrong, R. et al. 2015. Low temperature catalytic partial oxidation of ethane to oxygenates by Fe– and Cu–ZSM-5 in a continuous flow reactor. Journal of Catalysis 330 , pp.84-92. (10.1016/j.jcat.2015.07.001)
- Edwards, J. K. et al. 2015. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today 248 , pp.3-9. (10.1016/j.cattod.2014.03.011)
- Fechete, I. et al., 2015. Preface to the special issue "Nanocatalysis science: Preparation, characterization and reactivity", honoring Jacques C. Védrine. Applied Catalysis A: General 504 , pp.1-3. (10.1016/j.apcata.2015.05.009)
- Gupta, U. N. et al., 2015. Epoxidation of propene with graphite AuPd-supported nanoparticles. Catalysis Letters 145 (2), pp.697-701. (10.1007/s10562-014-1439-6)
- Gupta, U. N. et al., 2015. Solvent-free oxidation of dec-1-ene using gold/graphite catalyst using an in situ generated oxidant. Catalysis Science & Technology 5 (2), pp.1307-1313. (10.1039/C4CY01355G)
- Gupta, U. N. et al., 2015. Solvent-free aerobic epoxidation of Dec-1-ene using gold/graphite as a catalyst. Catalysis Letters 145 (2), pp.689-696. (10.1007/s10562-014-1425-z)
- Iqbal, S. , Brett, G. and Hutchings, G. j. 2015. The role of gold catalysts in C-H bond activation for the selective oxidation of saturated hydrocarbons. Gold Catalysis Preparation, Characterization, and Applications , pp.311-339. (10.1201/b19911-12)
- Johnston, P. , Carthey, N. and Hutchings, G. J. 2015. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. Journal of the American Chemical Society 137 (46), pp.14548-14557. (10.1021/jacs.5b07752)
- Villa, A. et al., 2015. Tailoring the selectivity of glycerol oxidation by tuning the acid-base properties of Au catalysts. Catalysis Science & Technology 5 , pp.1126-1132. (10.1039/C4CY01246A)
- Villa, A. et al., 2015. ChemInform abstract: glycerol oxidation using gold-containing catalysts. Chem Inform 46 (29)(10.1002/chin.201529292)
- Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
2014
- Notar Francesco, I. et al., 2014. Novel radical tandem 1,6-enynes thioacylation/cyclization: Au-Pd nanoparticles catalysis versus thermal activation as a function of the substrate specificity. Tetrahedron 70 (51), pp.9635-9643. (10.1016/j.tet.2014.10.077)
- Freakley, S. et al. 2014. Gold catalysis: a reflection on where we are now. Catalysis Letters 145 (1), pp.71-79. (10.1007/s10562-014-1432-0)
- Jones, W. V. et al. 2014. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness. Physical Chemistry Chemical Physics 16 , pp.26638-26644. (10.1039/C4CP04693E)
- Liu, X. et al. 2014. Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. Catalysis Science & Technology 5 , pp.217-227. (10.1039/C4CY01213E)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2014. Supported metal nanoparticles in liquid-phase oxidation reactions. In: Duprez, D. and Cavani, F. eds. Handbook Of Advanced Methods And Processes In Oxidation Catalysis: From Laboratory To Industry. London,UK: Imperial College Press. , pp.631-678. (10.1142/9781848167513_0022)
- Ryabenkova, Y. et al., 2014. Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron 70 (36), pp.6055-6058. (10.1016/j.tet.2014.02.043)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
- Morad, M. et al. 2014. Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. Catalysis Science and Technology 4 (9), pp.3120-3128. (10.1039/c4cy00387j)
- Su, R. et al. 2014. Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au-Pd alloy nanoparticles supported on titanium dioxide. Chemical Communications 50 (84), pp.12612-12614. (10.1039/C4CC04024D)
- Su, R. et al., 2014. Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification. Dalton Transactions 43 (40), pp.14976-14982. (10.1039/c4dt01309c)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum promoted gold-palladium catalysts. Catalysis Science and Technology -Cambridge- 4 (9), pp.3244-3250. (10.1039/c4cy00496e)
- Forde, M. et al. 2014. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. Chemical Science 5 (9), pp.3603-3616. (10.1039/C4SC00545G)
- Kondrat, S. A. et al. 2014. Base-free oxidation of glycerol using titania-supported trimetallic Au-Pd-Pt nanoparticles. Chemsuschem 7 (5), pp.1326-1334. (10.1002/cssc.201300834)
- Su, R. et al. 2014. Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8 (4), pp.3490-3497. (10.1021/nn500963m)
- Iqbal, S. et al. 2014. Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catalysis Science & Technology 4 (8), pp.2280-2286. (10.1039/c4cy00184b)
- Miedziak, P. J. et al. 2014. Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry 16 (6), pp.3132-3141. (10.1039/c4gc00087k)
- Marin, R. P. et al., 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4 (7), pp.1970-1978. (10.1039/c4cy00044g)
- Meenakshisundaram, S. et al. 2014. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nature Communications 5 , pp... 3332. (10.1038/ncomms4332)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. Angewandte Chemie International Edition 53 (9), pp.2381-2384. (10.1002/anie.201308067)
- D'Agostino, C. et al., 2014. Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. Catalysis Science & Technology 4 (5), pp.1313-1322. (10.1039/c4cy00027g)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Haider, M. et al. 2014. The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. Chemistry - a European Journal 20 (6), pp.1743-1752. (10.1002/chem.201302348)
- Forde, M. M. et al. 2014. High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano 8 (1), pp.957-969. (10.1021/nn405757q)
- Alshammari, H. et al., 2014. Initiator-free hydrocarbon oxidation using supported gold nanoparticlec. Catalysis Science and Technology -Cambridge- 4 (4), pp.908-911. (10.1039/c4cy00088a)
- Brett, G. L. et al. 2014. Gold-based nanoparticulate catalysts for the oxidative esterification of 1,4-butanediol to dimethyl succinate. Topics in Catalysis 57 (6-9), pp.723-729. (10.1007/s11244-013-0229-5)
- Dimitratos, N. , Hammond, C. and Hutchings, G. J. 2014. Gold-based nanoparticle catalysts for catalytic applications [Abstract]. Abstracts of Papers of the American Chemical Society 248 1 p..
- Dimitratos, N. et al. 2014. Catalysis using colloidal-supported gold-based nanoparticles. Applied Petrochemical Research 4 (1), pp.85-94. (10.1007/s13203-014-0059-9)
- Edwards, J. K. et al. 2014. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Accounts of Chemical Research 47 (3), pp.845-854. (10.1021/ar400177c)
- Hutchings, G. J. 2014. Au catalysts for acetylene hydrochlorination and carbon monoxide oxidation. Topics in Catalysis 57 (14-16), pp.1265-1271. (10.1007/s11244-014-0290-8)
- Hutchings, G. J. 2014. Selective oxidation using supported gold bimetallic and trimetallic nanoparticles. Catalysis Today 238 , pp.69-73. (10.1016/j.cattod.2014.01.033)
- Kiely, C. et al. 2014. Assessing and controlling the size, morphology and composition of supported bimetallic catalyst nanoparticles. Microscopy and Microanalysis 20 (S3), pp.74-75. (10.1017/S1431927614002098)
- Li, C. , Domen, K. and Hutchings, G. J. 2014. Editorial: Special issue on photocatalysis and photoelectrolysis. Journal of Catalysis 310 , pp.1. (10.1016/j.jcat.2013.12.005)
- Peneau, V. et al. 2014. Selective catalytic oxidation of toluene using supported Au-Pt and Pd-Pt nanoalloys [Abstract]. Abstracts of Papers of the American Chemical Society 248 1 p..
- Santonastaso, M. et al. 2014. Oxidation of benzyl alcohol using in situ generated hydrogen peroxide. Organic Process Research and Development 18 (11), pp.1455-1460. (10.1021/op500195e)
- Spivey, J. J. and Hutchings, G. J. 2014. Catalytic aromatization of methane. Chemical Society Reviews 43 (3), pp.792-803. (10.1039/C3CS60259A)
- Torrente-Murciano, L. et al., 2014. Enhanced Au-Pd activity in the direct synthesis of hydrogen peroxide using nanostructured titanate nanotube supports. ChemCatChem 6 (9), pp.2531-2534. (10.1002/cctc.201402361)
2013
- Pritchard, J. C. et al. 2013. Effect of heat treatment on Au-Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. Catalysis Science & Technology 3 (2), pp.308-317. (10.1039/C2CY20234D)
- Freakley, S. J. et al. 2013. Effect of reaction conditions on the direct synthesis of hydrogen peroxide with a AuPd/TiO2Catalyst in a flow reactor. ACS Catalysis 3 (4), pp.487-501. (10.1021/cs400004y)
- Peneau, V. et al. 2013. Selective catalytic oxidation using supported gold-platinum and palladium-platinum nanoalloys prepared by sol-immobilisation. Physical Chemistry Chemical Physics 15 (26), pp.10636-10644. (10.1039/C3CP50361E)
- Alshammari, H. et al., 2013. Control of the selectivity in multi-functional group molecules using supported gold–palladium nanoparticles. Green Chemistry 15 (5), pp.1244-1254. (10.1039/c3gc36828a)
- Ab Rahim, M. H. et al. 2013. Systematic study of the oxidation of methane using supported gold palladium nanoparticles under mild aqueous conditions. Topics in Catalysis 56 (18-20), pp.1843-1857. (10.1007/s11244-013-0121-3)
- Ab Rahim, M. H. et al. 2013. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angewandte Chemie - International Edition 52 (4), pp.1280-1284. (10.1002/anie.201207717)
- Alshammari, H. M. et al. 2013. The effect of ring size on the selective oxidation of cycloalkenes using supported metal catalysts. Catalysis Science & Technology 3 (6), pp.1531-1539. (10.1039/c3cy20864h)
- Behera, G. C. et al., 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3 (6), pp.1558-64. (10.1039/c3cy20801j)
- Brett, G. L. et al. 2013. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate. Chemsuschem 6 (10), pp.1952-1958. (10.1002/cssc.201300420)
- Budroni, G. et al., 2013. Selective deposition of palladium onto supported nickel - bimetallic catalysts for the hydrogenation of crotonaldehyde. Catalysis Science & Technology 3 (10), pp.2746-2754. (10.1039/c3cy00449j)
- Cao, E. et al., 2013. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles. Catalysis Today 203 , pp.146-152. (10.1016/j.cattod.2012.05.023)
- Conte, M. et al., 2013. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. Journal of Catalysis 297 , pp.128-136. (10.1016/j.jcat.2012.10.002)
- Conte, M. et al., 2013. Characterization of Au3+ species in Au/C catalysts for the hydrochlorination reaction of acetylene. Catalysis Letters 144 (1), pp.1-8. (10.1007/s10562-013-1138-8)
- Conte, M. et al., 2013. Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene. Catalysis Science and Technology 3 (1), pp.128-134. (10.1039/C2CY20478A)
- D'Agostino, C. et al., 2013. Solvent effect and reactivity trend in the aerobic oxidation of 1,3-Propanediols over gold supported on Titania: NMR diffusion and relaxation studies. Chemistry - A European Journal 19 (35), pp.11725-11732. (10.1002/chem.201300502)
- Dimitratos, N. , Kiely, C. J. and Hutchings, G. J. 2013. CHAPTER 1. General introduction to the field of environmental catalysis: green catalysis with supported gold and gold bimetallic nanoparticles. In: Avgouropoulos, G. and Tabakova, T. eds. Environmental Catalysis over Gold-Based Materials. Royal Society of Chemistry. , pp.1-20. (10.1039/9781849737364-00001)
- Edwards, J. K. et al. 2013. Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. Catalysis Science & Technology 3 (3), pp.812-818. (10.1039/c2cy20767b)
- Feng, J. et al., 2013. Au–Pd nanoalloys supported on Mg–Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. Dalton Transactions 42 (40), pp.14498-14508. (10.1039/c3dt51855h)
- Forde, M. M. et al. 2013. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. Journal of the American Chemical Society 135 (30), pp.11087-11099. 130716133536007. (10.1021/ja403060n)
- Hammond, C. et al. 2013. Insights into the selective and catalytic oxidation of methane to methanol with Cu-promoted Fe-ZSM-5 at mild conditions [Abstract]. Presented at: 245th ACS National Meeting New Orleans, LA 7-11 April 2013. American Chemical Society.
- Hammond, C. et al. 2013. Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation: from synthesis to catalysis. ACS Catalysis 3 (4), pp.689-699. (10.1021/cs3007999)
- Hammond, C. et al. 2013. Aqueous-phase methane oxidation over Fe-MFI zeolites: promotion through isomorphous framework substitution. ACS Catalysis 3 (8), pp.1835-1844. 130702113713003. (10.1021/cs400288b)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162 , pp.365-378. (10.1039/c2fd20153d)
- Marin, R. P. et al., 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140 , pp.671-679. (10.1016/j.apcatb.2013.04.076)
- Miedziak, P. et al. 2013. Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. Catalysis Science & Technology 3 (11), pp.2910-2917. (10.1039/c3cy00263b)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Nowicka, E. et al. 2013. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics 15 (29), pp.12147-12155. (10.1039/c3cp50710f)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3 (4), pp.764-772. (10.1021/cs4000359)
- Ryabenkova, Y. et al. 2013. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today 203 , pp.139-145. (10.1016/j.cattod.2012.05.037)
2012
- Meenakshisundaram, S. et al. 2012. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews 41 (24), pp.8099-8139. (10.1039/C2CS35296F)
- Hutchings, G. J. , Iqbal, S. and Karim, K. 2012. Carbon supported cobalt and molybdenum catalyst. WO 2012143131 A1[Patent]
- Su, R. et al., 2012. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 6 (7), pp.6284-6292. (10.1021/nn301718v)
- Forde, M. M. et al. 2012. Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. Journal of Catalysis 290 , pp.177-185. (10.1016/j.jcat.2012.03.013)
- Ab Rahim, M. H. et al. 2012. Gold, palladium and gold-palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science & Technology 2 (9), pp.1914-1924. (10.1039/C2CY20288C)
- Hammond, C. et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angewandte Chemie - International Edition 51 (21), pp.5129-5133. (10.1002/anie.201108706)
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Brett, G. L. et al. 2012. Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science & Technology 2 (1), pp.97-104. (10.1039/c1cy00254f)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2 (1), pp.105-112. (10.1039/c1cy00299f)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Haider, M. et al. 2012. Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis 286 , pp.206-213. (10.1016/j.jcat.2011.11.004)
- Albonetti, S. et al., 2012. Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold-copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio. Catalysis Today 195 (1), pp.120-126. (10.1016/j.cattod.2012.05.039)
- Bartley, J. K. et al. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128 , pp.31-38. (10.1016/j.apcatb.2012.03.036)
- Conte, M. et al. 2012. Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Physical Chemistry Chemical Physics 14 (47), pp.16279-16285. (10.1039/c2cp43363j)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164 , pp.207-213. (10.1016/j.micromeso.2012.05.001)
- Dimitratos, N. et al. 2012. Gold catalysis: helping create a sustainable future. Applied Petrochemical Research 2 (1-2), pp.7-14. (10.1007/s13203-012-0011-9)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2012. Selective liquid phase oxidation with supported metal nanoparticles. Chemical Science 3 (1), pp.20-44. (10.1039/c1sc00524c)
- Edwards, J. K. et al. 2012. The effect of heat treatment on the performance and structure of carbon-supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis 292 , pp.227-238. (10.1016/j.jcat.2012.05.018)
- Hall, S. R. et al., 2012. Biotemplated synthesis of catalytic Au-Pd nanoparticles. RSC Advances 2 (6), pp.2217-2220. (10.1039/c2ra01336c)
- Hammond, C. et al. 2012. Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5. Chemistry - a European Journal 18 (49), pp.15735-15745. (10.1002/chem.201202802)
- Hammond, C. et al. 2012. Cover Picture: Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5 (Chem. Eur. J. 49/2012). Chemistry - A European Journal 18 (49), pp.15557. (10.1002/chem.201290208)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Kondrat, S. A. et al. 2012. Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science 3 (10), pp.2965-2971. (10.1039/c2sc20450a)
- Kotionova, T. et al. 2012. Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters 142 (9), pp.1114-1120. (10.1007/s10562-012-0872-7)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142 (9), pp.1049-1056. (10.1007/s10562-012-0869-2)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6 (8), pp.6600-6613. (10.1021/nn302299e)
- Ntainjua, E. et al. 2012. Direct synthesis of hydrogen peroxide using Au-Pd-exchanged and supported heteropolyacid catalysts at ambient temperature using water as solvent. Green Chemistry 14 (1), pp.170-181. (10.1039/c1gc15863e)
- Ntainjua, E. N. , Freakley, S. J. and Hutchings, G. J. 2012. Direct synthesis of hydrogen peroxide using ruthenium catalysts. Topics in Catalysis 55 (11-13), pp.718-722. (10.1007/s11244-012-9866-3)
- Owen, M. E. et al. 2012. Influence of counterions on the structure of bis(oxazoline) copper(II) complexes; an EPR and ENDOR investigation. Dalton Transactions 41 (36), pp.11085-11092. (10.1039/C2DT31273E)
- Pradhan, S. et al. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142 (3), pp.302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4 (2), pp.134-139. (10.1038/nchem.1245)
- Pradhan, S. et al. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3 (10), pp.2958-2964. (10.1039/c2sc20683h)
- Ryabenkova, Y. et al. 2012. The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis 55 (19-20), pp.1283-1288. (10.1007/s11244-012-9909-9)
- Sá, J. et al., 2012. Redispersion of gold supported on oxides. ACS Catalysis 2 (4), pp.552-560. (10.1021/cs300074g)
- Saiman, M. I. et al. 2012. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angewandte Chemie. International Edition 51 (24), pp.5981-5985. (10.1002/anie.201201059)
- Tiruvalam, R. et al., 2012. Some recent advances in gold-based catalysis facilitated by aberration corrected analytical electron microscopy. Journal of Physics: Conference Series 371 (1) 012028. (10.1088/1742-6596/371/1/012028)
2011
- Brett, G. L. et al. 2011. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angewandte Chemie. International Edition 50 (43), pp.10136-10139. (10.1002/anie.201101772)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281 (2), pp.279-289. (10.1016/j.jcat.2011.05.012)
- Lopez-Sanchez, J. A. et al. 2011. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chemistry 3 (7), pp.551-556. (10.1038/nchem.1066)
- Thetford, A. et al. 2011. The decomposition of H2O2 over the components of Au/TiO2 catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467 (2131), pp.1885-1899. (10.1098/rspa.2010.0561)
- Meenakshisundaram, S. et al. 2011. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. Chemistry - A European Journal 17 (23), pp.6524-6532. (10.1002/chem.201003484)
- Lopez-Sanchez, J. A. et al., 2011. Hydrocarbon selective oxidation with heterogeneous gold catalysts. Patent WO 2011051642[Patent]
- Hammond, C. et al. 2011. Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Transactions 40 (15), pp.3927-3937. (10.1039/c0dt01389g)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 163 (1), pp.47-54. (10.1016/j.cattod.2010.02.051)
- Jalama, K. et al., 2011. A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer-Tropsch reaction. Applied Catalysis A: General 395 (1-2), pp.1-9. (10.1016/j.apcata.2011.01.002)
- Mantle, M. D. et al., 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115 (4), pp.1073-1079. (10.1021/jp105946q)
- Bawaked, S. M. et al. 2011. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts: an investigation of catalyst re-use. Green Chemistry 13 (1), pp.127-134. (10.1039/c0gc00550a)
- Bawaked, S. M. et al. 2011. Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catalysis Science & Technology 1 (5), pp.747-759. (10.1039/c1cy00122a)
- Bracey, C. et al. 2011. Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catalysis Science & Technology 1 (1), pp.76-85. (10.1039/c0cy00003e)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13 (7), pp.2528-2538. (10.1039/c0cp01852j)
- Davies, R. J. et al. 2011. The oxidation of Fe(111). Surface Science 605 (17-18), pp.1754-1762. (10.1016/j.susc.2011.06.017)
- Dummer, N. et al. 2011. Reprint of: Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, -palladium catalysts. Catalysis Today 160 (1), pp.50-54. (10.1016/j.cattod.2010.12.014)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283 (2), pp.161-167. (10.1016/j.jcat.2011.08.003)
- Lopez-Sanchez, J. A. et al. 2011. Reactivity studies of Au-Pd supported nanoparticles for catalytic applications. Applied Catalysis A: General 391 (1-2), pp.400-406. (10.1016/j.apcata.2010.05.010)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 164 (1), pp.315-319. (10.1016/j.cattod.2010.10.028)
- Ntainjua Ndifor, E. et al. 2011. Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. Catalysis Today 178 (1), pp.47-50. (10.1016/j.cattod.2011.06.024)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1 (5), pp.740-746. (10.1039/c1cy00064k)
- Taufiq-Yap, Y. H. et al., 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141 (3), pp.400-407. (10.1007/s10562-010-0508-8)
- Taufiq-Yap, Y. et al., 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20 (6), pp.635-638. (10.1016/S1003-9953(10)60251-4)
- Tiruvalam, R. C. et al., 2011. Aberration corrected analytical electron microscopy studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. Faraday Discussions 152 , pp.63-86. (10.1039/c1fd00020a)
- Weng, W. et al., 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21 (40), pp.16136-16146. (10.1039/c1jm12456k)
- Yaseneva, P. , Bowker, M. and Hutchings, G. J. 2011. Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method. Physical Chemistry Chemical Physics 13 (41), pp.18609-18614. (10.1039/c1cp21516g)
- Solsona, B. et al., 2011. The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B - Environmental 101 (3-4), pp.388-396. (10.1016/j.apcatb.2010.10.008)
- Alotaibi, R. and Hutchings, G. J. 2011. Seeding effect on the transformation of VO(H(2)PO(4))(2) into catalyst precursors VOHPO4(A)over-cap center dot 0.5H(2)O. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA, USA 27-31 March 2011.
