Mrs Shelley Rundle
Research Associate
Publication
2022
- Takala, R. et al. 2022. Pinolenic acid exhibits Anti-inflammatory and Anti-atherogenic effects in Peripheral blood- derived Monocytes from patients with Rheumatoid Arthritis. Scientific Reports 12, article number: 8807. (10.1038/s41598-022-12763-8)
2018
- Tanskanen, T. et al. 2018. Genome-wide association study and meta-analysis in Northern European populations replicate multiple colorectal cancer risk loci. International Journal of Cancer 142(3), pp. 540-546. (10.1002/ijc.31076)
2017
- May-Wilson, S. et al. 2017. Pro-inflammatory fatty acid profile and colorectal cancer risk: a Mendelian randomisation analysis. European Journal of Cancer 84, pp. 228-238. (10.1016/j.ejca.2017.07.034)
2013
- Smith, C. et al. 2013. Somatic profiling of the epidermal growth factor receptor pathway in tumors from patients with advanced colorectal cancer treated with chemotherapy ± cetuximab. Clinical Cancer Research 19(15), pp. 4104-4113. (10.1158/1078-0432.CCR-12-2581)
- Smith, C. et al. 2013. Role of the oxidative DNA damage repair gene OGG1 in colorectal tumorigenesis. Journal of the National Cancer Institute 105(16), pp. 1249-1253. (10.1093/jnci/djt183)
2011
- Maughan, T. S. et al. 2011. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. The Lancet 377(9783), pp. 2103-2114. (10.1016/S0140-6736(11)60613-2)
2010
- Houlston, R. S. et al. 2010. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33 [Letter]. Nature Genetics 42(11), pp. 973-977. (10.1038/ng.670)
- Idziaszczyk, S. A., Wilson, C. H., Smith, C., Adams, D. J. and Cheadle, J. P. 2010. Analysis of the frequency of GNAS codon 201 mutations in advanced colorectal cancer [Letter]. Cancer Genetics and Cytogenetics 202(1), pp. 67-69. (10.1016/j.cancergencyto.2010.04.023)
2009
- Dallosso, A. R. et al. 2009. The APC Variant p.Glu1317Gln predisposes to colorectal adenomas by a novel mechanism of relaxing the target for tumorigenic somatic APC mutations. Human Mutation 30(10), pp. 1412-1418. (10.1002/humu.21089)
2008
- Dallosso, A. R. et al. 2008. Inherited predisposition to colorectal adenomas caused by multiple rare alleles of MUTYH but not OGG1, NUDT1, NTH1 or NEIL 1, 2 or 3. Gut 57(9), pp. 1252-1255. (10.1136/gut.2007.145748)
2006
- Wilson, C. H. et al. 2006. Tsc1 Haploinsufficiency without Mammalian Target of Rapamycin Activation Is Sufficient for Renal Cyst Formation in Tsc1+/- Mice. Cancer Research 66(16), pp. 7934-8. (10.1158/0008-5472.CAN-06-1740)
2005
- Wilson, C. H. et al. 2005. Induction of renal tumorigenesis with elevated levels of somatic loss of heterozygosity in Tsc1+/- mice on a Blm-deficient background. Cancer Research 65(22), pp. 10179-10182. (10.1158/0008-5472.CAN-05-2688)
- Wilson, C. H. et al. 2005. A mouse model of tuberous sclerosis 1 showing background specific early post-natal mortality and metastatic renal cell carcinoma. Human Molecular Genetics 14(13), pp. 1839-1850. (10.1093/hmg/ddi190)
2000
- Cheadle, J. P., Dobbie, L., Idziaszczyk, S., Hodges, A. K., Smith, A. J., Sampson, J. R. and Young, J. 2000. Genomic organization and comparative analysis of the mouse tuberous sclerosis 1 (Tsc1) locus. Mammalian Genome 11(12), pp. 1135-1138. (10.1007/s003350010203)
1999
- Jones, A. C. et al. 1999. Comprehensive mutation analysis of TSC1 and TSC2 - and phenotypic correlations in 150 families with tuberous sclerosis. American Journal of Human Genetics 64(5), pp. 1305-1315. (10.1086/302381)
1997
- Jones, A. C. et al. 1997. Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Human Molecular Genetics 6(12), pp. 2155-2161. (10.1093/hmg/6.12.2155)
