Dr Angela Sobiesierski
Teams and roles for Angela Sobiesierski
ICS Cleanroom Operations Director
Publication
2025
- Peach, T. et al. 2025. A hybrid electron beam lithography approach to wafer scale up of 150 mm InP ridge lasers. IEEE Transactions on Semiconductor Manufacturing 38 (4), pp.783-789. (10.1109/tsm.2025.3601735)
2023
- Androvitsaneas, P. et al. 2023. Direct-write projection lithography of quantum dot micropillar single photon sources. [Online].arXiv. Available at: https://doi.org/10.48550/arXiv.2304.00141.
2020
- Gough, G. P. et al., 2020. Faraday-cage-assisted etching of suspended gallium nitride nanostructures. AIP Advances 10 (5) 055319. (10.1063/5.0007947)
2019
- Shutts, S. et al. 2019. Degradation of III-V quantum dot lasers grown directly on silicon substrates. IEEE Journal of Selected Topics in Quantum Electronics 25 (6) 1900406. (10.1109/JSTQE.2019.2915994)
2016
- Chen, S. et al., 2016. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nature Photonics 10 , pp.307-311. (10.1038/nphoton.2016.21)
- Orchard, J. R. et al., 2016. In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates. Optics Express 24 (6), pp.6196-6202. (10.1364/OE.24.006196)
2015
- Finch, P. et al., 2015. Improving the optical bandwidth of passively mode-locked InAs quantum dot lasers. IEEE Journal of Selected Topics in Quantum Electronics 21 (6) 1900507. (10.1109/JSTQE.2015.2416675)
- Sobiesierski, A. et al. 2015. A two-stage surface treatment for the long-term stability of hydrophilic SU-8. Surface and Interface Analysis 47 (13), pp.1174-1179. (10.1002/sia.5870)
- Thomas, R. et al. 2015. Integrated III-V semiconductor flow cytometer with capillary fill micro-fluidics. Presented at: 2015 IEEE Photonics Conference (IPC) Reston, VA, USA 4 - 8 October 2015. IEEE Xplore. IEEE. , pp.7-8. (10.1109/IPCon.2015.7323580)
2014
- Belyanin, A. A. et al., 2014. Femtosecond pulse generation from a two-section mode-locked quantum-dot laser using random population. Presented at: Novel In-Plane Semiconductor Lasers XIII San Francisco 3 February 2014 through 6 February 2014. Proceedings of SPIE - The International Society for Optical Engineering. Vol. 9002.SPIE. , pp.90020E. (10.1117/12.2039130)
2013
- Finch, P. et al., 2013. Femtosecond pulse generation in passively mode locked InAs quantum dot lasers. Applied Physics Letters 103 (13) 131109. (10.1063/1.4822433)
2012
- O'Driscoll, I. et al. 2012. Effect of proton bombardment on InAs dots and wetting layer in laser structures. Applied Physics Letters 100 (26) 261105. (10.1063/1.4730964)
2011
- Sobiesierski, A. , Naidu, D. and Smowton, P. M. 2011. The lateral ambipolar diffusion length in quantum dot lasers. Presented at: Novel In-Plane Semiconductor Lasers X San Francisco, CA, USA 25-28 January 2011. Published in: Belyanin, A. A. and Smowton, P. M. eds. Proceedings of Novel In-Plane Semiconductor Lasers X, San Francisco, USA, 25-28 January 2011. Vol. 7953.Proceedings of SPIE Bellingham, WA: The International Society for Optical Engineering. , pp.795306. (10.1117/12.874474)
- Sobiesierski, A. and Smowton, P. M. 2011. Quantum-dot lasers: physics and applications. In: Bhattacharya, P. , Fornari, R. and Kamimura, H. eds. Comprehensive Semiconductor Science and Technology: Volume 6: Devices and Applications. Burlington, VT: Elsevier. , pp.353-384. (10.1016/B978-0-44-453153-7.00034-1)
2007
- Edwards, G. et al. 2007. Fabrication of high-aspect-ratio, sub-micron gratings in AlGaInP/GaAs laser structures using a BCl3/Cl-2/Ar inductively coupled plasma. Semiconductor Science and Technology 22 (9), pp.1010-1015. (10.1088/0268-1242/22/9/006)
- Naidu, D. et al. 2007. Role of device structure on the performance of quantum dot lasers. Presented at: LEOS 2007: 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 21-25 October 2007. LEOS 2007. The 20th Annual Meeting of the IEEE. IEEE. , pp.435-436. (10.1109/LEOS.2007.4382465)
2006
- Brown, M. R. et al., 2006. Modeling multiple quantum barrier effects and reduced electron leakage in red-emitting laser diodes. Journal of Applied Physics 100 (8)(10.1063/1.2362906)