- Cao, E. et al., 2011. Reaction and Raman spectroscopic studies of alcohol oxidation on gold-palladium catalysts in microstructured reactors. Chemical Engineering Journal 167 (2-3), pp.734-743. (10.1016/j.cej.2010.08.082)
- Falletta, E. et al., 2011. Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts. Faraday Discussions 152 , pp.367-379. (10.1039/c1fd00063b)
- Hutchings, G. J. 2011. Preface. Faraday Discussions 152 , pp.9-10. (10.1039/c1fd90029c)
- Hutchings, G. J. et al. 2011. Selective epoxidation of cyclooctene using graphite-supported gold and gold palladium catalysts. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA 27-31 March 2011.
- Hutchings, G. J. , Dimitratos, N. and Miedziak, P. J. 2011. Nanocrystalline gold catalysts for selective oxidation. Presented at: 242nd ACS National Meeting Denver, Co 28 August - 1 September 2011. Vol. 242.American Chemical Society.
- Jeffs, L. E. et al. 2011. On the enantioselectivity of aziridination of styrene catalysed by copper triflate and copper-exchanged zeolite Y: consequences of the phase behaviour of enantiomeric mixtures of N-arene-sulfonyl-2-phenylaziridines. Organic & Biomolecular Chemistry 9 (4), pp.1079-1084. (10.1039/c0ob00724b)
- Kesavan, L. et al. 2011. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331 (6014), pp.195-199. (10.1126/science.1198458)
- Pagliaro, M. and Hutchings, G. J. 2011. Heterogeneous catalysis for fine chemicals [Editorial]. Catalysis Science & Technology 1 (9), pp.1543. (10.1039/c1cy90035h)
- Pasini, T. et al., 2011. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chemistry 13 (8), pp.2091-2099. (10.1039/c1gc15355b)
- Sá, J. et al., 2011. Influence of methyl halide treatment on gold nanoparticles supported on activated carbon. Angewandte Chemie - International Edition 50 (38), pp.8912-8916. (10.1002/anie.201102066)
2010
- Myakonkaya, O. et al., 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350 (2), pp.443-445. (10.1016/j.jcis.2010.06.064)
- Hutchings, G. J. 2010. Metal-cluster catalysts: Access granted. Nature Chemistry 2 (12), pp.1005-1006. (10.1038/nchem.868)
- Morgan, K. et al., 2010. TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts. Journal of Catalysis 276 (1), pp.38-48. (10.1016/j.jcat.2010.08.013)
- Cole, K. J. et al., 2010. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catalysis Letters 138 (3-4), pp.143-147. (10.1007/s10562-010-0392-2)
- Pritchard, J. C. et al. 2010. Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Au−Pd Catalysts Prepared by Sol Immobilization. Langmuir 26 (21), pp.16568-16577. (10.1021/la101597q)
- Hutchings, G. J. 2010. Dealloying Shows the Way to New Catalysts. Chemsuschem 3 (4), pp.429-430. (10.1002/cssc.201000043)
- Al Otaibi, R. et al., 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2 (4), pp.443-452. (10.1002/cctc.200900274)
- He, Q. et al., 2010. Identifying Potential Active Species in Au/ZnO CO Oxidation Catalysts [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1188-1189. (10.1017/S1431927610060186)
- Al-Otaibi, N. M. K. and Hutchings, G. J. 2010. Aromatization of Isobutene Using H-ZSM-5/Oxide Composite Catalysts. Catalysis Letters 134 (3-4), pp.191-195. (10.1007/s10562-009-0255-x)
- Barrea, C. et al., 2010. Prenatal diagnosis of isolated total anomalous systemic venous return to the coronary sinus. Ultrasound in Obstetrics and Gynecology 35 (1), pp.117-119. (10.1002/uog.7516)
- Bartley, J. K. et al. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons(10.1002/0471227617.eoc139.pub2)
- Dummer, N. et al. 2010. Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, palladium and gold-palladium catalysts. Catalysis Today 154 (1-2), pp.2-6. (10.1016/j.cattod.2010.03.031)
- Dummer, N. et al. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376 (1-2), pp.47-55. (10.1016/j.apcata.2009.10.004)
- Gevaert, T. et al., 2010. Maturation of stretch-induced contractile activity and its muscarinic regulation in isolated whole bladder strips from rat. Neurourology and Urodynamics 29 (5), pp.789-796. (10.1002/nau.20553)
- Lin, Z. et al. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157 (1-4), pp.211-216. (10.1016/j.cattod.2010.03.013)
- Lopez-Sanchez, J. A. et al. 2010. Using gold catalysts for upgrading glycerol from biodiesel production: Selective oxidation and synthesis of glycerol carbonate [Abstract]. Presented at: 240th ACS National Meeting Boston, USA 22-26 August 2010.
- Meenakshisundaram, S. et al. 2010. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discussions 145 , pp.341-356. (10.1039/b908172k)
- Myakonkaya, O. et al., 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3 (3), pp.339-341. (10.1002/cssc.200900280)
- Piccinini, M. et al. 2010. Effect of the reaction conditions on the performance of Au-Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Physical Chemistry Chemical Physics 12 (10), pp.2488-2492. (10.1039/b921815g)
- Pritchard, J. C. et al. 2010. The effect of catalyst preparation method on the performance of supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry 12 (5), pp.915-921. (10.1039/b924472g)
- Pritchard, J. C. et al. 2010. Selective oxidation using supported gold and gold palladium nanoparticles prepared by sol-immobilisation. Zeitschrift für anorganische und allgemeine Chemie 636 (11), pp.2034. (10.1002/zaac.201007002)
- Sithamparappillai, U. et al., 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20 (25), pp.5310-5318. (10.1039/c0jm00403k)
- Taufiq-Yap, Y. et al. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28 (10), pp.997-1012. (10.1080/10916460903058004)
- Weng, W. et al., 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1198-1199. (10.1017/S1431927610059805)
- Xu, C. et al., 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138 (1-2), pp.1-7. (10.1007/s10562-010-0365-5)
2009
- Meenakshisundaram, S. et al. 2009. Oxidation of Glycerol to Glycolate by using Supported Gold and Palladium Nanoparticles. Chemsuschem 2 (12), pp.1145-1151. (10.1002/cssc.200900133)
- Edwards, J. K. et al. 2009. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323 (5917), pp.1037-1041. (10.1126/science.1168980)
- Ntainjua Ndifor, E. et al. 2009. The Effect of Bromide Pretreatment on the Performance of Supported Au–Pd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem 1 (4), pp.479-484. (10.1002/cctc.200900171)
- Bawaked, S. M. et al. 2009. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry 11 (7), pp.1037-1044. (10.1039/b823286p)
- Bracey, C. , Ellis, P. R. and Hutchings, G. J. 2009. Application of copper-gold alloys in catalysis: current status and future perspectives. Chemical Society Reviews 38 (8), pp.2231-2243. (10.1039/b817729p)
- Conte, M. et al. 2009. Corrigendum to 'Hydrochlorination of acetylene using supported bimetallic Au-based catalysts' [J. Catal. 257 (2008) 190-198]. Journal of Catalysis 266 (1), pp.164. (10.1016/j.jcat.2009.06.002)
- Dimitratos, N. et al. 2009. Oxidation of glycerol using gold-palladium alloy-supported nanocrystals. Physical Chemistry Chemical Physics 11 (25), pp.4952-4961. (10.1039/b904317a)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2009. Green Catalysis with Alternative Feedstocks. Topics in Catalysis 52 (3), pp.258-268. (10.1007/s11244-008-9162-4)
- Dimitratos, N. et al. 2009. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry 11 (8), pp.1209-1216. (10.1039/b823285g)
- Dimitratos, N. et al. 2009. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Physical Chemistry Chemical Physics 11 (25), pp.5142-5153. (10.1039/b900151b)
- Edwards, J. K. et al. 2009. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold–palladium catalysts supported on acid-pretreated TiO2. Angewandte Chemie 48 (45), pp.8512-8515. (10.1002/anie.200904115)
- Hutchings, G. J. 2009. A golden future. Nature Chemistry 1 (7), pp.584-584. (10.1038/nchem.388)
- Hutchings, G. J. 2009. Catalyst Synthesis Using Supercritical Carbon Dioxide: A Green Route to High Activity Materials. Topics in Catalysis 52 (8), pp.982-987. (10.1007/s11244-009-9248-7)
- Hutchings, G. J. 2009. Heterogeneous catalysts-discovery and design. Journal of Materials Chemistry 19 (9), pp.1222-1235. (10.1039/b812300b)
- Hutchings, G. J. 2009. Nanocrystalline gold catalysts: A reflection on catalyst discovery and the nature of active sites. Gold Bulletin 42 (4), pp.260-266. (10.1007/BF03214947)
- Jones, C. et al. 2009. Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity. Journal of Molecular Catalysis A: Chemical 305 (1-2), pp.121-124. (10.1016/j.molcata.2008.10.027)
- Lee, A. F. et al. 2009. In situ X-ray studies of crotyl alcohol selective oxidation over Au/Pd(111) surface alloys. Catalysis Today 145 (3-4), pp.251-257. (10.1016/j.cattod.2008.10.034)
- Lu, T. J. et al., 2009. Production of titania nanoparticles by a green process route. Powder Technology 188 (3), pp.264-271. (10.1016/j.powtec.2008.05.006)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19 (45), pp.8619-8627. (10.1039/b911102f)
- Ntainjua Ndifor, E. et al. 2009. Effect of Halide and Acid Additives on the Direct Synthesis of Hydrogen Peroxide using Supported Gold-Palladium Catalysts. Chemsuschem 2 (6), pp.575-580. (10.1002/cssc.200800257)
- Pollington, S. D. et al., 2009. Enhanced selective glycerol oxidation in multiphase structured reactors. Catalysis Today 145 (1-2), pp.169-175. (10.1016/j.cattod.2008.04.020)
- Solsona, B. et al., 2009. TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Applied Catalysis a-General 365 (2), pp.222-230. (10.1016/j.apcata.2009.06.016)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1 (2), pp.247-251. (10.1002/cctc.200900195)
- Taufiq-Yap, Y. H. et al., 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130 (3-4), pp.327-334. (10.1007/s10562-009-0003-2)
- Weng, W. et al., 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15 (SUPPL.), pp.1412-1413. (10.1017/S1431927609092332)
- Weng, W. et al., 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15 (SUPPL.), pp.1438-1439. (10.1017/S1431927609094203)
2008
- Huang, H. et al., 2008. Purification of chemical feedstocks by the removal of aerial carbonyl sulfide by hydrolysis using rare earth promoted alumina catalysts. Green Chemistry 10 (5), pp.571-577. (10.1039/b717031a)
- Conte, M. et al., 2008. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. Journal of Catalysis 257 (1), pp.190-198. (10.1016/j.jcat.2008.04.024)
- Conte, M. , Carley, A. F. and Hutchings, G. J. 2008. Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene. Catalysis Letters 124 (3-4), pp.165-167. (10.1007/s10562-008-9583-5)
- Edwards, J. K. et al. 2008. Direct synthesis of hydrogen peroxide from H-2 and O-2 using supported Au-Pd catalysts. Faraday Discussions 138 , pp.225-239. (10.1039/b705915a)
- Edwards, J. K. and Hutchings, G. J. 2008. Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition 47 (48), pp.9192-9198. (10.1002/anie.200802818)
- Edwards, J. K. et al. 2008. Au-Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chemistry 10 (4), pp.388-394. (10.1039/b714553p)
- Edwin, N. N. et al., 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10 (11), pp.1162-1169. (10.1039/b809881f)
- Goh, C. K. et al., 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131 (1-4), pp.408-412. (10.1016/j.cattod.2007.10.059)
- Herzing, A. et al., 2008. Elemental mapping of nanoscale structures in the aberration-corrected analytical electron microscope. Microscopy and Microanalysis 14 (S), pp.1368-1369. (10.1017/S1431927608086674)
- Herzing, A. A. et al., 2008. Microstructural development and catalytic performance of Au-Pd nanoparticles on Al2O3 supports: The effect of heat treatment temperature and atmosphere. Chemistry of Materials 20 (4), pp.1492-1501. (10.1021/cm702762d)
- Herzing, A. A. et al., 2008. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321 (5894), pp.1331-1335. (10.1126/science.1159639)
- Herzing, A. A. et al., 2008. Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discussions 138 , pp.337-351. (10.1039/b706293c)
- Hutchings, G. J. 2008. CATL 16-Green chemistry using gold catalysis [Abstract]. Abstracts of Papers of the American Chemical Society 235 , pp.16.
- Hutchings, G. J. 2008. FUEL 89-Green catalysis with alternative feedstocks. Abstracts of Papers of the American Chemical Society 235 , pp.89-FUEL.
- Hutchings, G. J. 2008. I&EC 1-Green catalysis with alternative feedstocks. Abstracts of Papers of the American Chemical Society 235 , pp.1-IEC.
- Hutchings, G. J. 2008. Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis. Chemical Communications (10), pp.1148-1164. (10.1039/b712305c)
- Hutchings, G. J. 2008. Nanocrystalline gold and gold-palladium alloy oxidation catalysts: a personal reflection on the nature of the active sites. Dalton Transactions (41), pp.5523-5536. (10.1039/b804604m)
- Hutchings, G. J. 2008. PETR 38-Methanol conversion using composite catalysts. Abstracts of Papers of the American Chemical Society 235 , pp.38-PETR.
- Hutchings, G. J. 2008. Reactions of alkynes using heterogeneous and homogeneous cationic gold catalysts. Topics in Catalysis 48 (1-4), pp.55-59. (10.1007/s11244-008-9048-5)
- Hutchings, G. J. 2008. Supported gold and gold palladium catalysts for selective chemical synthesis. Catalysis Today 138 (1-2), pp.9-14. (10.1016/j.cattod.2008.04.029)
- Hutchings, G. J. , Brust, M. and Schmidbaur, H. 2008. Gold - an introductory perspective. Chemical Society Reviews 37 (9), pp.1759-1765. (10.1039/b810747p)
- Hutchings, G. J. , Brust, M. and Schmidbaur, H. 2008. Instant insight: The wonder of gold. Highlights in Chemical Technology 2008 (9)
- Jones, C. et al. 2008. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications 2008 (14), pp.1707-1709. (10.1039/b800052m)
- Lopez-Sanchez, J. A. et al. 2008. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics 10 (14), pp.1921-1930. (10.1039/b719345a)
- Ntainjua Ndifor, E. et al. 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10 (11), pp.1162-1169. (10.1039/b809881f)
- Xu, C. et al., 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49 (15), pp.2454-2456. (10.1016/j.tetlet.2008.02.030)
2007
- Conte, M. et al. 2007. Selective formation of chloroethane by the hydrochlorination of ethene using zinc catalysts. Journal of Catalysis 252 (1), pp.23-29. (10.1016/j.jcat.2007.09.002)
- Enache, D. I. et al., 2007. Intensification of the solvent-free catalytic hydroformylation of cyclododecatriene: Comparison of a stirred batch reactor and a heat-exchange reactor. Catalysis Today 128 (1-2 SP), pp.18-25. (10.1016/j.cattod.2007.08.011)
- Enache, D. I. et al., 2007. Multiphase hydrogenation of resorcinol in structured and heat exchange reactor systems. Influence of the catalyst and the reactor configuration. Catalysis Today 128 (1-2 SP), pp.26-35. (10.1016/j.cattod.2007.08.012)
- Enache, D. I. et al., 2007. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance. Catalysis Today 122 (3-4), pp.407-411. (10.1016/j.cattod.2007.01.003)
- Tang, Z. et al., 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249 (2), pp.208-219. (10.1016/j.jcat.2007.04.016)
- Al-Sayari, S. et al., 2007. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: Comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Topics in Catalysis 44 (1-2), pp.123-128. (10.1007/s11244-007-0285-9)
- Conte, M. et al., 2007. Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. Journal of Catalysis 250 (2), pp.231-239. (10.1016/j.jcat.2007.06.018)
- Dimitratos, N. et al. 2007. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catalysis Today 122 (3-4), pp.317-324. (10.1016/j.cattod.2007.01.002)
- Herzing, A. A. et al., 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13 , pp.102-103. (10.1017/S143192760707660X)
- Hutchings, G. J. 2007. Catalysis by Gold: recent advances in oxidation reactions. In: Zhou, B. et al., Nanotechnology in Catalysis 3. Vol. 248, Nanostructure Science and Technology New York, NY: Springer. , pp.39-54. (10.1007/978-0-387-34688-5_4)
- Hutchings, G. J. and Taylor, S. H. 2007. Copper manganese based mixed oxides for CO oxidation at ambient temperature. Presented at: 234th ACS National Meeting Boston, MA, USA 19-23 August 2007.
- Jalama, K. et al., 2007. Effect of the addition of Au on Co/TiO2 catalyst for the Fischer-Tropsch reaction. Topics in Catalysis 44 (1-2), pp.129-136. (10.1007/s11244-007-0286-8)
- Zhao, Y. et al., 2007. Study of carbon monoxide hydrogenation over supported Au catalysts. Studies in Surface Science and Catalysis 163 , pp.141-151. (10.1016/S0167-2991(07)80477-0)
2006
- Conte, M. et al., 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313 (5791), pp.1270-1273. (10.1126/science.1130493)
- Solsona, B. E. et al. 2006. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A General 312 , pp.67-76. (10.1016/j.apcata.2006.06.016)
- Coquet, R. et al., 2006. Calculations on the adsorption of Au to MgO surfaces using SIESTA. Journal of Materials Chemistry 16 (20), pp.1978-1988. (10.1039/b601213b)
- Enache, D. I. et al. 2006. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science 311 (5759), pp.362-365. (10.1126/science.1120560)
- Huang, H. et al., 2006. High temperature COS hydrolysis catalysed by γ-Al2O 3. Catalysis Letters 110 (3-4), pp.243-246. (10.1007/s10562-006-0115-x)
- Song, N. et al., 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106 (3-4), pp.127-131. (10.1007/s10562-005-9619-z)
- Tang, Z. et al., 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162 , pp.219-226. (10.1016/S0167-2991(06)80910-9)
2005
- Song, N. et al., 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236 (2), pp.282-291. (10.1016/j.jcat.2005.10.008)
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. Journal of Catalysis 236 (1), pp.69-79. (10.1016/j.jcat.2005.09.015)
- Hughes, M. D. et al., 2005. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437 (7062), pp.1132-1135. (10.1038/nature04190)
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3catalysts. Journal of Materials Chemistry 15 (43), pp.4595-4600. (10.1039/b509542e)
- Enache, D. I. et al., 2005. The hydrogenation of isophorone to trimethyl cyclohexanone using the downflow single capillary reactor. Catalysis Today 105 (3-4), pp.569-573. (10.1016/j.cattod.2005.06.013)
- Jeffery, E. L. et al., 2005. A density functional theory study of the adsorption of acetone to the (111) surface of Pt: Implications for hydrogenation catalysis. Catalysis Today 105 (1), pp.85-92. (10.1016/j.cattod.2005.04.013)
- Enache, D. I. et al., 2005. Experimental evaluation of a three-phase downflow capillary reactor. Industrial and Engineering Chemistry Research 44 (16), pp.6295-6303. (10.1021/ie049140y)
- Huang, H. et al., 2005. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters 104 (1-2), pp.17-21. (10.1007/s10562-005-7430-5)
- Zhao, Y. et al., 2005. Study of carbon monoxide hydrogenation over Au supported on zinc oxide catalysts. American Chemical Society, Division of Petroleum Chemistry, Preprints 50 (2), pp.206-207.