Articles
- Takala, R. et al. 2022. Pinolenic acid exhibits Anti-inflammatory and Anti-atherogenic effects in Peripheral blood- derived Monocytes from patients with Rheumatoid Arthritis. Scientific Reports 12, article number: 8807. (10.1038/s41598-022-12763-8)
- Tanskanen, T. et al. 2018. Genome-wide association study and meta-analysis in Northern European populations replicate multiple colorectal cancer risk loci. International Journal of Cancer 142(3), pp. 540-546. (10.1002/ijc.31076)
- May-Wilson, S. et al. 2017. Pro-inflammatory fatty acid profile and colorectal cancer risk: a Mendelian randomisation analysis. European Journal of Cancer 84, pp. 228-238. (10.1016/j.ejca.2017.07.034)
- Smith, C. et al. 2013. Somatic profiling of the epidermal growth factor receptor pathway in tumors from patients with advanced colorectal cancer treated with chemotherapy ± cetuximab. Clinical Cancer Research 19(15), pp. 4104-4113. (10.1158/1078-0432.CCR-12-2581)
- Smith, C. et al. 2013. Role of the oxidative DNA damage repair gene OGG1 in colorectal tumorigenesis. Journal of the National Cancer Institute 105(16), pp. 1249-1253. (10.1093/jnci/djt183)
- Maughan, T. S. et al. 2011. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. The Lancet 377(9783), pp. 2103-2114. (10.1016/S0140-6736(11)60613-2)
- Houlston, R. S. et al. 2010. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33 [Letter]. Nature Genetics 42(11), pp. 973-977. (10.1038/ng.670)
- Idziaszczyk, S. A., Wilson, C. H., Smith, C., Adams, D. J. and Cheadle, J. P. 2010. Analysis of the frequency of GNAS codon 201 mutations in advanced colorectal cancer [Letter]. Cancer Genetics and Cytogenetics 202(1), pp. 67-69. (10.1016/j.cancergencyto.2010.04.023)
- Dallosso, A. R. et al. 2009. The APC Variant p.Glu1317Gln predisposes to colorectal adenomas by a novel mechanism of relaxing the target for tumorigenic somatic APC mutations. Human Mutation 30(10), pp. 1412-1418. (10.1002/humu.21089)
- Dallosso, A. R. et al. 2008. Inherited predisposition to colorectal adenomas caused by multiple rare alleles of MUTYH but not OGG1, NUDT1, NTH1 or NEIL 1, 2 or 3. Gut 57(9), pp. 1252-1255. (10.1136/gut.2007.145748)
- Wilson, C. H. et al. 2006. Tsc1 Haploinsufficiency without Mammalian Target of Rapamycin Activation Is Sufficient for Renal Cyst Formation in Tsc1+/- Mice. Cancer Research 66(16), pp. 7934-8. (10.1158/0008-5472.CAN-06-1740)
- Wilson, C. H. et al. 2005. Induction of renal tumorigenesis with elevated levels of somatic loss of heterozygosity in Tsc1+/- mice on a Blm-deficient background. Cancer Research 65(22), pp. 10179-10182. (10.1158/0008-5472.CAN-05-2688)
- Wilson, C. H. et al. 2005. A mouse model of tuberous sclerosis 1 showing background specific early post-natal mortality and metastatic renal cell carcinoma. Human Molecular Genetics 14(13), pp. 1839-1850. (10.1093/hmg/ddi190)
- Cheadle, J. P., Dobbie, L., Idziaszczyk, S., Hodges, A. K., Smith, A. J., Sampson, J. R. and Young, J. 2000. Genomic organization and comparative analysis of the mouse tuberous sclerosis 1 (Tsc1) locus. Mammalian Genome 11(12), pp. 1135-1138. (10.1007/s003350010203)
- Jones, A. C. et al. 1999. Comprehensive mutation analysis of TSC1 and TSC2 - and phenotypic correlations in 150 families with tuberous sclerosis. American Journal of Human Genetics 64(5), pp. 1305-1315. (10.1086/302381)
- Jones, A. C. et al. 1997. Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Human Molecular Genetics 6(12), pp. 2155-2161. (10.1093/hmg/6.12.2155)