- Smowton, P. M. et al. 2006. Characterisation of modulation doped quantum dot lasers. Presented at: Novel In-plane Semiconductor Lasers V San Jose, CA, USA 21-26 January 2006. Published in: Mermelstein, C. and Bour, D. P. eds. Novel In-Plane Semiconductor Lasers V. Proceedings of SPIE Vol. 6133. Bellingham, WA: SPIE. , pp.61330T. (10.1117/12.650682)
2005
- Sobiesierski, A. et al. 2005. AlGaInP laser diodes incorporating a 3λ/4 multiple quantum barrier. Applied Physics Letters 86 (2)(10.1063/1.1849847)
2004
- Teng, K. S. et al., 2004. Impurity-induced disordering in AlGaInP superlattices studied using cross-sectional scanning tunneling microscopy. Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures 22 (4), pp.2014-2017. (10.1116/1.1768187)
2003
- Smowton, P. et al. 2003. Non-uniform carrier distribution in multi-quantum-well lasers. Applied Physics Letters 83 (3), pp.419-421. (10.1063/1.1593818)
- Sobiesierski, A. et al. 2003. Coupled multi-quantum well 650-nm emitting GaInP laser diodes. Presented at: Novel In-Plane Semiconductor Lasers II San Jose, CA, USA 27-29 January, 2003. Novel In-Plane Semiconductor Lasers II. SPIE Proceeedings Vol. 4995. SPIE. , pp.152-159. (10.1117/12.475785)
Articles
- Brown, M. R. et al., 2006. Modeling multiple quantum barrier effects and reduced electron leakage in red-emitting laser diodes. Journal of Applied Physics 100 (8)(10.1063/1.2362906)
- Chen, S. et al., 2016. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nature Photonics 10 , pp.307-311. (10.1038/nphoton.2016.21)
- Edwards, G. et al. 2007. Fabrication of high-aspect-ratio, sub-micron gratings in AlGaInP/GaAs laser structures using a BCl3/Cl-2/Ar inductively coupled plasma. Semiconductor Science and Technology 22 (9), pp.1010-1015. (10.1088/0268-1242/22/9/006)
- Finch, P. et al., 2013. Femtosecond pulse generation in passively mode locked InAs quantum dot lasers. Applied Physics Letters 103 (13) 131109. (10.1063/1.4822433)
- Finch, P. et al., 2015. Improving the optical bandwidth of passively mode-locked InAs quantum dot lasers. IEEE Journal of Selected Topics in Quantum Electronics 21 (6) 1900507. (10.1109/JSTQE.2015.2416675)
- Gough, G. P. et al., 2020. Faraday-cage-assisted etching of suspended gallium nitride nanostructures. AIP Advances 10 (5) 055319. (10.1063/5.0007947)
- O'Driscoll, I. et al. 2012. Effect of proton bombardment on InAs dots and wetting layer in laser structures. Applied Physics Letters 100 (26) 261105. (10.1063/1.4730964)
- Orchard, J. R. et al., 2016. In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates. Optics Express 24 (6), pp.6196-6202. (10.1364/OE.24.006196)
- Peach, T. et al. 2025. A hybrid electron beam lithography approach to wafer scale up of 150 mm InP ridge lasers. IEEE Transactions on Semiconductor Manufacturing 38 (4), pp.783-789. (10.1109/tsm.2025.3601735)
- Shutts, S. et al. 2019. Degradation of III-V quantum dot lasers grown directly on silicon substrates. IEEE Journal of Selected Topics in Quantum Electronics 25 (6) 1900406. (10.1109/JSTQE.2019.2915994)
- Smowton, P. et al. 2003. Non-uniform carrier distribution in multi-quantum-well lasers. Applied Physics Letters 83 (3), pp.419-421. (10.1063/1.1593818)
- Sobiesierski, A. et al. 2005. AlGaInP laser diodes incorporating a 3λ/4 multiple quantum barrier. Applied Physics Letters 86 (2)(10.1063/1.1849847)
- Sobiesierski, A. et al. 2015. A two-stage surface treatment for the long-term stability of hydrophilic SU-8. Surface and Interface Analysis 47 (13), pp.1174-1179. (10.1002/sia.5870)
- Teng, K. S. et al., 2004. Impurity-induced disordering in AlGaInP superlattices studied using cross-sectional scanning tunneling microscopy. Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures 22 (4), pp.2014-2017. (10.1116/1.1768187)
Book sections