2004
- Solsona, B. E. et al. 2004. Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry 28 (6), pp.708-711. (10.1039/b315391f)
- Caplan, N. A. et al., 2004. Heterogeneous Enantioselective Catalysed Carbonyl- and Imino-ene Reactions using Copper bis(oxazoline) Zeolite Y. Angewandte Chemie International Edition 43 (13), pp.1685-1688. (10.1002/anie.200352534)
- Li, X. et al., 2004. Enantioselective hydrogenation using cinchona-modified Pt/γ-Al 2O3 catalysts: Comparison of the reaction of ethyl pyruvate and buta-2,3-dione. Catalysis Letters 96 (3-4), pp.147-151. (10.1023/B:CATL.0000030112.70608.a0)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2004. Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using α-Al2O3. New Journal of Chemistry 28 (4), pp.471-476. (10.1039/b312340p)
2003
- Mirzaei, A. A. et al., 2003. Characterisation of copper-manganese oxide catalysts: Effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Applied Catalysis A: General 253 (2), pp.499-508. (10.1016/S0926-860X(03)00563-5)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 2003. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catalysis Today 84 (3-4), pp.113-119. (10.1016/S0920-5861(03)00264-5)
- Taylor, S. H. et al. 2003. The partial oxidation of propane to formaldehyde using uranium mixed oxide catalysts. Catalysis Today 81 (2), pp.171-178. (10.1016/S0920-5861(03)00110-X)
- Hammond, C. R. et al. 2003. A study of methane activation by modified gallium- and zinc-based catalysts. Research on Chemical Intermediates 29 (7-9), pp.911-920. (10.1163/156856703322601906)
- Mirzaei, A. A. et al., 2003. Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na+ acting as catalyst poison. Catalysis Communications 4 (1), pp.17-20. (10.1016/S1566-7367(02)00231-5)
- Mirzaei, A. A. et al., 2003. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate aging atmosphere on catalyst activity. Catalysis Letters 87 (3-4), pp.103-108. (10.1023/A:1023416819195)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2003. Synthesis of methyl mercaptan and thiophene from CO/H2/H 2S using α-Al2O3. Catalysis Letters 91 (3-4), pp.181-183. (10.1023/B:CATL.0000007152.91400.95)
2002
- Hargreaves, J. S. J. et al., 2002. A study of the methane-deuterium exchange reaction over a range of metal oxides. Applied Catalysis A: General 227 (1-2), pp.191-200. (10.1016/S0926-860X(01)00935-8)
- Harris, R. H. et al. 2002. Water as a promoter of the complete oxidation of volatile organic compounds over uranium oxide catalysts. Catalysis Letters 78 (1-4), pp.369-372. (10.1023/A:1014916920128)
- Whittle, D. M. et al., 2002. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate ageing on catalyst activity. Physical Chemistry Chemical Physics 4 (23), pp.5915-5920. (10.1039/b207691h)
2001
- Cooper, C. A. et al. 2001. A combined experimental and theoretical approach to the study of methane activation over oxide catalysts. Catalysis Today 71 (1-2), pp.3-10. (10.1016/S0920-5861(01)00446-1)
- Cooper, C. A. et al. 2001. The role of gallium oxide in methane partial oxidation catalysts: an experimental and theoretical study. Studies in Surface Science and Catalysis 136 , pp.319-324.
- Taylor, S. H. et al. 2001. Water as a promoter of VOC destruction over uranium oxide catalysts. Abstracts of papers of the American Chemical Society 222 , pp.U378-U379.
- Traa, Y. et al., 2001. An EPR study on the enantioselective aziridination properties of a CuNaY zeolite. Physical Chemistry Chemical Physics 3 (6), pp.1073-1080. (10.1039/B010083H)
2000
- Taylor, S. H. et al. 2000. Activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catalysis Today 59 (3), pp.249-259. (10.1016/S0920-5861(00)00291-1)
- Piaggio, P. et al. 2000. Enantioselective epoxidation of (Z)-stilbene using a chiral Mn(III)-salen complex: effect of immobilisation on MCM-41 on product selectivity. Journal of the Chemical Society - Perkins Transactions 2 2000 (10), pp.2008-2015. (10.1039/B005752P)
- Taylor, S. H. et al. 2000. Structure and activity relationships for copper manganese and copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation [Abstract]. Abstracts of papers of the American Chemical Society 219 , pp.U534-U534.
1999
- Heneghan, C. S. et al. 1999. A temporal analysis of products study of the mechanism of VOC catalytic oxidation using uranium oxide catalysts. Catalysis Today 54 (1), pp.3-12. (10.1016/S0920-5861(99)00162-5)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 1999. Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications (15), pp.1373-1374. (10.1039/A903426I)
- Hutchings, G. J. and Taylor, S. H. 1999. Designing oxidation catalysts. Catalysis Today 49 (1-3), pp.105-113.
- Hutchings, G. J. , Taylor, S. H. and Hudson, I. D. 1999. Designing heterogeneous oxidation catalysts. Studies in Surface Science and Catalysis 121 , pp.85-92. (10.1016/S0167-2991(99)80049-4)
1998
- Taylor, S. H. et al. 1998. The partial oxidation of methane to methanol: an approach to catalyst design. Catalysis Today 42 (3), pp.217-224. (10.1016/S0920-5861(98)00095-9)
- Hutchings, G. J. et al. 1998. Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General 166 (1), pp.143-152. (10.1016/S0926-860X(97)00248-2)
1997
- Hudson, I. D. et al., 1997. New class of uranium oxide catalysts for the oxidative destruction of volatile organic compounds in the vapour phase. Presented at: 90th Annual Meeting Air Waste Management Association Toronto, Canada 8-13 June 1997. Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition. Toronto, Canada: Air & Waste Management Association
- Hutchings, G. J. et al. 1997. A novel approach to the scientific design of oxide catalysts for the partial oxidation of methane to methanol. Studies in Surface Science and Catalysis 107 , pp.41-46. (10.1016/S0167-2991(97)80314-X)
- Hutchings, G. J. et al. 1997. The catalytic combustion of volatile chloro-organic compounds using uranium oxide catalysts. Preprints - American Chemical Society, Division of Petroleum Chemistry 42 (1), pp.142-145.
1996
- Hutchings, G. J. et al. 1996. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature 384 (6607), pp.341-343. (10.1038/384341a0)
1985
- Hutchings, G. J. 1985. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis 96 (1), pp.292-295. (10.1016/0021-9517(85)90383-5)
Articles
- Yu, J. et al., 2026. Direct oxidative carbonylation of waste methane to acetic acid over Rh/zeolite catalysts. Applied Catalysis A: General 711 120744. (10.1016/j.apcata.2025.120744)
- Chalmers, A. T. et al., 2026. Alumina supported Cu nanoparticles derived from MOF crystallites for CO2 hydrogenation. Catalysis Science & Technology (10.1039/d5cy01235j)
- Wu, X. et al., 2026. Ethane chlorination toward vinyl chloride synthesis: mechanistic and catalytic perspectives. Angewandte Chemie International Edition (10.1002/anie.202523506)
- Kazi Aurnob, A. et al., 2026. Methane partial oxidation over Rh/ZSM-5 catalysts in a high-pressure continuous flow reactor. Catalysis Today 462 115558. (10.1016/j.cattod.2025.115558)
- Scott, A. G. et al., 2026. Evaluating palladium 4d-to-2p x-ray emission spectroscopy for characterizing catalytically relevant species. Inorganic Chemistry 65 (3), pp.1801-1811. (10.1021/acs.inorgchem.5c04266)
- Du, X. , Hutchings, G. J. and Fu, Q. 2026. Carbon layer supported molybdenum nitride for highly efficient CO2 conversion [Highlights]. Science China Chemistry (10.1007/s11426-025-3159-5)
- Lawes, N. et al. 2026. The important role of alloy–oxide interfaces in controlling methanol formation in CO2 hydrogenation. ACS Catalysis (10.1021/acscatal.5c06703)
- Brehm, J. et al. 2026. Chemo-enzymatic one-pot depolymerization of β-chitin. Chemical Science (10.1039/d5sc07429k)
- Wang, S. et al., 2026. Oxygen‐bridged dual catalytic sites enable asymmetric C─C coupling for efficient CO 2 electroreduction to ethanol. Angewandte Chemie International Edition e24425. (10.1002/anie.202524425)
- Kim, B. et al., 2026. Designing physically separated bimetallic catalysts through cooperative redox enhancement (CORE). Chemical Society Reviews (10.1039/d4cs00479e)
- Berko, M. B. et al., 2026. Continuous methane partial oxidation over Au/ZSM-5 catalysts. Catalysis Today 461 115531. (10.1016/j.cattod.2025.115531)
- Gao, Z. et al., 2025. Asymmetrically Coordinated Ru-O Site Facilitates H2 Heterolytic Cleavage for Efficient Green Reductive Amination of Octanol to Octylamine: a mechanistic investigation. Applied Catalysis B: Environment and Energy 379 125708. (10.1016/j.apcatb.2025.125708)
- Smith, L. R. et al. 2025. Atom-by-atom assembly reveals structure–performance control in PdCu catalysts for CO 2 hydrogenation to methanol. Chemical Science 47 , pp.22554-22564. (10.1039/d5sc06681f)
- Liddy, T. J. et al., 2025. Metal‐Mediated Nitrogen Doping of Carbon Supports Boosts Hydrogen Production from Ammonia. Angewandte Chemie International Edition e22937. (10.1002/anie.202522937)
- Stenner, A. et al., 2025. The complex interplay of chemo- and bio-catalysis for one-pot oxidation cascades – indole oxidation in focus. Green Chemistry 28 , pp.1586-1600. (10.1039/d5gc05367f)
- Hao, C. et al., 2025. Ce-induced synergistic effect in exsolved perovskite catalyst for highly efficient and robust methane dry reforming. Nature Communications 16 (1) 10630. (10.1038/s41467-025-65619-w)
- Li, R. et al. 2025. Balancing activity and stability in phenol oxidation via in situ H2O2 generation over Fe‐modified AuPd catalysts. ChemCatChem 17 (22) e01264. (10.1002/cctc.202501264)
- Zhang, Y. et al., 2025. Direct synthesis of H2O2 by spatially separate hydrogen and oxygen activation sites on tailored Pt–Au catalysts. Angewandte Chemie International Edition e21118. (10.1002/anie.202521118)
- Li, X. et al., 2025. Partial oxidation of methane to acetic acid with oxygen using AuPd/ZSM-5. ACS Catalysis 15 (21), pp.18663-18674. (10.1021/acscatal.5c03918)
- Daniel, I. T. et al. 2025. Uncovering cooperative redox enhancement effects in bimetallic catalysis. Accounts of Chemical Research 58 (21), pp.3235-3246. (10.1021/acs.accounts.5c00446)
- Cai, Y. et al., 2025. Trace-level halogen blocks CO2 emission in Fischer-Tropsch synthesis for olefins production. Science 390 (6772), pp.516-520. (10.1126/science.aea1655)
- Li, R. et al. 2025. Oxidative degradation of phenol via in-situ generation of H2O2 in a flow reactor. Catalysis Letters 155 (11) 373. (10.1007/s10562-025-05221-3)
- Kim, B. et al., 2025. Galvanic coupling measurements are a predictive tool for cooperative redox enhancement (CORE) in thermocatalytic alcohol oxidation. ACS Catalysis 15 , pp.18063-18068. (10.1021/acscatal.5c04484)
- Sun, Z. et al., 2025. Modulating the interfacial energy of Ni–Bi molten alloys for enhanced methane decomposition to hydrogen. ACS Catalysis 15 , pp.17333-17346. (10.1021/acscatal.5c02867)
- Sun, Z. et al. 2025. Tailoring an Fe-Ov-Ce triggered phase-reversible oxygen carrier for intensified chemical looping CO2 splitting. Carbon Energy 7 (9) e70011. (10.1002/cey2.70011)
- Wang, K. et al., 2025. The effect of support calcination on carbon supported palladium catalysts for solvent-free benzyl alcohol oxidation. Catalysis Science & Technology 15 (18), pp.5346-5353. (10.1039/d5cy00027k)
- Smith, L. R. et al. 2025. Direct formation of the atomic Pd-ZnO interface by magnetron sputtering primed for methanol production from CO2. ACS Catalysis 15 (17), pp.15502-15508. (10.1021/acscatal.5c04822)
- Gao, S. et al., 2025. Ultra-fast self-powered heterojunction blue-light photodetector based on Boronate-Ester-Linked COF-5. Angewandte Chemie International Edition 64 (36) e202502364. (10.1002/anie.202502364)
- Li, Y. et al., 2025. Dynamic active site evolution in lanthanum‐based catalysts dictates ethane chlorination pathways. Angewandte Chemie International Edition 64 (34) e202505846. (10.1002/anie.202505846)
- Oh, R. et al., 2025. Electronic and compositional modulation of SMSI states for selective CO2 hydrogenation with rhodium catalysts. ACS Catalysis 15 (14), pp.12014-12024. (10.1021/acscatal.5c02436)
- Lin, D. et al. 2025. Radical-constructed intergrown titanosilicalite interfaces for efficient direct propene epoxidation with H 2 and O 2. Nature Communications 16 (1) 5515. (10.1038/s41467-025-60637-0)
- Parmentier, T. E. et al., 2025. Influence of surface functionalities on Au/C catalysts for oxidative homocoupling of phenylboronic acid. ACS Sustainable Chemistry and Engineering 13 (25), pp.9654-9667. (10.1021/acssuschemeng.5c02262)
- Qi, H. et al. 2025. Enhancing activation of D2O for highly efficient deuteration using an Fe-P pair-site catalyst. JACS Au 5 (6), pp.2666-2676. (10.1021/jacsau.5c00257)
- Zhang, L. et al. 2025. Chemo-enzymatic phenol polymerisation via in-situ H2O2 synthesis. Catalysis Today 454 115292. (10.1016/j.cattod.2025.115292)
- Pitchers, J. R. et al. 2025. The selective oxidation of methanol to formaldehyde using novel iron molybdate catalysts prepared by supercritical antisolvent precipitation. Catalysis Science & Technology 15 (10), pp.3195-3203. (10.1039/D5CY00211G)
- Sharp, G. et al. 2025. Highly efficient benzyl alcohol valorisation via the in situ synthesis of H2O2 and associated reactive oxygen species. Green Chemistry 27 (19), pp.5567-5580. (10.1039/D5GC00680E)
- Sun, Z. et al. 2025. Concerted catalysis of single atom and nanocluster enhances bio-ethanol activation and dehydrogenation. Nature Communications 16 (1) 3935. (10.1038/s41467-025-59127-0)
- Williams, J. O. et al. 2025. The influence of reaction conditions on selective acetylene hydrogenation over sol immobilisation prepared AgPd/Al2O3 catalysts. ChemCatChem 17 (18) e202401794. (10.1002/cctc.202401794)
- Lou, Y. et al., 2025. Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters 36 (3) 110300. (10.1016/j.cclet.2024.110300)
- Weilhard, A. et al., 2025. A descriptor guiding the selection of catalyst supports for ammonia synthesis. Chemical Science 16 (11), pp.4851-4851. (10.1039/D4SC08253B)
- Li, R. et al. 2025. Promoting H2O2 direct synthesis through Fe incorporation into AuPd catalysts. Green Chemistry 27 (7), pp.2065-2077. (10.1039/D5GC00134J)
- Qi, H. et al. 2025. Tandem reductive amination and deuteration over a phosphorus-modified iron center.. Nature Communications 16 (1) 1840. (10.1038/s41467-024-55722-9)
- Chen, Y. et al., 2025. Evolution of amorphous ruthenium nanoclusters into stepped truncated nano-pyramids on graphitic surfaces boosts hydrogen production from ammonia. Chemical Science 16 , pp.2648-2660. (10.1039/D4SC06382A)
- Peng, M. et al., 2025. Thermal catalytic reforming for hydrogen production with zero CO2 emission. Science 387 (6735), pp.769-775. (10.1126/science.adt0682)
- Hutchings, G. J. , Smith, L. R. and Sun, Z. 2024. A smart design of non-noble catalysts for sustainable propane dehydrogenation. Angewandte Chemie International Edition 63 (51) e202416080. (10.1002/anie.202416080)
- Ni, F. et al. 2024. The direct synthesis of H2O2 and in situ oxidation of methane: An investigation into the role of the support. Catalysis Today 442 114910. (10.1016/j.cattod.2024.114910)
- Li, X. et al., 2024. Solvent-free benzyl alcohol oxidation using spatially separated carbon-supported Au and Pd nanoparticles. ACS Catalysis 14 , pp.16551–16561. (10.1021/acscatal.4c05019)
- Sharp, G. et al. 2024. Benzyl alcohol valorization via the in situ production of reactive oxygen species. ACS Catalysis 14 , pp.15279–15293. (10.1021/acscatal.4c04698)
- Hutchings, G. J. et al. 2024. Preface to ‘Green carbon for the chemical industry of the future’. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382 (2282) 20230274. (10.1098/rsta.2023.0274)
- Zhang, B. et al. 2024. Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester. Nature Communications 15 (1) 7837. (10.1038/s41467-024-52163-2)
- Stere, C. E. et al., 2024. Removal and oxidation of low concentration tert -butanol from potable water using nonthermal plasma coupled with metal oxide adsorption. ACS ES&T engineering 4 (9), pp.2121-2134. (10.1021/acsestengg.4c00166)
- Mugford, K. et al. 2024. Investigating physicochemical properties of MgO catalysts for the gas phase conversion of glycerol. ARKIVOC 2024 (3) 202412252. (10.24820/ark.5550190.p012.252)
- Carter, J. H. et al. 2024. Origin of carbon monoxide formation in the oxidative dehydrogenation of propane using carbon dioxide. ACS Catalysis 14 (15), pp.11881-11892. (10.1021/acscatal.4c02628)
- Shen, L. et al., 2024. Hollow Au1Cu1(111) bimetallic catalyst promotes the selective electrochemical conversion of glycerol into glycolic acid. ACS Catalysis , pp.11343–11351. (10.1021/acscatal.4c00483)
- Lawes, N. et al. 2024. CO2 hydrogenation to methanol on intermetallic PdGa and PdIn catalysts and the effect of Zn co-deposition. Applied Catalysis A: General 679 119735. (10.1016/j.apcata.2024.119735)
- Parker, L. A. et al. 2024. Investigating periodic table interpolation for the rational design of nanoalloy catalysts for green hydrogen production from ammonia decomposition. Catalysis Letters 154 , pp.1958-1969. (10.1007/s10562-023-04446-4)
- Kim, B. et al. 2024. Tafel analysis predicts cooperative redox enhancement effects in thermocatalytic alcohol dehydrogenation. ACS Catalysis 14 , pp.8488-8493. (10.1021/acscatal.3c06103)
- Hutchings, G. J. 2024. Catalysis using gold containing materials. Journal of Catalysis 432 115392. (10.1016/j.jcat.2024.115392)
- Lawes, N. et al. 2024. Zn loading effects on the selectivity of PdZn catalysts for CO2 hydrogenation to methanol. Catalysis Letters 154 (4), pp.1603-1610. (10.1007/s10562-023-04437-5)
- Lin, D. et al., 2024. Selective Oxidation by TS-1 coupled with in-situ Synthesised H2O2. Fundamental Research (10.1016/j.fmre.2024.03.023)
- Wang, W. et al., 2024. The role of adsorbed species in 1-butene isomerization: Parahydrogen-induced polarization NMR of Pd-Au catalyzed butadiene hydrogenation. ACS Catalysis 14 (4), pp.2522–2531. (10.1021/acscatal.3c05968)
- Cao, J. et al., 2024. Partially bonded aluminum site on the external surface of post-treated Au/ZSM-5 enhances methane oxidation to oxygenates. ACS Catalysis 14 , pp.1797-1807. (10.1021/acscatal.3c05030)
- Oh, R. et al., 2024. Insights into CeO2 particle size dependent selectivity control for CO2 hydrogenation using Co/CeO2 catalysts. ACS Catalysis 14 (2), pp.897–906. (10.1021/acscatal.3c05139)
- Lewis, R. J. and Hutchings, G. J. 2024. Selective oxidation using In situ-generated hydrogen peroxide. Accounts of Chemical Research 57 (1), pp.106–119. (10.1021/acs.accounts.3c00581)
- Kovačič, D. et al. 2023. A comparative study of palladium-gold and palladium-tin catalysts in the direct synthesis of H2O2. Green Chemistry 25 (24), pp.10436-10446. (10.1039/d3gc03706a)
- Wang, S. et al., 2023. H2-reduced phosphomolybdate promotes room-temperature aerobic oxidation of methane to methanol. Nature Catalysis 6 , pp.895-905. (10.1038/s41929-023-01011-5)
- Daniel, I. et al. 2023. Electrochemical polarization of disparate catalytic sites drives thermochemical rate enhancement. ACS Catalysis 13 (21), pp.14189-14198. (10.1021/acscatal.3c03364)
- Ni, F. et al. 2023. Selective oxidation of methane to methanol via in situ H2O2 synthesis. ACS Organic & Inorganic Au 3 (4), pp.177-183. (10.1021/acsorginorgau.3c00001)
- Zhou, D. et al., 2023. Atmospheric gas and heating transmission electron microscopy with water vapor control. Microscopy and Microanalysis 29 (Supple), pp.1591-1592. (10.1093/micmic/ozad067.818)
- Evans, C. D. et al. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153 , pp.2026-2035. (10.1007/s10562-022-04111-2)
- Carter, J. H. et al., 2023. The selective oxidation of methane to methanol using in situ generated H 2 O 2 over palladium-based bimetallic catalysts †. Catalysis Science & Technology (10.1039/d3cy00116d)
- Cao, J. et al., 2023. Methane conversion to methanol using Au/ZSM-5 is promoted by carbon. ACS Catalysis 13 (11), pp.7199-7209. (10.1021/acscatal.3c01226)
- Stenner, A. et al. 2023. Chemo-enzymatic one-pot oxidation of cyclohexane via in-situ H2O2 production over supported AuPdPt catalysts. ChemCatChem 15 (10) e202300162. (10.1002/cctc.202300162)
- Lin, R. et al. 2023. Approaching theoretical performances of electrocatalytic hydrogen peroxide generation by cobalt‐nitrogen moieties. Angewandte Chemie International Edition 62 (21) e202301433. (10.1002/anie.202301433)
- Dummer, N. F. et al. 2023. Methane oxidation to methanol. Chemical Reviews 9 , pp.6359-6411. (10.1021/acs.chemrev.2c00439)
- Li, X. et al., 2023. Hydrogenolysis of 5-hydroxymethylfurfural by in situ produced hydrogen from water on an iron catalyst. Catalysis Science & Technology 13 (11), pp.3366-3374. (10.1039/D3CY00027C)
- Ruiz Esquius, J. et al. 2023. Lithium-directed transformation of amorphous iridium (oxy)hydroxides to produce active water oxidation catalysts. Journal of the American Chemical Society 145 (11), pp.6398-6409. (10.1021/jacs.2c13567)
- Zhao, L. et al. 2023. Insights into the effect of metal ratio on cooperative redox enhancement effects over au- and pd-mediated alcohol oxidation. ACS Catalysis 13 (5), pp.2892-2903. (10.1021/acscatal.2c06284)
- Lazaridou, A. et al. 2023. Recognizing the best catalyst for a reaction. Nature Reviews Chemistry (10.1038/s41570-023-00470-5)
- Delarmelina, M. et al. 2023. The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment. Physical Chemistry Chemical Physics 25 , pp.4161-4176. (10.1039/D2CP03140J)
- Lewis, R. J. et al. 2023. Selective Ammoximation of Ketones via In Situ H2O2 Synthesis. ACS Catalysis 13 , pp.1934-1945. (10.1021/acscatal.2c05799)
- Richards, T. et al. 2023. The direct synthesis of Hydrogen Peroxide over supported Pd-based catalysts: an investigation into the role of the support and secondary metal modifiers. Catalysis Letters 153 , pp.32-40. (10.1007/s10562-022-03967-8)
- Tong, T. et al. 2023. Uncovering structure - activity relationships in pt/ceo2 catalysts for hydrogen-borrowing amination. ACS Catalysis 13 (2), pp.1207-1220. (10.1021/acscatal.2c04347)
- Lewis, R. J. et al. 2022. Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalysts. Green Chemistry 24 , pp.9496-9507. (10.1039/D2GC02689A)
- Daniel, I. T. et al. 2022. Kinetic analysis to describe co-operative redox enhancement effects exhibited by bimetallic Au-Pd systems in aerobic oxidation. Catalysis Science & Technology (10.1039/D2CY01474B)
- Barnes, A. et al. 2022. Improving catalytic activity towards the direct synthesis of H2O2 through Cu incorporation into AuPd catalysts. Catalysts 12 (11) 1396. (10.3390/catal12111396)
- Bowker, M. et al. 2022. Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck-Cardiff centre on the fundamentals of heterogeneous catalysis (funcat). Angewandte Chemie International Edition (10.1002/anie.202209016)
- Pattisson, S. et al. 2022. Lowering the operating temperature of gold acetylene hydrochlorination catalysts using oxidized carbon supports. ACS Catalysis 12 , pp.14086–14095. (10.1021/acscatal.2c04242)
- Brehm, J. et al., 2022. Enhancing the Chemo-Enzymatic One-Pot Oxidation of Cyclohexane via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 12 (19), pp.11776–11789. (10.1021/acscatal.2c03051)
- Hutchings, G. J. et al. 2022. Facile synthesis of a porous 3D g-C3N4 photocatalyst for the degradation of organics in shale gas brines. Catalysis Communications 169 106480. (10.1016/j.catcom.2022.106480)
- Carter, J. H. et al. 2022. Reversible growth of gold nanoparticles in the low-temperature water-gas shift reaction. ACS Nano 16 , pp.15197-15205. (10.1021/acsnano.2c06504)
- Tigwell, M. et al. 2022. Investigating catalytic properties which influence dehydration and oxidative dehydrogenation in aerobic glycerol oxidation over Pt/TiO2. Journal of Physical Chemistry C 126 (37), pp.15651-15661. (10.1021/acs.jpcc.2c03680)
- Lewis, R. J. et al. 2022. N-heterocyclic carbene modified palladium catalysts for the direct synthesis of hydrogen peroxide. Journal of the American Chemical Society 144 (34), pp.15431-15436. (10.1021/jacs.2c04828)
- Smith, L. R. et al. 2022. Recent advances on the valorization of glycerol into alcohols. Energies 15 (17) e6250. (10.3390/en15176250)
- Pudge, G. J. F. et al. 2022. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science & Technology 12 , pp.4552-4560. (10.1039/D2CY00699E)
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Sun, S. et al. 2022. Selective oxidation of methane to methanol and methyl hydroperoxide over palladium modified MoO3 photocatalyst under ambient conditions. Catalysis Science & Technology 12 (11), pp.3727-3736. (10.1039/D2CY00240J)
- Chen, B. et al., 2022. The reaction pathways of 5-hydroxymethylfurfural conversion in a continuous flow reactor using copper catalysts. Catalysis Science & Technology 12 (9), pp.3016-3027. (10.1039/D1CY02197D)
- Santos, A. et al. 2022. The oxidative degradation of phenol via in situ H2O2 synthesis using Pd supported Fe-modified ZSM-5 catalysts. Catalysis Science & Technology 12 (9), pp.2943-2953. (10.1039/D2CY00283C)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12 (9), pp.5371-5379. (10.1021/acscatal.2c00552)
- Lewis, R. J. et al. 2022. Highly efficient catalytic production of oximes from ketones using in situ–generated H2O2. Science 376 (6593), pp.615-620. (10.1126/science.abl4822)
- Douthwaite, M. et al. 2022. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications 164 106430. (10.1016/j.catcom.2022.106430)
- Miedziak, P. J. et al. 2022. The over-riding role of autocatalysis in alllylic oxidation. Catalysis Letters 152 , pp.1003-1008. (10.1007/s10562-021-03707-4)
- Fortunato, G. V. et al., 2022. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nature Communications 13 1973. (10.1038/s41467-022-29536-6)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122 (6), pp.6795-6849. (10.1021/acs.chemrev.1c00493)
- Huang, X. et al. 2022. Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 603 , pp.271-275. (10.1038/s41586-022-04397-7)
- Ye, T. et al., 2022. Iron-chromium mixed metal oxides catalyse the oxidative dehydrogenation of propane using carbon dioxide. Catalysis Communications 162 106383. (10.1016/j.catcom.2021.106383)
- Barnes, A. et al. 2022. Enhancing catalytic performance of AuPd catalysts towards the direct synthesis of H2O2 through incorporation of base metals. Catalysis Science & Technology 12 , pp.1986-1995. (10.1039/D1CY01962G)
- Brehm, J. et al. 2022. The direct synthesis of hydrogen peroxide over AuPd nanoparticles: an investigation into metal loading. Catalysis Letters 152 , pp.254-262. (10.1007/s10562-021-03632-6)
- Qi, G. et al., 2022. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nature Catalysis 5 (10.1038/s41929-021-00725-8)
- Richards, N. et al. 2022. Effect of the preparation method of LaSrCoFeOx perovskites on the activity of N2O decomposition. Catalysis Letters 152 , pp.213-226. (10.1007/s10562-021-03619-3)
- Lewis, R. J. et al. 2021. Improving the performance of Pd based catalysts for the direct synthesis of hydrogen peroxide via acid incorporation during catalyst synthesis. Catalysis Communications 161 106358. (10.1016/j.catcom.2021.106358)
- Tariq, A. et al. 2021. Combination of Cu/ZnO methanol synthesis catalysts and ZSM-5 zeolites to produce oxygenates from CO2 and H2. Topics in Catalysis 64 , pp.965-973. (10.1007/s11244-021-01447-8)
- Carter, J. et al. 2021. Direct and oxidative dehydrogenation of propane: From catalyst design to industrial application. Green Chemistry 23 (24), pp.9747-9799. (10.1039/D1GC03700E)
- Santos, A. et al. 2021. The degradation of phenol via in situ H2O2 production over supported Pd-based catalysts. Catalysis Science & Technology 11 (24), pp.7866-7874. (10.1039/D1CY01897C)
- Sun, S. et al. 2021. Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. Catalysis Science & Technology 11 (24), pp.8052-8064. (10.1039/D1CY01643A)
- Najafishirtari, S. et al., 2021. A perspective on heterogeneous catalysts for the selective oxidation of alcohols. Chemistry - A European Journal 27 (68), pp.16809-16833. (10.1002/chem.202102868)
- Agarwal, N. et al. 2021. The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today 381 , pp.76-85. (10.1016/j.cattod.2020.09.001)
- Yang, N. et al. 2021. Influence of stabilizers on the performance of Au/TiO2 catalysts for CO oxidation. ACS Catalysis 11 (18), pp.11607-11615. (10.1021/acscatal.1c02820)
- Nowicka, E. et al., 2021. Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H2WO4, H3PO4 and H2O2: A route for upgrading heavy oil fractions. New Journal of Chemistry 45 (31), pp.13885-13892. (10.1039/D1NJ01986D)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4 , pp.575-585. (10.1038/s41929-021-00642-w)
- Yang, P. et al., 2021. Coordinately unsaturated O2c–Ti5c–O2c sites promote the reactivity of Pt/TiO2 catalysts in the solvent-free oxidation of octanol. Catalysis Science & Technology 11 (14), pp.4898-4910. (10.1039/D1CY00686J)
- Ruiz Esquius, J. et al. 2021. Identification of C2-C5 products from CO2 hydrogenation over PdZn/TiO2-ZSM-5 hybrid catalysts. Faraday Discussions 230 , pp.52-67. (10.1039/D0FD00135J)
- Wilbers, D. et al., 2021. Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. Green Chemistry 23 (11), pp.4170-4180. (10.1039/D0GC04320F)
- Freakley, S. J. et al. 2021. Methane oxidation to methanol in water. Accounts of Chemical Research 54 (11), pp.2614–2623. (10.1021/acs.accounts.1c00129)
- Lai, K. et al., 2021. LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome. Cell 184 (10)(10.1016/j.cell.2021.04.001)
- Hutchings, G. 2021. Spiers memorial lecture: understanding reaction mechanisms in heterogeneously catalysed reactions. Faraday Discussions 229 , pp.9-34. (10.1039/D1FD00023C)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Dawson, S. R. et al. 2021. Sulfur promotion in Au/C catalyzed acetylene hydrochlorination. Small 17 (16) 2007221. (10.1002/smll.202007221)
- Smith, L. R. et al. 2021. Gas phase clycerol valorization over ceria nanostructures with well-defined morphologies. ACS Catalysis 11 , pp.4893-4907. (10.1021/acscatal.0c05606)
- Chachvalvutikul, A. et al. 2021. Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light-responsive Bi2WO6/ZnIn2S4 heterojunction. Applied Surface Science 544 148885. (10.1016/j.apsusc.2020.148885)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11 , pp.2701–2714. (10.1021/acscatal.0c04586)
- Palacios, M. et al., 2021. Characterisation and activity of mixed metal oxide catalysts for the gas-phase selective oxidation of toluene. Catalysis Today 363 , pp.73-84. (10.1016/j.cattod.2019.06.001)
- Crombie, C. M. et al. 2021. The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catalysis Letters 151 , pp.164-171. (10.1007/s10562-020-03281-1)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47 , pp.303-324. (10.1007/s11164-020-04333-2)
- Crombie, C. M. et al. 2021. The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catalysis Letters 151 , pp.2762-2774. (10.1007/s10562-020-03511-6)
- Parker, L. A. et al. 2020. Ammonia decomposition enhancement by Cs-Promoted Fe/Al2O3 catalysts. Catalysis Letters 150 , pp.3369-3376. (10.1007/s10562-020-03247-3)
- Akram, A. et al. 2020. The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology 10 (24), pp.8203-8212. (10.1039/D0CY01163K)
- Ruiz Esquius, J. et al. 2020. Preparation of solid solution and layered IrOx–Ni(OH)2 oxygen evolution catalysts: toward optimizing iridium efficiency for OER. ACS Catalysis 10 (24), pp.14640-14648. (10.1021/acscatal.0c03866)
- Bowker, M. et al. 2020. CO2 hydrogenation to CH3OH over PdZn catalysts, with reduced CH4 production. ChemCatChem 12 (23), pp.6024-6032. (10.1002/cctc.202000974)
- Aldridge, J. K. et al. 2020. Ambient temperature CO oxidation using palladium-platinum bimetallic catalysts supported on tin oxide/alumina. Catalysts 10 (11) 1223. (10.3390/catal10111223)
- Shen, H. et al., 2020. Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel. Cell Reports Physical Science 1 (11) 100255. (10.1016/j.xcrp.2020.100255)
- Pattisson, S. et al. 2020. Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts. Catalysis Today 357 , pp.3-7. (10.1016/j.cattod.2019.04.053)
- Malta, G. et al. 2020. Can gold be an effective catalyst for the Deacon reaction?. Catalysis Letters 150 , pp.2991-2995. (10.1007/s10562-020-03204-0)
- Jiao, Y. et al., 2020. The effect of T-atom ratio and TPAOH concentration on the pore structure and titanium position in MFI-Type titanosilicate during dissolution-recrystallization process. Microporous and Mesoporous Materials 305 110397. (10.1016/j.micromeso.2020.110397)
- Freakley, S. J. et al., 2020. Gold–palladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. Catalysis Science and Technology 10 (17), pp.5935-5944. (10.1039/D0CY00915F)
- Abedin, M. A. et al., 2020. Probing the surface acidity of supported aluminum bromide catalysts. Catalysts 10 (8) 869. (10.3390/catal10080869)
- Abis, L. et al. 2020. The effect of polymer addition on base catalysed glycerol oxidation using gold and gold-palladium bimetallic catalysts. Topics in Catalysis 63 , pp.394-402. (10.1007/s11244-019-01212-y)
- Catlow, C. R. et al. 2020. Science to enable the circular economy. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 378 (2176)(10.1098/rsta.2020.0060)
- Crole, D. A. et al. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ni/TiO2 catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200062. (10.1098/rsta.2020.0062)
- Devlia, J. et al., 2020. The formation of methanol from glycerol bio-waste over doped ceria based catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200059. (10.1098/rsta.2020.0059)
- Gong, X. et al. 2020. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catalysis Science and Technology 10 (14), pp.4635-4644. (10.1039/D0CY01079K)
- Malta, G. et al. 2020. In situ K-edge X-ray absorption spectroscopy of the ligand environment of single-site Au/C catalysts during acetylene hydrochlorination. Chemical Science 11 (27), pp.7040-7052. (10.1039/D0SC02152K)
- Rogers, O. et al. 2020. Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the role of homogeneous vanadium species. Catalysis Science and Technology 10 (13), pp.4210-4218. (10.1039/D0CY00914H)
- Sun, X. et al. 2020. Facile synthesis of precious-metal single-site catalysts using organic solvents. Nature Chemistry 12 , pp.560-567. (10.1038/s41557-020-0446-z)
- Cai, R. et al., 2020. Gas-phase deposition of gold nanoclusters to produce heterogeneous glycerol oxidation catalysts. ACS Applied Nano Materials 3 (6), pp.4997-5001. (10.1021/acsanm.0c01140)
- Ju, Q. et al., 2020. Ruthenium triazine composite: a good match for increasing hydrogen evolution activity through contact electrification. Advanced Energy Materials 10 (21) 2000067. (10.1002/aenm.202000067)
- Richards, N. et al. 2020. Structure-sensitivity of alumina supported palladium catalysts for N2O decomposition. Applied Catalysis B: Environmental 264 118501. (10.1016/j.apcatb.2019.118501)
- Ledendecker, M. et al., 2020. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catalysis 10 (10), pp.5928-5938. (10.1021/acscatal.0c01305)
- Richards, N. et al. 2020. Lowering the operating temperature of perovskite catalysts for N2O decomposition through control of preparation methods. ACS Catalysis 10 (10), pp.5430-5442. (10.1021/acscatal.0c00698)
- Pudkon, W. et al., 2020. Enhanced visible-light-driven photocatalytic H2 production and Cr(vi) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method. Catalysis Science and Technology 10 (9), pp.2838-2854. (10.1039/D0CY00234H)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120 (8), pp.3890-3938. (10.1021/acs.chemrev.9b00662)
- Caswell, T. et al. 2020. Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology 10 (7), pp.2083-2091. (10.1039/C9CY02473E)
- Evans, C. D. et al. 2020. Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. Journal of Chemical Physics 152 (13) 134705. (10.1063/1.5128595)
- Cattaneo, S. et al. 2020. Continuous flow synthesis of bimetallic AuPd catalysts for the selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ChemNanoMat 6 (3), pp.420-426. (10.1002/cnma.201900704)
- Rucinska, E. et al. 2020. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: An optimization of metal ratio and investigation of the deactivation mechanism under autoxidation conditions. Topics in Catalysis 63 , pp.99-112. (10.1007/s11244-020-01231-0)
- Wang, S. et al., 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd–Ga and Pd–In catalysts. Catalysis Science and Technology 10 , pp.1925-1932. (10.1039/C9CY02210D)
- Zhang, B. et al., 2020. Seed- and solvent-free synthesis of ZSM-5 with tuneable Si/Al ratios for biomass hydrogenation. Green Chemistry 22 (5), pp.1630-1638. (10.1039/C9GC03622A)
- Liu, S. et al., 2020. Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A 8 , pp.15725-15733. (10.1039/D0TA00334D)
- McVicker, R. et al. 2020. Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today 342 , pp.32-38. (10.1016/j.cattod.2018.12.017)
- Abis, L. et al. 2020. Plasmonic oxidation of glycerol using Au/TiO2 catalysts prepared by sol-immobilisation. Catalysis Letters 150 (1), pp.49-55. (10.1007/s10562-019-02952-y)
- Thaore, V. B. et al., 2020. Sustainable production of glucaric acid from corn stover via glucose oxidation: an assessment of homogeneous and heterogeneous catalytic oxidation production routes. Chemical Engineering Research and Design 153 , pp.337-349. (10.1016/j.cherd.2019.10.042)
- Ruiz Esquius, J. et al. 2020. Effect of base on the facile hydrothermal preparation of highly active IrOx oxygen evolution catalysts. ACS Applied Energy Materials 3 (1), pp.800-809. (10.1021/acsaem.9b01642)
- Hardacre, C. et al., 2020. Synchrotron radiation and catalytic science. Synchrotron Radiation News 33 (1), pp.10-14. (10.1080/08940886.2020.1701368)
- Jarvis, J. et al., 2020. Inhibiting the dealkylation of basic arenes during n-alkane direct aromatization reactions and understanding the C6 ring closure mechanism. ACS Catalysis 10 , pp.8428-8443. (10.1021/acscatal.0c02361)
- Venezia, B. et al., 2019. Slurry loop tubular membrane reactor for the catalysed aerobic oxidation of benzyl alcohol. Chemical Engineering Journal 378 122250. (10.1016/j.cej.2019.122250)
- Waldron, C. et al., 2019. Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors. Chemical Engineering Journal 377 119976. (10.1016/j.cej.2018.09.137)
- Dai, X. et al., 2019. Efficient elimination of chlorinated organics on a phosphoric acid modified CeO2 catalyst: a hydrolytic destruction route. Environmental Science and Technology 53 (21), pp.12697-12705. (10.1021/acs.est.9b05088)
- Lewis, R. J. et al. 2019. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catalysis Letters 149 (11), pp.3066-3075. (10.1007/s10562-019-02876-7)
- Macino, M. et al. 2019. Tuning of catalytic sites in Pt/TiO2 catalysts for chemoselective hydrogenation of 3-nitrostyrene. Nature Catalysis 2 , pp.873-881. (10.1038/s41929-019-0334-3)
- Abis, L. et al. 2019. Plasmonic oxidation of glycerol using AuPd/TiO2 catalysts. Catalysis Science and Technology 9 (20), pp.5686-5691. (10.1039/C9CY01409H)