- Sobiesierski, A. and Smowton, P. M. 2011. Quantum-dot lasers: physics and applications. In: Bhattacharya, P. , Fornari, R. and Kamimura, H. eds. Comprehensive Semiconductor Science and Technology: Volume 6: Devices and Applications. Burlington, VT: Elsevier. , pp.353-384. (10.1016/B978-0-44-453153-7.00034-1)
Conferences
- Belyanin, A. A. et al., 2014. Femtosecond pulse generation from a two-section mode-locked quantum-dot laser using random population. Presented at: Novel In-Plane Semiconductor Lasers XIII San Francisco 3 February 2014 through 6 February 2014. Proceedings of SPIE - The International Society for Optical Engineering. Vol. 9002.SPIE. , pp.90020E. (10.1117/12.2039130)
- Naidu, D. et al. 2007. Role of device structure on the performance of quantum dot lasers. Presented at: LEOS 2007: 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007 21-25 October 2007. LEOS 2007. The 20th Annual Meeting of the IEEE. IEEE. , pp.435-436. (10.1109/LEOS.2007.4382465)
- Smowton, P. M. et al. 2006. Characterisation of modulation doped quantum dot lasers. Presented at: Novel In-plane Semiconductor Lasers V San Jose, CA, USA 21-26 January 2006. Published in: Mermelstein, C. and Bour, D. P. eds. Novel In-Plane Semiconductor Lasers V. Proceedings of SPIE Vol. 6133. Bellingham, WA: SPIE. , pp.61330T. (10.1117/12.650682)
- Sobiesierski, A. et al. 2003. Coupled multi-quantum well 650-nm emitting GaInP laser diodes. Presented at: Novel In-Plane Semiconductor Lasers II San Jose, CA, USA 27-29 January, 2003. Novel In-Plane Semiconductor Lasers II. SPIE Proceeedings Vol. 4995. SPIE. , pp.152-159. (10.1117/12.475785)
- Sobiesierski, A. , Naidu, D. and Smowton, P. M. 2011. The lateral ambipolar diffusion length in quantum dot lasers. Presented at: Novel In-Plane Semiconductor Lasers X San Francisco, CA, USA 25-28 January 2011. Published in: Belyanin, A. A. and Smowton, P. M. eds. Proceedings of Novel In-Plane Semiconductor Lasers X, San Francisco, USA, 25-28 January 2011. Vol. 7953.Proceedings of SPIE Bellingham, WA: The International Society for Optical Engineering. , pp.795306. (10.1117/12.874474)
- Thomas, R. et al. 2015. Integrated III-V semiconductor flow cytometer with capillary fill micro-fluidics. Presented at: 2015 IEEE Photonics Conference (IPC) Reston, VA, USA 4 - 8 October 2015. IEEE Xplore. IEEE. , pp.7-8. (10.1109/IPCon.2015.7323580)
Websites
- Androvitsaneas, P. et al. 2023. Direct-write projection lithography of quantum dot micropillar single photon sources. [Online].arXiv. Available at: https://doi.org/10.48550/arXiv.2304.00141.
Research
My research area of interest is Condensed Matter Physics. My Ph.D. work focused on electron transport across semiconductor hetero-junctions and metal-semiconductor Schottky barriers utilising novel semiconductor structures to modify and control the size of the electrical barriers at the semiconductor interfaces.
Since then I have worked as a post-doctoral research associate on several different research projects including SiC for high power devices and the application of multi-quantum-barriers to reduce electron leakage in red-emitting laser diodes.
More recently my research has focussed on the development of new or novel processing techniques for the fabrication of advanced optoelectronic devices, for example, segmented contact dry-etched ridge lasers, ridge lasers incorporating DBR gratings and the integration of optoelectronic devices and microstructures for capillary-driven micro-fluidic flow analysis.
Biography
I obtained my B.Sc. degree in Mathematics and Physics (joint honours) from Exeter University in 1991.
Following this I was employed by Rolls Royce (Bristol) as a Stress Engineer until 1993 when I commenced my Ph.D. in Condensed Matter Physics at Cardiff University under the supervision of Professor Robin Williams FRS.
I obtained my Ph.D. in 1997, worked briefly for DERA Farnborough before returning to university life as a post-doctoral research associate, initially at Swansea University (1997 – 2000) and most recently (2000 onwards) at Cardiff University.
In September 2012 I became Manager of the Cleanroom facility shared between Physics and Engineering.