- Pudkon, W. et al., 2019. Microwave synthesis of ZnIn2S4/WS2 composites for photocatalytic hydrogen production and hexavalent chromium reduction. Catalysis Science and Technology 9 (20), pp.5698-5711. (10.1039/C9CY01553A)
- Freakley, S. J. et al. 2019. A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2. Nature Communications 10 (1) 4178. (10.1038/s41467-019-12120-w)
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36 , pp.15-24. (10.1016/j.jechem.2019.01.015)
- Shen, Y. et al., 2019. Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversion. Journal of Physical Chemistry C 123 (32), pp.19734-19741. (10.1021/acs.jpcc.9b05475)
- Engel, R. V. et al. 2019. Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catalysis Today 333 , pp.154-160. (10.1016/j.cattod.2018.09.005)
- Nyathi, T. M. et al. 2019. Impact of nanoparticle-support interactions in Co3O4/Al2O3 catalysts for the preferential oxidation of carbon monoxide. ACS Catalysis 9 (8), pp.7166-7178. (10.1021/acscatal.9b00685)
- Santos Hernandez, A. et al. 2019. The direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions. Industrial & Engineering Chemistry Research 58 (28), pp.12623-12631. (10.1021/acs.iecr.9b02211)
- Carter, J. H. et al. 2019. Enhanced activity and stability of Gold/Ceria-Titania for the low-temperature water-gas shift reaction. Frontiers in Chemistry 7 443. (10.3389/fchem.2019.00443)
- Zhan, S. et al., 2019. Editorial of Environmental Catalysis_18NCC. Catalysis Today 327 , pp.1-1. (10.1016/j.cattod.2019.01.046)
- Nowicka, E. et al. 2019. Benzyl alcohol oxidation with Pd-Zn/TiO2: computational and experimental studies. Science and Technology of Advanced Materials 20 (1), pp.367-378. (10.1080/14686996.2019.1598237)
- Smith, P. J. et al. 2019. Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies 12 (7) 1359. (10.3390/en12071359)
- Hirayama, J. et al., 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123 (13), pp.7879-7888. (10.1021/acs.jpcc.8b07108)
- Smith, L. R. et al. 2019. New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology 9 , pp.1464-1475. 6. (10.1039/C8CY02214C)
- Lewis, R. et al. 2019. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11 (6), pp.1673-1680. (10.1002/cctc.201900100)
- Alotaibi, F. et al., 2019. Direct synthesis of hydrogen peroxide using Cs-containing heteropolyacid-supported palladium-copper catalysts. Catalysis Letters 149 (4), pp.998-1006. (10.1007/s10562-019-02680-3)
- Hutchings, G. J. and Lewis, R. 2019. A review of recent advances in the direct synthesis of H2O2. ChemCatChem 11 (1), pp.298-308. (10.1002/cctc.201801435)
- Armstrong, R. D. et al. 2019. Quantitative determination of Pt- catalyzed D-glucose oxidation products using 2D NMR. ACS Catalysis 9 (1), pp.325-335. (10.1021/acscatal.8b03838)
- Cattaneo, S. et al. 2019. Synthesis of highly uniform and composition-controlled gold-palladium supported nanoparticles in continuous flow. Nanoscale 17 , pp.8247-8259. (10.1039/C8NR09917K)
- Carter, J. H. and Hutchings, G. J. 2018. Recent advances in the gold-catalysed low-temperature water-gas shift reaction. Catalysts 8 (12), pp.627-627. (10.3390/catal8120627)
- Nowicka, E. et al. 2018. Highly selective PdZn/ZnO catalysts for the methanol steam reforming reaction. Catalysis Science and Technology 8 (22), pp.5848-5857. (10.1039/C8CY01100A)
- Bahruji, H. et al. 2018. Correction to: Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Topics in Catalysis (10.1007/s11244-018-1081-4)
- Kanitkar, S. et al., 2018. Low temperature direct conversion of methane using a solid superacid. ChemCatChem 10 (21), pp.5033-5038. (10.1002/cctc.201801310)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317 , pp.12-20. (10.1016/j.cattod.2018.03.046)
- Richards, N. et al. 2018. Investigating the influence of Fe speciation on N2O decomposition over Fe–ZSM-5 catalysts. Topics in Catalysis 61 (18-19), pp.1983-1992. (10.1007/s11244-018-1024-0)
- Underhill, R. et al. 2018. Oxidative degradation of phenol using in situ generated hydrogen peroxide combined with Fenton's process. Johnson Matthey Technology Review 62 (4), pp.417-425. (10.1595/205651318X15302623075041)
- Malta, G. et al. 2018. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: An X-ray absorption and inelastic neutron scattering study. ACS Catalysis 8 (9), pp.8493-8505. (10.1021/acscatal.8b02232)
- Qu, R. et al. 2018. Supported bimetallic AuPd nanoparticles as a catalyst for the selective hydrogenation of nitroarenes. Nanomaterials 8 (9) 690. (10.3390/nano8090690)
- Nowicka, E. et al. 2018. Mechanistic insights into selective oxidation of polyaromatic compounds using RICO chemistry. Chemistry - A European Journal 24 (47), pp.12359-12369. (10.1002/chem.201800423)
- Hutchings, G. J. and Catlow, C. R. 2018. Designing heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2216) 20180514. (10.1098/rspa.2018.0514)
- Arrigo, R. et al., 2018. Theory as a driving force to understand reactions on nanoparticles: general discussion. Faraday Discussions 208 , pp.147-185. (10.1039/C8FD90013B)
- Adishev, A. et al., 2018. Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions 208 , pp.471-495. (10.1039/C8FD90015A)
- Baletto, F. et al., 2018. Application of new nanoparticle structures as catalysts: general discussion. Faraday Discussions 208 , pp.575-593. (10.1039/C8FD90016G)
- Marquart, W. et al., 2018. Oxygenate formation over K/β-Mo2C catalysts in the Fischer-Tropsch synthesis. Catalysis Science and Technology 8 (15), pp.3806-3817. (10.1039/C8CY01181H)
- Zhang, B. et al. 2018. Macroporous-mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols. Green Chemistry 20 (15), pp.3634-3642. (10.1039/C8GC01624K)
- Rogers, O. et al. 2018. The low temperature solvent-free aerobic oxidation of cyclohexene to cyclohexane diol over highly active Au/Graphite and Au/Graphene catalysts. Catalysts 8 (8), pp.311. (10.3390/catal8080311)
- Hutchings, G. J. , Catlow, C. and Turner, N. 2018. Providing sustainable catalytic solutions for a rapidly changing world [RETRACTED]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474 (2215) 20180414. (10.1098/rspa.2018.0414)
- Miedziak, P. et al. 2018. Gold as a catalyst for the ring opening of 2,5-Dimethylfuran. Catalysis Letters 148 (7), pp.2109-2116. (10.1007/s10562-018-2415-3)
- Galvanin, F. et al., 2018. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal 342 , pp.196-210. (10.1016/j.cej.2017.11.165)
- Hutchings, G. et al. 2018. Selective hydrogenation of levulinic acid using Ru/C catalysts prepared by sol-immobilsation. Topics in Catalysis 61 (9-11), pp.833-843.
- Jones, M. et al. 2018. Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons. Journal of Catalysis 364 , pp.102-111. (10.1016/j.jcat.2018.05.012)
- Bahruji, H. et al. 2018. Hydrogenation of CO2 to dimethyl ether over brønsted acidic PdZn catalysts. Industrial and Engineering Chemistry Research 57 (20), pp.6821-6829. (10.1021/acs.iecr.8b00230)
- Rucinska, E. et al. 2018. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: an investigation of autoxidation and catalysis. Catalysis Science and Technology 8 (11), pp.2987-2997. (10.1039/C8CY00155C)
- Engel, R. V. et al. 2018. Oxidative carboxylation of 1-decene to 1,2-decylene carbonate. Topics in Catalysis 61 (5-6), pp.509-518. (10.1007/s11244-018-0900-y)
- Parmentier, T. et al. 2018. Homocoupling of phenylboronic acid using atomically dispersed gold on carbon catalysts: catalyst evolution before reaction. ChemCatChem 10 (8), pp.1853-1859. (10.1002/cctc.201701840)
- Bahruji, H. et al. 2018. Solvent free synthesis of PdZn/TiO2 catalysts for the hydrogenation of CO2 to methanol. Topics in Catalysis 61 (3-4), pp.144-153. (10.1007/s11244-018-0885-6)
- Jiao, Y. et al., 2018. Inter-connected and open pore hierarchical TS-1 with controlled framework titanium for catalytic cyclohexene epoxidation. Catalysis Science and Technology 8 , pp.2211-2217. (10.1039/C7CY02571H)
- Dodekatos, G. et al., 2018. Glycerol oxidation using MgO and Al2O3 supported gold and gold-palladium nanoparticles prepared in the absence of polymer stabilisers. ChemCatChem 10 (6), pp.1351-1359. (10.1002/cctc.201800074)
- Nowicka, E. et al. 2018. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based catalysts. ACS Catalysis 8 , pp.3454-3468. (10.1021/acscatal.7b03805)
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4 (1), pp.12-23. (10.1080/2055074X.2018.1433598)
- Armstrong, R. et al. 2018. The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts. ChemPhysChem 19 (4), pp.469-478. (10.1002/cphc.201701046)
- Chow, Y. K. et al. 2018. A kinetic study of methane partial oxidation over FeZSM-5 using N2O as an oxidant. ChemPhysChem 19 (4), pp.402-411. (10.1002/cphc.201701202)
- Williams, C. et al. 2018. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catalysis , pp.2567-2576. (10.1021/acscatal.7b04417)
- Cattaneo, S. et al. 2018. Cinnamaldehyde hydrogenation using Au-Pd catalysts prepared by sol immobilisation. Catalysis Science and Technology 8 , pp.1677-1685. (10.1039/C7CY02556D)
- Chow, Y. K. et al. 2018. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catalysis Science and Technology 2018 (8), pp.154-163. (10.1039/C7CY01769C)
- D'Agostino, C. et al., 2018. Product inhibition in the glycerol oxidation over Au/TiO2 catalyst quantified by NMR relaxation. ACS Catalysis 8 (8), pp.7334-7339. (10.1021/acscatal.8b01516)
- Hutchings, G. J. 2018. Heterogeneous gold catalysis. ACS Central Science 4 (9), pp.1095-1101. (10.1021/acscentsci.8b00306)
- Hutchings, G. J. et al. 2017. New insights into the activation and deactivation of Au/CeZrO4 in the low-temperature water-gas shift reaction. Angewandte Chemie International Edition 56 (50), pp.16037-16041. (10.1002/anie.201709708)
- Armstrong, R. et al. 2017. How to synthesise high purity, crystalline D-glucaric acid selectively. European Journal of Organic Chemistry 2017 (45), pp.6811-6814. (10.1002/ejoc.201701343)
- Douthwaite, M. et al. 2017. The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. Catalysis Science & Technology 7 (22), pp.5284-5293. (10.1039/C7CY01025G)
- Fechete, I. et al., 2017. Catalytic reactivity of surfaces: in recognition of François Gault. Catalysis Science & Technology 7 (22), pp.5181-5181. (10.1039/C7CY90088K)
- Al-Rifai, N. et al., 2017. Deactivation behaviour of supported gold palladium nanoalloy catalysts during the selective oxidation of benzyl alcohol in a micro-packed bed reactor. Industrial & Engineering Chemistry Research 56 (45), pp.12984-12993. (10.1021/acs.iecr.7b01159)
- Taylor, S. H. et al. 2017. Oxidation of polynuclear aromatic hydrocarbons using ruthenium ion catalyzed oxidation: The role of aromatic ring number in reaction kinetics and product distribution. Chemistry - a European Journal (10.1002/chem.201704133)
- Lewis, R. et al. 2017. Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide. Industrial & Engineering Chemistry Research 56 (45), pp.13287-13293. (10.1021/acs.iecr.7b01800)
- Agarwal, N. et al. 2017. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358 (6360), pp.223-227. (10.1126/science.aan6515)
- Ivars-Barceló, F. et al., 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354 , pp.236-249. (10.1016/j.jcat.2017.08.020)
- Khasu, M. et al., 2017. Co3O4 morphology in the preferential oxidation of CO. Catalysis Science & Technology 7 (20), pp.4806-4817. (10.1039/C7CY01194F)
- Malta, G. et al. 2017. Acetylene hydrochlorination using Au / Carbon: a journey towards single site catalysis. Chemical Communications (10.1039/C7CC05986H)
- Liu, X. et al., 2017. Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide. Chemistry - A European Journal 23 (49)(10.1002/chem.201605941)
- Cao, Y. et al. 2017. An investigation into bimetallic catalysts for base free oxidation of cellobiose and glucose. Journal of Chemical Technology and Biotechnology 92 (9), pp.2246-2253. (10.1002/jctb.5287)
- Pizzutilo, E. et al., 2017. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: from fundamentals to continuous production. Chemical Physics Letters 683 , pp.436-442. (10.1016/j.cplett.2017.01.071)
- Abis, L. et al. 2017. Highly active gold and gold-palladium catalysts prepared by colloidal methods in the absence of polymer stabilizers. ChemCatChem 9 (15), pp.2914-2918. (10.1002/cctc.201700483)
- Pizzutilo, E. et al., 2017. Gold-palladium bimetallic catalyst stability: consequences for hydrogen peroxide selectivity. ACS Catalysis 7 , pp.5699-5705. (10.1021/acscatal.7b01447)
- Yoshida, R. et al., 2017. Vapor-phase hydrogenation of levulinic acid to γ-valerolactone over Cu-Ni bimetallic catalysts. Catalysis Communications 97 , pp.79-82. (10.1016/j.catcom.2017.04.018)
- D'Agostino, C. et al., 2017. Increased affinity of small gold particles for glycerol oxidation over Au/TiO2 probed by NMR relaxation methods. ACS Catalysis 7 (7), pp.4235-4241. (10.1021/acscatal.7b01255)
- Hayward, J. S. et al. 2017. The effects of secondary oxides on copper-based catalysts for green methanol synthesis. ChemCatChem 9 (9), pp.1655-1662. (10.1002/cctc.201601692)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9 (9), pp.1621-1631. (10.1002/cctc.201601603)
- Morad, M. et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science & Technology 7 (9), pp.1928-1936. (10.1039/C7CY00184C)
- Niemantsverdriet, H. et al., 2017. Catalysis for fuels: general discussion. Faraday Discussions 197 , pp.165-205. (10.1039/C7FD90010D)
- Bahruji, H. et al. 2017. PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discussions 197 , pp.309-324. (10.1039/C6FD00189K)
- Cao, E. et al., 2017. A micropacked-bed multi-reactor system with in situ raman analysis for catalyst evaluation. Catalysis Today 283 , pp.195-201. (10.1016/j.cattod.2016.06.007)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197 , pp.287-307. (10.1039/C6FD00202A)
- Malta, G. et al., 2017. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355 (6332), pp.1399-1403. (10.1126/science.aal3439)
- Pizzutilo, E. et al., 2017. Addressing stability challenges of using bimetallic electrocatalysts: the case of gold?palladium nanoalloys. Catalysis Science & Technology 7 (9), pp.1848-1856. (10.1039/C7CY00291B)
- Alsaiari, R. et al. 2017. The effect of ring size on the selective carboxylation of cycloalkene oxides. Catalysis Science & Technology 2017 (6), pp.1433-1439. (10.1039/C6CY02448C)
- Pizzutilo, E. et al., 2017. Palladium electrodissolution from model surfaces and nanoparticles. Electrochimica Acta 229 , pp.467-477. (10.1016/j.electacta.2017.01.127)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8 (3), pp.2436-2447. (10.1039/C6SC04130B)
- Peneau, V. et al., 2017. The low temperature oxidation of propane using H2O2 and Fe/ZSM-5 catalysts; insights into the active site and enhancement of catalytic turnover frequencies. ChemCatChem 9 (4), pp.642-650. (10.1002/cctc.201601241)
- Fu, J. et al. 2017. The role of Mg(OH)2 in the so-called 'base-free' oxidation of glycerol with AuPd catalysts. Chemistry - A European Journal 24 (10), pp.2396-2402. (10.1002/chem.201704151)
- Giorgi, P. D. et al., 2017. Bicatalytic multistep reactions en route to the one-pot total synthesis of complex molecules: easy access to chromene and 1,2-dihydroquinoline derivatives from simple substrates. ChemCatChem 9 (1), pp.70-75. (10.1002/cctc.201600925)
- Ishikawa, S. et al., 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19 (1), pp.225-236. (10.1039/C6GC02598F)
- Gavriilidis, A. et al., 2016. Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. Reaction Chemistry and Engineering 1 (6), pp.595-612. (10.1039/C6RE00155F)
- Bahruji, H. et al. 2016. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis 343 , pp.133-146. (10.1016/j.jcat.2016.03.017)
- Davies, C. J. et al., 2016. Vinyl chloride monomer production catalysed by gold: a review. Chinese Journal of Catalysis 37 (10), pp.1600-1607. (10.1016/S1872-2067(16)62482-8)
- Peneau, V. et al., 2016. The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. Catalysis Science & Technology 6 (20), pp.7521-7531. (10.1039/C6CY01332E)
- Iqbal, S. et al., 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275 , pp.35-39. (10.1016/j.cattod.2015.09.041)
- Carter, J. et al. 2016. Synergy and anti-synergy between palladium and gold in nanoparticles dispersed on a reducible support. ACS Catalysis 6 (10), pp.6623-6633. (10.1021/acscatal.6b01275)
- D'Agostino, C. et al., 2016. Solvent inhibition in the liquid-phase catalytic oxidation of 1,4-butanediol: understanding the catalyst behaviour from NMR relaxation time measurements. Catalysis Science & Technology 6 (21), pp.7896-7901. (10.1039/C6CY01458E)
- Pattisson, S. et al. 2016. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes. Nature Communications 7 12855. (10.1038/ncomms12855)
- Xu, J. et al., 2016. Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor. Catalysis Today 270 , pp.93-100. (10.1016/j.cattod.2015.09.011)
- He, Q. et al. 2016. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation. Nature Communications 7 12905. (10.1038/ncomms12905)
- Akram, A. et al., 2016. Gas phase stabiliser-free production of hydrogen peroxide using supported gold-palladium catalysts. Chemical Science 7 (9), pp.5833-5837. (10.1039/C6SC01332E)
- Al-Rifai, N. et al., 2016. Hydrodynamic effects on three phase micro-packed bed reactor performance – Gold–palladium catalysed benzyl alcohol oxidation. Chemical Engineering Science 149 , pp.129-142. (10.1016/j.ces.2016.03.018)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188 , pp.427-450. (10.1039/C5FD00187K)
- Crole, D. A. et al. 2016. Direct synthesis of hydrogen peroxide in water at ambient temperature. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472 (2190) 20160156. (10.1098/rspa.2016.0156)
- Galvanin, F. et al., 2016. Merging information from batch and continuous flow experiments for the identification of kinetic models of benzyl alcohol oxidation over Au-Pd catalyst. Computer Aided Chemical Engineering 38 , pp.961-966. (10.1016/B978-0-444-63428-3.50165-X)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648 , pp.163-169. (10.1016/j.susc.2015.11.010)
- Wu, G. et al., 2016. Oxidation of cinnamyl alcohol using bimetallic Au-Pd/TiO2catalysts: a deactivation study in a continuous flow packed bed microreactor. Catalysis Science & Technology 6 (13), pp.4749-4758. (10.1039/C6CY00232C)
- Yang, Q. et al., 2016. Exploring the mechanisms of metal co-catalysts in photocatalytic reduction reactions: Is Ag a good candidate?. Applied Catalysis A: General 518 , pp.213-220. (10.1016/j.apcata.2015.10.023)
- Su, R. et al., 2016. Mechanistic insight into the interaction between a titanium dioxide photocatalyst and Pd co-catalyst for improved photocatalytic performance. ACS Catalysis 6 (7), pp.4239-4247. (10.1021/acscatal.6b00982)
- Ab Rahim, M. H. et al., 2016. Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catalysis Science & Technology 6 (10), pp.3410-3418. (10.1039/C5CY01586C)
- Armstrong, R. , Hutchings, G. and Taylor, S. H. 2016. An overview of recent advances of the catalytic selective oxidation of ethane to oxygenates. Catalysts 6 (5) 71. (10.3390/catal6050071)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6 (15), pp.6022-6030. (10.1039/C6CY00382F)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272 , pp.74-79. (10.1016/j.cattod.2016.04.012)
- Miedziak, P. J. et al. 2016. An investigation of the effect of carbon support on ruthenium/ carbon catalysts for lactic acid and butanone hydrogenation. Physical Chemistry Chemical Physics 18 , pp.17259-17264. (10.1039/C6CP01311B)
- Hutchings, G. J. 2016. Methane activation by selective oxidation. Topics in Catalysis 59 (8-9), pp.658-662. (10.1007/s11244-016-0542-x)
- Liu, X. et al., 2016. Investigation of the active species in the carbon-supported gold catalyst for acetylene hydrochlorination. Catalysis Science & Technology 6 , pp.5144-5153. (10.1039/C6CY00090H)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531 , pp.83-87. (10.1038/nature16935)
- Hutchings, G. J. et al. 2016. Catalysis making the world a better place: satellite meeting. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 374 (2061), pp.-. 20150358. (10.1098/rsta.2015.0358)
- Freakley, S. J. et al. 2016. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351 (6276), pp.965-968. (10.1126/science.aad5705)
- Catlow, C. R. et al., 2016. Catalysis making the world a better place. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374 (2061) 20150089. (10.1098/rsta.2015.0089)
- Aldosari, D. O. et al., 2016. Pd-Ru/TiO2 catalyst - an active and selective catalyst for furfural hydrogenation. Catalysis Science & Technology 6 , pp.234-242. (10.1039/C5CY01650A)
- Conte, M. et al., 2016. Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings. Catalysis Letters 146 (1), pp.126-135. (10.1007/s10562-015-1660-y)
- Liu, X. et al., 2016. One-step production of 1,3-butadiene from 2,3-butanediol dehydration. Chemistry - a European Journal 22 (35), pp.12290-12294. (10.1002/chem.201602390)
- Villa, A. et al., 2016. Characterisation of gold catalysts. Chemical Society Reviews 45 (18), pp.4953-4994. (10.1039/C5CS00350D)
- Villa, A. et al., 2016. Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting gold-palladium nanoparticles on oxygen functionalized carbon nanofibers. Catalysis Science & Technology 6 , pp.694-697. (10.1039/C5CY01880C)
- Haider, M. H. et al., 2015. Efficient green methanol synthesis from glycerol. Nature Chemistry 7 , pp.1028-1032. (10.1038/nchem.2345)
- Constantinou, A. et al., 2015. Continuous heterogeneously catalyzed oxidation of benzyl alcohol in a ceramic membrane packed-bed reactor. Organic Process Research and Development 19 (12), pp.1973-1979. (10.1021/acs.oprd.5b00220)
- Liu, X. et al., 2015. Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts. Applied Catalysis A: General 504 , pp.373-380. (10.1016/j.apcata.2015.02.034)
- Marin, R. P. et al., 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504 , pp.62-73. (10.1016/j.apcata.2015.02.023)
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- He, Y. et al., 2015. Oxidation of aliphatic alcohols by using precious metals supported on hydrotalcite under solvent- and base-free conditions. ChemSusChem 8 (19), pp.3314-3322. (10.1002/cssc.201500503)
- Iqbal, S. et al. 2015. Ruthenium nanoparticles supported on carbon: an active catalyst for the hydrogenation of lactic acid to 1,2-propanediol. ACS Catalysis 5 (9), pp.5047-5059. (10.1021/acscatal.5b00625)
- Cao, Y. et al., 2015. Base-free oxidation of glucose to gluconic acid using supported gold catalysts. Catalysis Science & Technology 6 , pp.107-117. (10.1039/C5CY00732A)
- Lari, G. M. et al., 2015. The use of carbon monoxide as a probe molecule in spectroscopic studies for determination of exposed gold sites on TiO2. Physical Chemistry Chemical Physics 17 (35), pp.23236-23244. (10.1039/C5CP02512E)
- Peneau, V. et al. 2015. Co-oxidation of octane and benzaldehyde using molecular oxygen with Au–Pd/carbon prepared by sol-immobilisation. Catalysis Science & Technology 5 (8), pp.3953-3959. (10.1039/C5CY00453E)
- Weerachawanasak, P. et al., 2015. Surface functionalized TiO
2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol. Catalysis Today 250 , pp.218-225. (10.1016/j.cattod.2014.06.005) - King, G. M. et al. 2015. An investigation of the effect of the addition of tin to %Pd/TiO2 for the hydrogenation of furfuryl alcohol. ChemCatChem 7 (14), pp.2122-2129. (10.1002/cctc.201500242)
- Freakley, S. J. et al. 2015. Direct synthesis of hydrogen peroxide using Au-Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions. Catalysis Today 248 , pp.10-17. (10.1016/j.cattod.2014.01.012)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5 (6), pp.3575-3587. (10.1021/acscatal.5b00480)
- Villa, A. et al., 2015. Glycerol oxidation using gold-containing catalysts. Accounts of Chemical Research 48 (5), pp.1403-1412. (10.1021/ar500426g)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation. Chemistry - A European Journal 21 (11), pp.4285-4293. (10.1002/chem.201405831)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation [Cover Profile]. Chemistry - A European Journal 21 (11), pp.4169. (10.1002/chem.201406658)
- Wu, G. et al., 2015. Continuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactor. Industrial & Engineering Chemistry Research 54 (16), pp.4183-4189. (10.1021/ie5041176)
- Gandarias Goikoetxea, I. et al. 2015. Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. Chemsuschem 8 (3), pp.473-480. (10.1002/cssc.201403190)
- Auer, A. A. et al., 2015. MAXNET energy - focusing research in chemical energy conversion on the electrocatlytic oxygen evolution. Green 5 (1-6), pp.7-21. (10.1515/green-2015-0021)
- Armstrong, R. et al. 2015. Low temperature catalytic partial oxidation of ethane to oxygenates by Fe– and Cu–ZSM-5 in a continuous flow reactor. Journal of Catalysis 330 , pp.84-92. (10.1016/j.jcat.2015.07.001)
- Edwards, J. K. et al. 2015. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today 248 , pp.3-9. (10.1016/j.cattod.2014.03.011)
- Fechete, I. et al., 2015. Preface to the special issue "Nanocatalysis science: Preparation, characterization and reactivity", honoring Jacques C. Védrine. Applied Catalysis A: General 504 , pp.1-3. (10.1016/j.apcata.2015.05.009)
- Gupta, U. N. et al., 2015. Epoxidation of propene with graphite AuPd-supported nanoparticles. Catalysis Letters 145 (2), pp.697-701. (10.1007/s10562-014-1439-6)
- Gupta, U. N. et al., 2015. Solvent-free oxidation of dec-1-ene using gold/graphite catalyst using an in situ generated oxidant. Catalysis Science & Technology 5 (2), pp.1307-1313. (10.1039/C4CY01355G)
- Gupta, U. N. et al., 2015. Solvent-free aerobic epoxidation of Dec-1-ene using gold/graphite as a catalyst. Catalysis Letters 145 (2), pp.689-696. (10.1007/s10562-014-1425-z)
- Iqbal, S. , Brett, G. and Hutchings, G. j. 2015. The role of gold catalysts in C-H bond activation for the selective oxidation of saturated hydrocarbons. Gold Catalysis Preparation, Characterization, and Applications , pp.311-339. (10.1201/b19911-12)
- Johnston, P. , Carthey, N. and Hutchings, G. J. 2015. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination. Journal of the American Chemical Society 137 (46), pp.14548-14557. (10.1021/jacs.5b07752)
- Villa, A. et al., 2015. Tailoring the selectivity of glycerol oxidation by tuning the acid-base properties of Au catalysts. Catalysis Science & Technology 5 , pp.1126-1132. (10.1039/C4CY01246A)
- Villa, A. et al., 2015. ChemInform abstract: glycerol oxidation using gold-containing catalysts. Chem Inform 46 (29)(10.1002/chin.201529292)
- Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
- Notar Francesco, I. et al., 2014. Novel radical tandem 1,6-enynes thioacylation/cyclization: Au-Pd nanoparticles catalysis versus thermal activation as a function of the substrate specificity. Tetrahedron 70 (51), pp.9635-9643. (10.1016/j.tet.2014.10.077)
- Freakley, S. et al. 2014. Gold catalysis: a reflection on where we are now. Catalysis Letters 145 (1), pp.71-79. (10.1007/s10562-014-1432-0)
- Jones, W. V. et al. 2014. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness. Physical Chemistry Chemical Physics 16 , pp.26638-26644. (10.1039/C4CP04693E)
- Liu, X. et al. 2014. Molybdenum blue nano-rings: an effective catalyst for the partial oxidation of cyclohexane. Catalysis Science & Technology 5 , pp.217-227. (10.1039/C4CY01213E)
- Ryabenkova, Y. et al., 2014. Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron 70 (36), pp.6055-6058. (10.1016/j.tet.2014.02.043)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
- Morad, M. et al. 2014. Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. Catalysis Science and Technology 4 (9), pp.3120-3128. (10.1039/c4cy00387j)
- Su, R. et al. 2014. Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au-Pd alloy nanoparticles supported on titanium dioxide. Chemical Communications 50 (84), pp.12612-12614. (10.1039/C4CC04024D)
- Su, R. et al., 2014. Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification. Dalton Transactions 43 (40), pp.14976-14982. (10.1039/c4dt01309c)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum promoted gold-palladium catalysts. Catalysis Science and Technology -Cambridge- 4 (9), pp.3244-3250. (10.1039/c4cy00496e)
- Forde, M. et al. 2014. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: tuning alcohol selectivity through catalyst pre-treatment. Chemical Science 5 (9), pp.3603-3616. (10.1039/C4SC00545G)
- Kondrat, S. A. et al. 2014. Base-free oxidation of glycerol using titania-supported trimetallic Au-Pd-Pt nanoparticles. Chemsuschem 7 (5), pp.1326-1334. (10.1002/cssc.201300834)
- Su, R. et al. 2014. Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8 (4), pp.3490-3497. (10.1021/nn500963m)
- Iqbal, S. et al. 2014. Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catalysis Science & Technology 4 (8), pp.2280-2286. (10.1039/c4cy00184b)
- Miedziak, P. J. et al. 2014. Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry 16 (6), pp.3132-3141. (10.1039/c4gc00087k)
- Marin, R. P. et al., 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4 (7), pp.1970-1978. (10.1039/c4cy00044g)
- Meenakshisundaram, S. et al. 2014. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nature Communications 5 , pp... 3332. (10.1038/ncomms4332)
- Edwards, J. K. et al. 2014. The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts. Angewandte Chemie International Edition 53 (9), pp.2381-2384. (10.1002/anie.201308067)
- D'Agostino, C. et al., 2014. Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. Catalysis Science & Technology 4 (5), pp.1313-1322. (10.1039/c4cy00027g)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Haider, M. et al. 2014. The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. Chemistry - a European Journal 20 (6), pp.1743-1752. (10.1002/chem.201302348)
- Forde, M. M. et al. 2014. High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano 8 (1), pp.957-969. (10.1021/nn405757q)
- Alshammari, H. et al., 2014. Initiator-free hydrocarbon oxidation using supported gold nanoparticlec. Catalysis Science and Technology -Cambridge- 4 (4), pp.908-911. (10.1039/c4cy00088a)
- Brett, G. L. et al. 2014. Gold-based nanoparticulate catalysts for the oxidative esterification of 1,4-butanediol to dimethyl succinate. Topics in Catalysis 57 (6-9), pp.723-729. (10.1007/s11244-013-0229-5)
- Dimitratos, N. , Hammond, C. and Hutchings, G. J. 2014. Gold-based nanoparticle catalysts for catalytic applications [Abstract]. Abstracts of Papers of the American Chemical Society 248 1 p..
- Dimitratos, N. et al. 2014. Catalysis using colloidal-supported gold-based nanoparticles. Applied Petrochemical Research 4 (1), pp.85-94. (10.1007/s13203-014-0059-9)
- Edwards, J. K. et al. 2014. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Accounts of Chemical Research 47 (3), pp.845-854. (10.1021/ar400177c)
- Hutchings, G. J. 2014. Au catalysts for acetylene hydrochlorination and carbon monoxide oxidation. Topics in Catalysis 57 (14-16), pp.1265-1271. (10.1007/s11244-014-0290-8)
- Hutchings, G. J. 2014. Selective oxidation using supported gold bimetallic and trimetallic nanoparticles. Catalysis Today 238 , pp.69-73. (10.1016/j.cattod.2014.01.033)
- Kiely, C. et al. 2014. Assessing and controlling the size, morphology and composition of supported bimetallic catalyst nanoparticles. Microscopy and Microanalysis 20 (S3), pp.74-75. (10.1017/S1431927614002098)
- Li, C. , Domen, K. and Hutchings, G. J. 2014. Editorial: Special issue on photocatalysis and photoelectrolysis. Journal of Catalysis 310 , pp.1. (10.1016/j.jcat.2013.12.005)
- Peneau, V. et al. 2014. Selective catalytic oxidation of toluene using supported Au-Pt and Pd-Pt nanoalloys [Abstract]. Abstracts of Papers of the American Chemical Society 248 1 p..
- Santonastaso, M. et al. 2014. Oxidation of benzyl alcohol using in situ generated hydrogen peroxide. Organic Process Research and Development 18 (11), pp.1455-1460. (10.1021/op500195e)
- Spivey, J. J. and Hutchings, G. J. 2014. Catalytic aromatization of methane. Chemical Society Reviews 43 (3), pp.792-803. (10.1039/C3CS60259A)
- Torrente-Murciano, L. et al., 2014. Enhanced Au-Pd activity in the direct synthesis of hydrogen peroxide using nanostructured titanate nanotube supports. ChemCatChem 6 (9), pp.2531-2534. (10.1002/cctc.201402361)
- Pritchard, J. C. et al. 2013. Effect of heat treatment on Au-Pd catalysts synthesized by sol immobilisation for the direct synthesis of hydrogen peroxide and benzyl alcohol oxidation. Catalysis Science & Technology 3 (2), pp.308-317. (10.1039/C2CY20234D)
- Freakley, S. J. et al. 2013. Effect of reaction conditions on the direct synthesis of hydrogen peroxide with a AuPd/TiO2Catalyst in a flow reactor. ACS Catalysis 3 (4), pp.487-501. (10.1021/cs400004y)
- Peneau, V. et al. 2013. Selective catalytic oxidation using supported gold-platinum and palladium-platinum nanoalloys prepared by sol-immobilisation. Physical Chemistry Chemical Physics 15 (26), pp.10636-10644. (10.1039/C3CP50361E)
- Alshammari, H. et al., 2013. Control of the selectivity in multi-functional group molecules using supported gold–palladium nanoparticles. Green Chemistry 15 (5), pp.1244-1254. (10.1039/c3gc36828a)
- Ab Rahim, M. H. et al. 2013. Systematic study of the oxidation of methane using supported gold palladium nanoparticles under mild aqueous conditions. Topics in Catalysis 56 (18-20), pp.1843-1857. (10.1007/s11244-013-0121-3)
- Ab Rahim, M. H. et al. 2013. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angewandte Chemie - International Edition 52 (4), pp.1280-1284. (10.1002/anie.201207717)
- Alshammari, H. M. et al. 2013. The effect of ring size on the selective oxidation of cycloalkenes using supported metal catalysts. Catalysis Science & Technology 3 (6), pp.1531-1539. (10.1039/c3cy20864h)
- Behera, G. C. et al., 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3 (6), pp.1558-64. (10.1039/c3cy20801j)
- Brett, G. L. et al. 2013. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate. Chemsuschem 6 (10), pp.1952-1958. (10.1002/cssc.201300420)
- Budroni, G. et al., 2013. Selective deposition of palladium onto supported nickel - bimetallic catalysts for the hydrogenation of crotonaldehyde. Catalysis Science & Technology 3 (10), pp.2746-2754. (10.1039/c3cy00449j)
- Cao, E. et al., 2013. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles. Catalysis Today 203 , pp.146-152. (10.1016/j.cattod.2012.05.023)
- Conte, M. et al., 2013. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. Journal of Catalysis 297 , pp.128-136. (10.1016/j.jcat.2012.10.002)
- Conte, M. et al., 2013. Characterization of Au3+ species in Au/C catalysts for the hydrochlorination reaction of acetylene. Catalysis Letters 144 (1), pp.1-8. (10.1007/s10562-013-1138-8)
- Conte, M. et al., 2013. Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene. Catalysis Science and Technology 3 (1), pp.128-134. (10.1039/C2CY20478A)
- D'Agostino, C. et al., 2013. Solvent effect and reactivity trend in the aerobic oxidation of 1,3-Propanediols over gold supported on Titania: NMR diffusion and relaxation studies. Chemistry - A European Journal 19 (35), pp.11725-11732. (10.1002/chem.201300502)
- Edwards, J. K. et al. 2013. Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide. Catalysis Science & Technology 3 (3), pp.812-818. (10.1039/c2cy20767b)
- Feng, J. et al., 2013. Au–Pd nanoalloys supported on Mg–Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. Dalton Transactions 42 (40), pp.14498-14508. (10.1039/c3dt51855h)
- Forde, M. M. et al. 2013. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. Journal of the American Chemical Society 135 (30), pp.11087-11099. 130716133536007. (10.1021/ja403060n)
- Hammond, C. et al. 2013. Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation: from synthesis to catalysis. ACS Catalysis 3 (4), pp.689-699. (10.1021/cs3007999)
- Hammond, C. et al. 2013. Aqueous-phase methane oxidation over Fe-MFI zeolites: promotion through isomorphous framework substitution. ACS Catalysis 3 (8), pp.1835-1844. 130702113713003. (10.1021/cs400288b)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162 , pp.365-378. (10.1039/c2fd20153d)
- Marin, R. P. et al., 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140 , pp.671-679. (10.1016/j.apcatb.2013.04.076)
- Miedziak, P. et al. 2013. Physical mixing of metal acetates: optimisation of catalyst parameters to produce highly active bimetallic catalysts. Catalysis Science & Technology 3 (11), pp.2910-2917. (10.1039/c3cy00263b)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3 (9), pp.2425-2434. (10.1039/c3cy00493g)
- Nowicka, E. et al. 2013. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics 15 (29), pp.12147-12155. (10.1039/c3cp50710f)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3 (4), pp.764-772. (10.1021/cs4000359)
- Ryabenkova, Y. et al. 2013. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today 203 , pp.139-145. (10.1016/j.cattod.2012.05.037)
- Meenakshisundaram, S. et al. 2012. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews 41 (24), pp.8099-8139. (10.1039/C2CS35296F)
- Su, R. et al., 2012. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 6 (7), pp.6284-6292. (10.1021/nn301718v)
- Forde, M. M. et al. 2012. Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. Journal of Catalysis 290 , pp.177-185. (10.1016/j.jcat.2012.03.013)
- Ab Rahim, M. H. et al. 2012. Gold, palladium and gold-palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science & Technology 2 (9), pp.1914-1924. (10.1039/C2CY20288C)
- Hammond, C. et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angewandte Chemie - International Edition 51 (21), pp.5129-5133. (10.1002/anie.201108706)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Brett, G. L. et al. 2012. Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science & Technology 2 (1), pp.97-104. (10.1039/c1cy00254f)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2 (1), pp.105-112. (10.1039/c1cy00299f)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Haider, M. et al. 2012. Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis 286 , pp.206-213. (10.1016/j.jcat.2011.11.004)
- Albonetti, S. et al., 2012. Selective oxidation of 5-hydroxymethyl-2-furfural over TiO2-supported gold-copper catalysts prepared from preformed nanoparticles: Effect of Au/Cu ratio. Catalysis Today 195 (1), pp.120-126. (10.1016/j.cattod.2012.05.039)
- Bartley, J. K. et al. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128 , pp.31-38. (10.1016/j.apcatb.2012.03.036)
- Conte, M. et al. 2012. Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism. Physical Chemistry Chemical Physics 14 (47), pp.16279-16285. (10.1039/c2cp43363j)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164 , pp.207-213. (10.1016/j.micromeso.2012.05.001)
- Dimitratos, N. et al. 2012. Gold catalysis: helping create a sustainable future. Applied Petrochemical Research 2 (1-2), pp.7-14. (10.1007/s13203-012-0011-9)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2012. Selective liquid phase oxidation with supported metal nanoparticles. Chemical Science 3 (1), pp.20-44. (10.1039/c1sc00524c)
- Edwards, J. K. et al. 2012. The effect of heat treatment on the performance and structure of carbon-supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Journal of Catalysis 292 , pp.227-238. (10.1016/j.jcat.2012.05.018)
- Hall, S. R. et al., 2012. Biotemplated synthesis of catalytic Au-Pd nanoparticles. RSC Advances 2 (6), pp.2217-2220. (10.1039/c2ra01336c)
- Hammond, C. et al. 2012. Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5. Chemistry - a European Journal 18 (49), pp.15735-15745. (10.1002/chem.201202802)
- Hammond, C. et al. 2012. Cover Picture: Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5 (Chem. Eur. J. 49/2012). Chemistry - A European Journal 18 (49), pp.15557. (10.1002/chem.201290208)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Kondrat, S. A. et al. 2012. Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science 3 (10), pp.2965-2971. (10.1039/c2sc20450a)
- Kotionova, T. et al. 2012. Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters 142 (9), pp.1114-1120. (10.1007/s10562-012-0872-7)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142 (9), pp.1049-1056. (10.1007/s10562-012-0869-2)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6 (8), pp.6600-6613. (10.1021/nn302299e)
- Ntainjua, E. et al. 2012. Direct synthesis of hydrogen peroxide using Au-Pd-exchanged and supported heteropolyacid catalysts at ambient temperature using water as solvent. Green Chemistry 14 (1), pp.170-181. (10.1039/c1gc15863e)
- Ntainjua, E. N. , Freakley, S. J. and Hutchings, G. J. 2012. Direct synthesis of hydrogen peroxide using ruthenium catalysts. Topics in Catalysis 55 (11-13), pp.718-722. (10.1007/s11244-012-9866-3)
- Owen, M. E. et al. 2012. Influence of counterions on the structure of bis(oxazoline) copper(II) complexes; an EPR and ENDOR investigation. Dalton Transactions 41 (36), pp.11085-11092. (10.1039/C2DT31273E)
- Pradhan, S. et al. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142 (3), pp.302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4 (2), pp.134-139. (10.1038/nchem.1245)
- Pradhan, S. et al. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3 (10), pp.2958-2964. (10.1039/c2sc20683h)
- Ryabenkova, Y. et al. 2012. The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis 55 (19-20), pp.1283-1288. (10.1007/s11244-012-9909-9)
- Sá, J. et al., 2012. Redispersion of gold supported on oxides. ACS Catalysis 2 (4), pp.552-560. (10.1021/cs300074g)
- Saiman, M. I. et al. 2012. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angewandte Chemie. International Edition 51 (24), pp.5981-5985. (10.1002/anie.201201059)
- Tiruvalam, R. et al., 2012. Some recent advances in gold-based catalysis facilitated by aberration corrected analytical electron microscopy. Journal of Physics: Conference Series 371 (1) 012028. (10.1088/1742-6596/371/1/012028)
- Brett, G. L. et al. 2011. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angewandte Chemie. International Edition 50 (43), pp.10136-10139. (10.1002/anie.201101772)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281 (2), pp.279-289. (10.1016/j.jcat.2011.05.012)
- Lopez-Sanchez, J. A. et al. 2011. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chemistry 3 (7), pp.551-556. (10.1038/nchem.1066)
- Thetford, A. et al. 2011. The decomposition of H2O2 over the components of Au/TiO2 catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467 (2131), pp.1885-1899. (10.1098/rspa.2010.0561)
- Meenakshisundaram, S. et al. 2011. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. Chemistry - A European Journal 17 (23), pp.6524-6532. (10.1002/chem.201003484)
- Hammond, C. et al. 2011. Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts. Dalton Transactions 40 (15), pp.3927-3937. (10.1039/c0dt01389g)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 163 (1), pp.47-54. (10.1016/j.cattod.2010.02.051)
- Jalama, K. et al., 2011. A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer-Tropsch reaction. Applied Catalysis A: General 395 (1-2), pp.1-9. (10.1016/j.apcata.2011.01.002)
- Mantle, M. D. et al., 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115 (4), pp.1073-1079. (10.1021/jp105946q)
- Bawaked, S. M. et al. 2011. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts: an investigation of catalyst re-use. Green Chemistry 13 (1), pp.127-134. (10.1039/c0gc00550a)
- Bawaked, S. M. et al. 2011. Selective oxidation of alkenes using graphite-supported gold-palladium catalysts. Catalysis Science & Technology 1 (5), pp.747-759. (10.1039/c1cy00122a)
- Bracey, C. et al. 2011. Understanding the effect of thermal treatments on the structure of CuAu/SiO2 catalysts and their performance in propene oxidation. Catalysis Science & Technology 1 (1), pp.76-85. (10.1039/c0cy00003e)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13 (7), pp.2528-2538. (10.1039/c0cp01852j)
- Davies, R. J. et al. 2011. The oxidation of Fe(111). Surface Science 605 (17-18), pp.1754-1762. (10.1016/j.susc.2011.06.017)
- Dummer, N. et al. 2011. Reprint of: Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, -palladium catalysts. Catalysis Today 160 (1), pp.50-54. (10.1016/j.cattod.2010.12.014)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283 (2), pp.161-167. (10.1016/j.jcat.2011.08.003)
- Lopez-Sanchez, J. A. et al. 2011. Reactivity studies of Au-Pd supported nanoparticles for catalytic applications. Applied Catalysis A: General 391 (1-2), pp.400-406. (10.1016/j.apcata.2010.05.010)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 164 (1), pp.315-319. (10.1016/j.cattod.2010.10.028)
- Ntainjua Ndifor, E. et al. 2011. Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts. Catalysis Today 178 (1), pp.47-50. (10.1016/j.cattod.2011.06.024)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1 (5), pp.740-746. (10.1039/c1cy00064k)
- Taufiq-Yap, Y. H. et al., 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141 (3), pp.400-407. (10.1007/s10562-010-0508-8)
- Taufiq-Yap, Y. et al., 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20 (6), pp.635-638. (10.1016/S1003-9953(10)60251-4)
- Tiruvalam, R. C. et al., 2011. Aberration corrected analytical electron microscopy studies of sol-immobilized Au + Pd, Au{Pd} and Pd{Au} catalysts used for benzyl alcohol oxidation and hydrogen peroxide production. Faraday Discussions 152 , pp.63-86. (10.1039/c1fd00020a)
- Weng, W. et al., 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21 (40), pp.16136-16146. (10.1039/c1jm12456k)
- Yaseneva, P. , Bowker, M. and Hutchings, G. J. 2011. Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method. Physical Chemistry Chemical Physics 13 (41), pp.18609-18614. (10.1039/c1cp21516g)
- Solsona, B. et al., 2011. The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B - Environmental 101 (3-4), pp.388-396. (10.1016/j.apcatb.2010.10.008)
- Cao, E. et al., 2011. Reaction and Raman spectroscopic studies of alcohol oxidation on gold-palladium catalysts in microstructured reactors. Chemical Engineering Journal 167 (2-3), pp.734-743. (10.1016/j.cej.2010.08.082)
- Falletta, E. et al., 2011. Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts. Faraday Discussions 152 , pp.367-379. (10.1039/c1fd00063b)
- Hutchings, G. J. 2011. Preface. Faraday Discussions 152 , pp.9-10. (10.1039/c1fd90029c)
- Jeffs, L. E. et al. 2011. On the enantioselectivity of aziridination of styrene catalysed by copper triflate and copper-exchanged zeolite Y: consequences of the phase behaviour of enantiomeric mixtures of N-arene-sulfonyl-2-phenylaziridines. Organic & Biomolecular Chemistry 9 (4), pp.1079-1084. (10.1039/c0ob00724b)
- Kesavan, L. et al. 2011. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331 (6014), pp.195-199. (10.1126/science.1198458)
- Pagliaro, M. and Hutchings, G. J. 2011. Heterogeneous catalysis for fine chemicals [Editorial]. Catalysis Science & Technology 1 (9), pp.1543. (10.1039/c1cy90035h)
- Pasini, T. et al., 2011. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chemistry 13 (8), pp.2091-2099. (10.1039/c1gc15355b)
- Sá, J. et al., 2011. Influence of methyl halide treatment on gold nanoparticles supported on activated carbon. Angewandte Chemie - International Edition 50 (38), pp.8912-8916. (10.1002/anie.201102066)
- Myakonkaya, O. et al., 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350 (2), pp.443-445. (10.1016/j.jcis.2010.06.064)
- Hutchings, G. J. 2010. Metal-cluster catalysts: Access granted. Nature Chemistry 2 (12), pp.1005-1006. (10.1038/nchem.868)
- Morgan, K. et al., 2010. TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts. Journal of Catalysis 276 (1), pp.38-48. (10.1016/j.jcat.2010.08.013)
- Cole, K. J. et al., 2010. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catalysis Letters 138 (3-4), pp.143-147. (10.1007/s10562-010-0392-2)
- Pritchard, J. C. et al. 2010. Direct Synthesis of Hydrogen Peroxide and Benzyl Alcohol Oxidation Using Au−Pd Catalysts Prepared by Sol Immobilization. Langmuir 26 (21), pp.16568-16577. (10.1021/la101597q)
- Hutchings, G. J. 2010. Dealloying Shows the Way to New Catalysts. Chemsuschem 3 (4), pp.429-430. (10.1002/cssc.201000043)
- Al Otaibi, R. et al., 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2 (4), pp.443-452. (10.1002/cctc.200900274)
- He, Q. et al., 2010. Identifying Potential Active Species in Au/ZnO CO Oxidation Catalysts [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1188-1189. (10.1017/S1431927610060186)
- Al-Otaibi, N. M. K. and Hutchings, G. J. 2010. Aromatization of Isobutene Using H-ZSM-5/Oxide Composite Catalysts. Catalysis Letters 134 (3-4), pp.191-195. (10.1007/s10562-009-0255-x)
- Barrea, C. et al., 2010. Prenatal diagnosis of isolated total anomalous systemic venous return to the coronary sinus. Ultrasound in Obstetrics and Gynecology 35 (1), pp.117-119. (10.1002/uog.7516)
- Dummer, N. et al. 2010. Oxidative dehydrogenation of cyclohexane and cyclohexene over supported gold, palladium and gold-palladium catalysts. Catalysis Today 154 (1-2), pp.2-6. (10.1016/j.cattod.2010.03.031)
- Dummer, N. et al. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376 (1-2), pp.47-55. (10.1016/j.apcata.2009.10.004)
- Gevaert, T. et al., 2010. Maturation of stretch-induced contractile activity and its muscarinic regulation in isolated whole bladder strips from rat. Neurourology and Urodynamics 29 (5), pp.789-796. (10.1002/nau.20553)
- Lin, Z. et al. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157 (1-4), pp.211-216. (10.1016/j.cattod.2010.03.013)
- Meenakshisundaram, S. et al. 2010. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discussions 145 , pp.341-356. (10.1039/b908172k)
- Myakonkaya, O. et al., 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3 (3), pp.339-341. (10.1002/cssc.200900280)
- Piccinini, M. et al. 2010. Effect of the reaction conditions on the performance of Au-Pd/TiO2 catalyst for the direct synthesis of hydrogen peroxide. Physical Chemistry Chemical Physics 12 (10), pp.2488-2492. (10.1039/b921815g)
- Pritchard, J. C. et al. 2010. The effect of catalyst preparation method on the performance of supported Au-Pd catalysts for the direct synthesis of hydrogen peroxide. Green Chemistry 12 (5), pp.915-921. (10.1039/b924472g)
- Pritchard, J. C. et al. 2010. Selective oxidation using supported gold and gold palladium nanoparticles prepared by sol-immobilisation. Zeitschrift für anorganische und allgemeine Chemie 636 (11), pp.2034. (10.1002/zaac.201007002)
- Sithamparappillai, U. et al., 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20 (25), pp.5310-5318. (10.1039/c0jm00403k)
- Taufiq-Yap, Y. et al. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28 (10), pp.997-1012. (10.1080/10916460903058004)
- Weng, W. et al., 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1198-1199. (10.1017/S1431927610059805)
- Xu, C. et al., 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138 (1-2), pp.1-7. (10.1007/s10562-010-0365-5)
- Meenakshisundaram, S. et al. 2009. Oxidation of Glycerol to Glycolate by using Supported Gold and Palladium Nanoparticles. Chemsuschem 2 (12), pp.1145-1151. (10.1002/cssc.200900133)
- Edwards, J. K. et al. 2009. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323 (5917), pp.1037-1041. (10.1126/science.1168980)
- Ntainjua Ndifor, E. et al. 2009. The Effect of Bromide Pretreatment on the Performance of Supported Au–Pd Catalysts for the Direct Synthesis of Hydrogen Peroxide. ChemCatChem 1 (4), pp.479-484. (10.1002/cctc.200900171)
- Bawaked, S. M. et al. 2009. Solvent-free selective epoxidation of cyclooctene using supported gold catalysts. Green Chemistry 11 (7), pp.1037-1044. (10.1039/b823286p)
- Bracey, C. , Ellis, P. R. and Hutchings, G. J. 2009. Application of copper-gold alloys in catalysis: current status and future perspectives. Chemical Society Reviews 38 (8), pp.2231-2243. (10.1039/b817729p)
- Conte, M. et al. 2009. Corrigendum to 'Hydrochlorination of acetylene using supported bimetallic Au-based catalysts' [J. Catal. 257 (2008) 190-198]. Journal of Catalysis 266 (1), pp.164. (10.1016/j.jcat.2009.06.002)
- Dimitratos, N. et al. 2009. Oxidation of glycerol using gold-palladium alloy-supported nanocrystals. Physical Chemistry Chemical Physics 11 (25), pp.4952-4961. (10.1039/b904317a)
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2009. Green Catalysis with Alternative Feedstocks. Topics in Catalysis 52 (3), pp.258-268. (10.1007/s11244-008-9162-4)
- Dimitratos, N. et al. 2009. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry 11 (8), pp.1209-1216. (10.1039/b823285g)
- Dimitratos, N. et al. 2009. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Physical Chemistry Chemical Physics 11 (25), pp.5142-5153. (10.1039/b900151b)
- Edwards, J. K. et al. 2009. Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold–palladium catalysts supported on acid-pretreated TiO2. Angewandte Chemie 48 (45), pp.8512-8515. (10.1002/anie.200904115)
- Hutchings, G. J. 2009. A golden future. Nature Chemistry 1 (7), pp.584-584. (10.1038/nchem.388)
- Hutchings, G. J. 2009. Catalyst Synthesis Using Supercritical Carbon Dioxide: A Green Route to High Activity Materials. Topics in Catalysis 52 (8), pp.982-987. (10.1007/s11244-009-9248-7)
- Hutchings, G. J. 2009. Heterogeneous catalysts-discovery and design. Journal of Materials Chemistry 19 (9), pp.1222-1235. (10.1039/b812300b)
- Hutchings, G. J. 2009. Nanocrystalline gold catalysts: A reflection on catalyst discovery and the nature of active sites. Gold Bulletin 42 (4), pp.260-266. (10.1007/BF03214947)
- Jones, C. et al. 2009. Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity. Journal of Molecular Catalysis A: Chemical 305 (1-2), pp.121-124. (10.1016/j.molcata.2008.10.027)
- Lee, A. F. et al. 2009. In situ X-ray studies of crotyl alcohol selective oxidation over Au/Pd(111) surface alloys. Catalysis Today 145 (3-4), pp.251-257. (10.1016/j.cattod.2008.10.034)
- Lu, T. J. et al., 2009. Production of titania nanoparticles by a green process route. Powder Technology 188 (3), pp.264-271. (10.1016/j.powtec.2008.05.006)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19 (45), pp.8619-8627. (10.1039/b911102f)
- Ntainjua Ndifor, E. et al. 2009. Effect of Halide and Acid Additives on the Direct Synthesis of Hydrogen Peroxide using Supported Gold-Palladium Catalysts. Chemsuschem 2 (6), pp.575-580. (10.1002/cssc.200800257)
- Pollington, S. D. et al., 2009. Enhanced selective glycerol oxidation in multiphase structured reactors. Catalysis Today 145 (1-2), pp.169-175. (10.1016/j.cattod.2008.04.020)
- Solsona, B. et al., 2009. TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Applied Catalysis a-General 365 (2), pp.222-230. (10.1016/j.apcata.2009.06.016)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1 (2), pp.247-251. (10.1002/cctc.200900195)
- Taufiq-Yap, Y. H. et al., 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130 (3-4), pp.327-334. (10.1007/s10562-009-0003-2)
- Weng, W. et al., 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15 (SUPPL.), pp.1412-1413. (10.1017/S1431927609092332)
- Weng, W. et al., 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15 (SUPPL.), pp.1438-1439. (10.1017/S1431927609094203)
- Huang, H. et al., 2008. Purification of chemical feedstocks by the removal of aerial carbonyl sulfide by hydrolysis using rare earth promoted alumina catalysts. Green Chemistry 10 (5), pp.571-577. (10.1039/b717031a)
- Conte, M. et al., 2008. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts. Journal of Catalysis 257 (1), pp.190-198. (10.1016/j.jcat.2008.04.024)
- Conte, M. , Carley, A. F. and Hutchings, G. J. 2008. Reactivation of a carbon-supported gold catalyst for the hydrochlorination of acetylene. Catalysis Letters 124 (3-4), pp.165-167. (10.1007/s10562-008-9583-5)
- Edwards, J. K. et al. 2008. Direct synthesis of hydrogen peroxide from H-2 and O-2 using supported Au-Pd catalysts. Faraday Discussions 138 , pp.225-239. (10.1039/b705915a)
- Edwards, J. K. and Hutchings, G. J. 2008. Palladium and Gold-Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angewandte Chemie - International Edition 47 (48), pp.9192-9198. (10.1002/anie.200802818)
- Edwards, J. K. et al. 2008. Au-Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2. Green Chemistry 10 (4), pp.388-394. (10.1039/b714553p)
- Edwin, N. N. et al., 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10 (11), pp.1162-1169. (10.1039/b809881f)
- Goh, C. K. et al., 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131 (1-4), pp.408-412. (10.1016/j.cattod.2007.10.059)
- Herzing, A. et al., 2008. Elemental mapping of nanoscale structures in the aberration-corrected analytical electron microscope. Microscopy and Microanalysis 14 (S), pp.1368-1369. (10.1017/S1431927608086674)
- Herzing, A. A. et al., 2008. Microstructural development and catalytic performance of Au-Pd nanoparticles on Al2O3 supports: The effect of heat treatment temperature and atmosphere. Chemistry of Materials 20 (4), pp.1492-1501. (10.1021/cm702762d)
- Herzing, A. A. et al., 2008. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321 (5894), pp.1331-1335. (10.1126/science.1159639)
- Herzing, A. A. et al., 2008. Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discussions 138 , pp.337-351. (10.1039/b706293c)
- Hutchings, G. J. 2008. CATL 16-Green chemistry using gold catalysis [Abstract]. Abstracts of Papers of the American Chemical Society 235 , pp.16.
- Hutchings, G. J. 2008. FUEL 89-Green catalysis with alternative feedstocks. Abstracts of Papers of the American Chemical Society 235 , pp.89-FUEL.
- Hutchings, G. J. 2008. I&EC 1-Green catalysis with alternative feedstocks. Abstracts of Papers of the American Chemical Society 235 , pp.1-IEC.
- Hutchings, G. J. 2008. Nanocrystalline gold and gold palladium alloy catalysts for chemical synthesis. Chemical Communications (10), pp.1148-1164. (10.1039/b712305c)
- Hutchings, G. J. 2008. Nanocrystalline gold and gold-palladium alloy oxidation catalysts: a personal reflection on the nature of the active sites. Dalton Transactions (41), pp.5523-5536. (10.1039/b804604m)
- Hutchings, G. J. 2008. PETR 38-Methanol conversion using composite catalysts. Abstracts of Papers of the American Chemical Society 235 , pp.38-PETR.
- Hutchings, G. J. 2008. Reactions of alkynes using heterogeneous and homogeneous cationic gold catalysts. Topics in Catalysis 48 (1-4), pp.55-59. (10.1007/s11244-008-9048-5)
- Hutchings, G. J. 2008. Supported gold and gold palladium catalysts for selective chemical synthesis. Catalysis Today 138 (1-2), pp.9-14. (10.1016/j.cattod.2008.04.029)
- Hutchings, G. J. , Brust, M. and Schmidbaur, H. 2008. Gold - an introductory perspective. Chemical Society Reviews 37 (9), pp.1759-1765. (10.1039/b810747p)
- Hutchings, G. J. , Brust, M. and Schmidbaur, H. 2008. Instant insight: The wonder of gold. Highlights in Chemical Technology 2008 (9)
- Jones, C. et al. 2008. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications 2008 (14), pp.1707-1709. (10.1039/b800052m)
- Lopez-Sanchez, J. A. et al. 2008. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Physical Chemistry Chemical Physics 10 (14), pp.1921-1930. (10.1039/b719345a)
- Ntainjua Ndifor, E. et al. 2008. The role of the support in achieving high selectivity in the direct formation of hydrogen peroxide. Green Chemistry 10 (11), pp.1162-1169. (10.1039/b809881f)
- Xu, C. et al., 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49 (15), pp.2454-2456. (10.1016/j.tetlet.2008.02.030)
- Conte, M. et al. 2007. Selective formation of chloroethane by the hydrochlorination of ethene using zinc catalysts. Journal of Catalysis 252 (1), pp.23-29. (10.1016/j.jcat.2007.09.002)
- Enache, D. I. et al., 2007. Intensification of the solvent-free catalytic hydroformylation of cyclododecatriene: Comparison of a stirred batch reactor and a heat-exchange reactor. Catalysis Today 128 (1-2 SP), pp.18-25. (10.1016/j.cattod.2007.08.011)
- Enache, D. I. et al., 2007. Multiphase hydrogenation of resorcinol in structured and heat exchange reactor systems. Influence of the catalyst and the reactor configuration. Catalysis Today 128 (1-2 SP), pp.26-35. (10.1016/j.cattod.2007.08.012)
- Enache, D. I. et al., 2007. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance. Catalysis Today 122 (3-4), pp.407-411. (10.1016/j.cattod.2007.01.003)
- Tang, Z. et al., 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249 (2), pp.208-219. (10.1016/j.jcat.2007.04.016)
- Al-Sayari, S. et al., 2007. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: Comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Topics in Catalysis 44 (1-2), pp.123-128. (10.1007/s11244-007-0285-9)
- Conte, M. et al., 2007. Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. Journal of Catalysis 250 (2), pp.231-239. (10.1016/j.jcat.2007.06.018)
- Dimitratos, N. et al. 2007. Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique. Catalysis Today 122 (3-4), pp.317-324. (10.1016/j.cattod.2007.01.002)
- Herzing, A. A. et al., 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13 , pp.102-103. (10.1017/S143192760707660X)
- Jalama, K. et al., 2007. Effect of the addition of Au on Co/TiO2 catalyst for the Fischer-Tropsch reaction. Topics in Catalysis 44 (1-2), pp.129-136. (10.1007/s11244-007-0286-8)
- Zhao, Y. et al., 2007. Study of carbon monoxide hydrogenation over supported Au catalysts. Studies in Surface Science and Catalysis 163 , pp.141-151. (10.1016/S0167-2991(07)80477-0)
- Conte, M. et al., 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313 (5791), pp.1270-1273. (10.1126/science.1130493)
- Solsona, B. E. et al. 2006. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A General 312 , pp.67-76. (10.1016/j.apcata.2006.06.016)
- Coquet, R. et al., 2006. Calculations on the adsorption of Au to MgO surfaces using SIESTA. Journal of Materials Chemistry 16 (20), pp.1978-1988. (10.1039/b601213b)
- Enache, D. I. et al. 2006. Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science 311 (5759), pp.362-365. (10.1126/science.1120560)
- Huang, H. et al., 2006. High temperature COS hydrolysis catalysed by γ-Al2O 3. Catalysis Letters 110 (3-4), pp.243-246. (10.1007/s10562-006-0115-x)
- Song, N. et al., 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106 (3-4), pp.127-131. (10.1007/s10562-005-9619-z)
- Tang, Z. et al., 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162 , pp.219-226. (10.1016/S0167-2991(06)80910-9)
- Song, N. et al., 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236 (2), pp.282-291. (10.1016/j.jcat.2005.10.008)
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. Journal of Catalysis 236 (1), pp.69-79. (10.1016/j.jcat.2005.09.015)
- Hughes, M. D. et al., 2005. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437 (7062), pp.1132-1135. (10.1038/nature04190)
- Edwards, J. K. et al. 2005. Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3catalysts. Journal of Materials Chemistry 15 (43), pp.4595-4600. (10.1039/b509542e)
- Enache, D. I. et al., 2005. The hydrogenation of isophorone to trimethyl cyclohexanone using the downflow single capillary reactor. Catalysis Today 105 (3-4), pp.569-573. (10.1016/j.cattod.2005.06.013)
- Jeffery, E. L. et al., 2005. A density functional theory study of the adsorption of acetone to the (111) surface of Pt: Implications for hydrogenation catalysis. Catalysis Today 105 (1), pp.85-92. (10.1016/j.cattod.2005.04.013)
- Enache, D. I. et al., 2005. Experimental evaluation of a three-phase downflow capillary reactor. Industrial and Engineering Chemistry Research 44 (16), pp.6295-6303. (10.1021/ie049140y)
- Huang, H. et al., 2005. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters 104 (1-2), pp.17-21. (10.1007/s10562-005-7430-5)
- Zhao, Y. et al., 2005. Study of carbon monoxide hydrogenation over Au supported on zinc oxide catalysts. American Chemical Society, Division of Petroleum Chemistry, Preprints 50 (2), pp.206-207.
- Solsona, B. E. et al. 2004. Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry 28 (6), pp.708-711. (10.1039/b315391f)
- Caplan, N. A. et al., 2004. Heterogeneous Enantioselective Catalysed Carbonyl- and Imino-ene Reactions using Copper bis(oxazoline) Zeolite Y. Angewandte Chemie International Edition 43 (13), pp.1685-1688. (10.1002/anie.200352534)
- Li, X. et al., 2004. Enantioselective hydrogenation using cinchona-modified Pt/γ-Al 2O3 catalysts: Comparison of the reaction of ethyl pyruvate and buta-2,3-dione. Catalysis Letters 96 (3-4), pp.147-151. (10.1023/B:CATL.0000030112.70608.a0)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2004. Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using α-Al2O3. New Journal of Chemistry 28 (4), pp.471-476. (10.1039/b312340p)
- Mirzaei, A. A. et al., 2003. Characterisation of copper-manganese oxide catalysts: Effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Applied Catalysis A: General 253 (2), pp.499-508. (10.1016/S0926-860X(03)00563-5)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 2003. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catalysis Today 84 (3-4), pp.113-119. (10.1016/S0920-5861(03)00264-5)
- Taylor, S. H. et al. 2003. The partial oxidation of propane to formaldehyde using uranium mixed oxide catalysts. Catalysis Today 81 (2), pp.171-178. (10.1016/S0920-5861(03)00110-X)
- Hammond, C. R. et al. 2003. A study of methane activation by modified gallium- and zinc-based catalysts. Research on Chemical Intermediates 29 (7-9), pp.911-920. (10.1163/156856703322601906)
- Mirzaei, A. A. et al., 2003. Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na+ acting as catalyst poison. Catalysis Communications 4 (1), pp.17-20. (10.1016/S1566-7367(02)00231-5)
- Mirzaei, A. A. et al., 2003. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate aging atmosphere on catalyst activity. Catalysis Letters 87 (3-4), pp.103-108. (10.1023/A:1023416819195)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2003. Synthesis of methyl mercaptan and thiophene from CO/H2/H 2S using α-Al2O3. Catalysis Letters 91 (3-4), pp.181-183. (10.1023/B:CATL.0000007152.91400.95)
- Hargreaves, J. S. J. et al., 2002. A study of the methane-deuterium exchange reaction over a range of metal oxides. Applied Catalysis A: General 227 (1-2), pp.191-200. (10.1016/S0926-860X(01)00935-8)
- Harris, R. H. et al. 2002. Water as a promoter of the complete oxidation of volatile organic compounds over uranium oxide catalysts. Catalysis Letters 78 (1-4), pp.369-372. (10.1023/A:1014916920128)
- Whittle, D. M. et al., 2002. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate ageing on catalyst activity. Physical Chemistry Chemical Physics 4 (23), pp.5915-5920. (10.1039/b207691h)
- Cooper, C. A. et al. 2001. A combined experimental and theoretical approach to the study of methane activation over oxide catalysts. Catalysis Today 71 (1-2), pp.3-10. (10.1016/S0920-5861(01)00446-1)
- Cooper, C. A. et al. 2001. The role of gallium oxide in methane partial oxidation catalysts: an experimental and theoretical study. Studies in Surface Science and Catalysis 136 , pp.319-324.
- Taylor, S. H. et al. 2001. Water as a promoter of VOC destruction over uranium oxide catalysts. Abstracts of papers of the American Chemical Society 222 , pp.U378-U379.
- Traa, Y. et al., 2001. An EPR study on the enantioselective aziridination properties of a CuNaY zeolite. Physical Chemistry Chemical Physics 3 (6), pp.1073-1080. (10.1039/B010083H)
- Taylor, S. H. et al. 2000. Activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catalysis Today 59 (3), pp.249-259. (10.1016/S0920-5861(00)00291-1)
- Piaggio, P. et al. 2000. Enantioselective epoxidation of (Z)-stilbene using a chiral Mn(III)-salen complex: effect of immobilisation on MCM-41 on product selectivity. Journal of the Chemical Society - Perkins Transactions 2 2000 (10), pp.2008-2015. (10.1039/B005752P)
- Taylor, S. H. et al. 2000. Structure and activity relationships for copper manganese and copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation [Abstract]. Abstracts of papers of the American Chemical Society 219 , pp.U534-U534.
- Heneghan, C. S. et al. 1999. A temporal analysis of products study of the mechanism of VOC catalytic oxidation using uranium oxide catalysts. Catalysis Today 54 (1), pp.3-12. (10.1016/S0920-5861(99)00162-5)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 1999. Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications (15), pp.1373-1374. (10.1039/A903426I)
- Hutchings, G. J. and Taylor, S. H. 1999. Designing oxidation catalysts. Catalysis Today 49 (1-3), pp.105-113.
- Hutchings, G. J. , Taylor, S. H. and Hudson, I. D. 1999. Designing heterogeneous oxidation catalysts. Studies in Surface Science and Catalysis 121 , pp.85-92. (10.1016/S0167-2991(99)80049-4)
- Taylor, S. H. et al. 1998. The partial oxidation of methane to methanol: an approach to catalyst design. Catalysis Today 42 (3), pp.217-224. (10.1016/S0920-5861(98)00095-9)
- Hutchings, G. J. et al. 1998. Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General 166 (1), pp.143-152. (10.1016/S0926-860X(97)00248-2)
- Hutchings, G. J. et al. 1997. A novel approach to the scientific design of oxide catalysts for the partial oxidation of methane to methanol. Studies in Surface Science and Catalysis 107 , pp.41-46. (10.1016/S0167-2991(97)80314-X)
- Hutchings, G. J. et al. 1997. The catalytic combustion of volatile chloro-organic compounds using uranium oxide catalysts. Preprints - American Chemical Society, Division of Petroleum Chemistry 42 (1), pp.142-145.
- Hutchings, G. J. et al. 1996. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature 384 (6607), pp.341-343. (10.1038/384341a0)
- Hutchings, G. J. 1985. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. Journal of Catalysis 96 (1), pp.292-295. (10.1016/0021-9517(85)90383-5)
Book sections
- Hutchings, G. 2024. Guest column: time, money, and great ideas. In: Niemantverdriet, H. and Felderhof, J. K. eds. Towards Scientific Leadership: Personal Development Advice for Young Academics. De Gruyter
- Hutchings, G. et al. 2023. Back Matter. In: Hutchings, G. et al., Modern Developments in Catalysis. London, UK: World Scientific Publishing Europe Ltd.. , pp.595 - 607. (10.1142/9781800612013_bmatter)
- Hutchings, G. et al. 2023. Front Matter. In: Hutchings, G. et al., Modern Developments in Catalysis. Vol. 2, London, UK: World Scientific Publishing Europe Ltd. , pp.i–xxxi. (10.1142/9781800612013_fmatter)
- Ou, X. et al., 2023. Catalytic treatment of high ionic strength wastewater from shale gas production. In: Modern Developments in Catalysis. Vol. 2, World Scientific Publishing Europe Ltd.. , pp.1-52. (10.1142/9781800612013_0001)
- Taylor, S. et al. 2022. Selective oxidation of methane to oxygenates using heterogeneous catalysts. In: Li, L. and Hargreaves, J. eds. Heterogeneous Catalysis for Sustainable Energy. Weinheim: Wiley. , pp.183-203.
- Dimitratos, N. , Lopez-Sanchez, J. A. and Hutchings, G. J. 2014. Supported metal nanoparticles in liquid-phase oxidation reactions. In: Duprez, D. and Cavani, F. eds. Handbook Of Advanced Methods And Processes In Oxidation Catalysis: From Laboratory To Industry. London,UK: Imperial College Press. , pp.631-678. (10.1142/9781848167513_0022)
- Dimitratos, N. , Kiely, C. J. and Hutchings, G. J. 2013. CHAPTER 1. General introduction to the field of environmental catalysis: green catalysis with supported gold and gold bimetallic nanoparticles. In: Avgouropoulos, G. and Tabakova, T. eds. Environmental Catalysis over Gold-Based Materials. Royal Society of Chemistry. , pp.1-20. (10.1039/9781849737364-00001)
- Bartley, J. K. et al. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons(10.1002/0471227617.eoc139.pub2)
- Hutchings, G. J. 2007. Catalysis by Gold: recent advances in oxidation reactions. In: Zhou, B. et al., Nanotechnology in Catalysis 3. Vol. 248, Nanostructure Science and Technology New York, NY: Springer. , pp.39-54. (10.1007/978-0-387-34688-5_4)
Books
- Hutchings, G. et al. 2023. Modern developments in catalysis - Volume 2. World Scientific Publishing Europe Ltd. (10.1142/q0354)
Conferences
- Agarwal, N. et al. 2018. Low temperature selective methane oxidation to methanol utilizing molecular oxygen with gold palladium colloidal catalysts. Presented at: 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water New Orleans, LA, USA 18-22 March 2018. Abstracts of Papers of the American Chemical Society. Vol. 255.American Chemical Society. , pp.35.
- Hammond, C. et al. 2013. Insights into the selective and catalytic oxidation of methane to methanol with Cu-promoted Fe-ZSM-5 at mild conditions [Abstract]. Presented at: 245th ACS National Meeting New Orleans, LA 7-11 April 2013. American Chemical Society.
- Alotaibi, R. and Hutchings, G. J. 2011. Seeding effect on the transformation of VO(H(2)PO(4))(2) into catalyst precursors VOHPO4(A)over-cap center dot 0.5H(2)O. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA, USA 27-31 March 2011.
- Hutchings, G. J. et al. 2011. Selective epoxidation of cyclooctene using graphite-supported gold and gold palladium catalysts. Presented at: 241st ACS National Meeting and Exposition Anaheim, CA 27-31 March 2011.
- Hutchings, G. J. , Dimitratos, N. and Miedziak, P. J. 2011. Nanocrystalline gold catalysts for selective oxidation. Presented at: 242nd ACS National Meeting Denver, Co 28 August - 1 September 2011. Vol. 242.American Chemical Society.
- Lopez-Sanchez, J. A. et al. 2010. Using gold catalysts for upgrading glycerol from biodiesel production: Selective oxidation and synthesis of glycerol carbonate [Abstract]. Presented at: 240th ACS National Meeting Boston, USA 22-26 August 2010.
- Hutchings, G. J. and Taylor, S. H. 2007. Copper manganese based mixed oxides for CO oxidation at ambient temperature. Presented at: 234th ACS National Meeting Boston, MA, USA 19-23 August 2007.
- Hudson, I. D. et al., 1997. New class of uranium oxide catalysts for the oxidative destruction of volatile organic compounds in the vapour phase. Presented at: 90th Annual Meeting Air Waste Management Association Toronto, Canada 8-13 June 1997. Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition. Toronto, Canada: Air & Waste Management Association
Patents
- Hutchings, G. J. , Iqbal, S. and Karim, K. 2012. Carbon supported cobalt and molybdenum catalyst. WO 2012143131 A1[Patent]
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
- Lopez-Sanchez, J. A. et al., 2011. Hydrocarbon selective oxidation with heterogeneous gold catalysts. Patent WO 2011051642[Patent]
Research
- The study of gold nanocrystals as novel active heterogeneous catalysts and their characterisation.
- The design of selective oxidation and hydrogenation catalysts and their study using in situ spectroscopy.
- Designing novel heterogeneous catalysts
Supported gold and gold palladium alloy catalysts have been found to be particularly effective for a number of selective oxidation reactions. Supporting gold on graphite or activated carbon makes catalysts that can oxidise alkenes with molecular oxygen under mild conditions. New gold palladium catalysts have been designed that can be used under inherently safe, non-explosive conditions. The gold palladium nanocrystals have been found to have both core shell structure as well as being homogenous alloys and can give exceptionally high rates of synthesis without making water as a by-product. The same catalysts have been shown to be equally effective for the oxidation of primary alcohols using oxygen under mild solvent-free conditions. We have found that benzyl alcohol can be oxidised using oxygen under mild reaction conditions (100-160 °C) in the absence of solvent to give benzaldehyde in high selectivity will a yield of over 90%. Other alcohols can also be reacted and, in particular, primary alcohols, which are normally very unreactive can readily be oxidised. This work has been extended to new oxidation target reactions, including hydrocarbon oxidation. We have found that toluene can be selectively oxidized to benzoyl benzoate using supported gold palladium alloy catalysts prepared using a sol-immobilisation method. In addition we have found a non complex method for removing residual ligands that can remain on the surface of metal nanoparticles prepared using the sol- immobilsation method. Research in the group is now actively investigating the oxidation of methane and other alkanes.
Links
For more information on specific projects available with Professor Graham Hutchings please review the Catalysis and interfacial science section of our research project themes.
Biography
Education and Qualifications:
1972 - BSc in Chemistry with First Class Honours, University College London
1975 - PhD in Biological Chemistry, University College London. Supervisor: Prof C Vernon
2002 - DSc (University of London)
Professional Appointments:
1975 - 1984 ICI Petrochemicals Division
1975 - 1978 Technical Officer, Research Department Wilton, Teeside
1978 - 1981 Plant Manager and Production Support manager, Oil Works, Teeside
1981 - 1983 Senior Research Officer, AECI, Modderfontein, S Africa (Seconded)
1983 - 1984 Chief Research Officer, AECI, Modderfontein, S Africa (Seconded)
1984 - 1987 University of Witwatersrand, S Africa
1984 - 1987 Lecturer (1984-6),Senior Lecturer (1986-7)in Chemistry
1987 - Professor
1987 - 1997 University of Liverpool
1987 - 1994 Assistant Director of the Leverhulme Centre for Innovative Catalysis
1994 - 1997 Deputy Director and Professor
1997 - present Cardiff University
1997 - 2006 Head of School and Professor of Physical Chemistry
2006 - 2019 Distinguished Research Professor
2008 - 2019 Director: Cardiff Catalysis Institute
2010 - 2012 Pro Vice-Chancellor Research
2016 - present Regius Professor of Chemistry
Honours and awards
Prizes/ Distinctions
*Langmuir Distinguished Lecturer Award, Division of Colloid and Surface,Science, ACS, August 1996.
*Member of the Fachbeirat of the Fritz-Haber-Institut, Berlin, 1999-2015.
*Member of Sasol (South Africa) Heterogeneous Catalysis Advisory Board : 2000-2009.
*Member of NIOK International Review Group 2000, 2006, 2010 (Chair).
*DGMK 2001 – Kolleg Lectureship, Germany, 2001.
*Invited Professor in Residence at the Université Pierre et Marie Curie, Paris, 2003-4.
*IChemE Entech Medal 2004.
*Appointed RAE panel member for Chemistry (Panel 18) 2005-2008.
*RSC 2004 Award for Heterogeneous Catalysis.
*2006 François Gault Lecturer of the European Federation of Catalysis Societies
*I Chem E Impact Award for Applied Catalysis 2005.
*RSC Green Chemistry Lecturer 2007.
*IChemE Environwise Award for Green Chemistry 2007.
*Winner Dow Methane Challenge 24th January 2008.
*Elected Fellow of the Royal Society 2009
*RSC Award for Surfaces and Interfaces 2009
*I Chem E Sustainability Award 2009
*Appointed chair of SCORE 2010-2013
*Elected member Academia Europaea September 2010
*Elected Founding Fellow Learned Society of Wales
*Appointed REF Panel member and Deputy Chair for Chemistry (Panel B8) 2011-2014.
*Appointed President Elect of the Faraday Division of RSC 2010 President 2012-2015.
*IPMI Henry J. Albert Award 2011
*France Great Britain Chemistry Prize 2011
*Dechema Alvin Mittasch Award 2012
*International Association of Catalysis Societies Heinz Heinemann Award 2012
*Thompson Reuters Citation Laureate September 2012
*Distinguished Visiting Lecturer, Catalysis Society of South Africa, 2013.
*Royal Society Davy Medal 2013
*Dewar Lectureship, Queen Mary College, London.
*Thompson Reuters Most Cited Scientist Award 2014
*Xingda Lecturer University of Peking 2015
*Institute of Chemical Engineering Innovative Product Global Award 2015
*Cardiff University International Impact Award 2016
*Appointed Inaugural Regius Professor of Chemistry, 2016, in honour of the Queen’s 90th Birthday
*C N R Rao Award Lecture Bangalore 2017
*Menelaus Medal of the Learned Society of Wales 2017
*Royal Society of Chemistry Industry-Academia Collaboration Award 2017 for the discovery of the gold catalyst for VCM.
*ENI Award for Advanced Environmental Solutions 2017
*Royal Society of Chemistry Faraday Lectureship Prize 2018
*Appointed CBE in the Queen’s Birthday Honours 2018
*Zhang Dayu Lecture DICP, China 2018
*Awarded 2019 Distinguished Scientist CAS President's International Fellowship Initiative (PIFI)
Supervisions
Heterogeneous catalysis
Gold catalysis