Dr Richard Lewis
Teams and roles for Richard Lewis
Publication
2026
2025
- Daniel, I. T. et al. 2025. Uncovering cooperative redox enhancement effects in bimetallic catalysis. Accounts of Chemical Research 58 (21), pp.3235-3246. (10.1021/acs.accounts.5c00446)
- Gao, Z. et al., 2025. Asymmetrically Coordinated Ru-O Site Facilitates H2 Heterolytic Cleavage for Efficient Green Reductive Amination of Octanol to Octylamine: a mechanistic investigation. Applied Catalysis B: Environment and Energy 379 125708. (10.1016/j.apcatb.2025.125708)
- Kim, B. et al., 2025. Galvanic coupling measurements are a predictive tool for cooperative redox enhancement (CORE) in thermocatalytic alcohol oxidation. ACS Catalysis 15 , pp.18063-18068. (10.1021/acscatal.5c04484)
- Li, R. et al. 2025. Promoting H2O2 direct synthesis through Fe incorporation into AuPd catalysts. Green Chemistry 27 (7), pp.2065-2077. (10.1039/D5GC00134J)
- Li, R. et al. 2025. Balancing activity and stability in phenol oxidation via in situ H2O2 generation over Fe‐modified AuPd catalysts. ChemCatChem 17 (22) e01264. (10.1002/cctc.202501264)
- Li, R. et al. 2025. Oxidative degradation of phenol via in-situ generation of H2O2 in a flow reactor. Catalysis Letters 155 (11) 373. (10.1007/s10562-025-05221-3)
- Li, X. et al., 2025. Partial oxidation of methane to acetic acid with oxygen using AuPd/ZSM-5. ACS Catalysis 15 (21), pp.18663-18674. (10.1021/acscatal.5c03918)
- Lin, D. et al. 2025. Radical-constructed intergrown titanosilicalite interfaces for efficient direct propene epoxidation with H 2 and O 2. Nature Communications 16 (1) 5515. (10.1038/s41467-025-60637-0)
- Sharp, G. et al. 2025. Highly efficient benzyl alcohol valorisation via the in situ synthesis of H2O2 and associated reactive oxygen species. Green Chemistry 27 (19), pp.5567-5580. (10.1039/D5GC00680E)
- Stenner, A. et al., 2025. The complex interplay of chemo- and bio-catalysis for one-pot oxidation cascades – indole oxidation in focus. Green Chemistry (10.1039/d5gc05367f)
- Sun, Z. et al. 2025. Tailoring an Fe-Ov-Ce triggered phase-reversible oxygen carrier for intensified chemical looping CO2 splitting. Carbon Energy 7 (9) e70011. (10.1002/cey2.70011)
- Wang, K. et al., 2025. The effect of support calcination on carbon supported palladium catalysts for solvent-free benzyl alcohol oxidation. Catalysis Science & Technology 15 (18), pp.5346-5353. (10.1039/d5cy00027k)
- Zhang, L. et al. 2025. Chemo-enzymatic phenol polymerisation via in-situ H2O2 synthesis. Catalysis Today 454 115292. (10.1016/j.cattod.2025.115292)
- Zhang, Y. et al., 2025. Direct synthesis of H2O2 by spatially separate hydrogen and oxygen activation sites on tailored Pt–Au catalysts. Angewandte Chemie International Edition e21118. (10.1002/anie.202521118)
2024
- Cao, J. et al., 2024. Partially bonded aluminum site on the external surface of post-treated Au/ZSM-5 enhances methane oxidation to oxygenates. ACS Catalysis 14 , pp.1797-1807. (10.1021/acscatal.3c05030)
- Lewis, R. J. and Hutchings, G. J. 2024. Selective oxidation using In situ-generated hydrogen peroxide. Accounts of Chemical Research 57 (1), pp.106–119. (10.1021/acs.accounts.3c00581)
- Li, X. et al., 2024. Solvent-free benzyl alcohol oxidation using spatially separated carbon-supported Au and Pd nanoparticles. ACS Catalysis 14 , pp.16551–16561. (10.1021/acscatal.4c05019)
- Lin, D. et al., 2024. Selective Oxidation by TS-1 coupled with in-situ Synthesised H2O2. Fundamental Research (10.1016/j.fmre.2024.03.023)
- Ni, F. et al. 2024. The direct synthesis of H2O2 and in situ oxidation of methane: An investigation into the role of the support. Catalysis Today 442 114910. (10.1016/j.cattod.2024.114910)
- Sharp, G. et al. 2024. Benzyl alcohol valorization via the in situ production of reactive oxygen species. ACS Catalysis 14 , pp.15279–15293. (10.1021/acscatal.4c04698)
- Wang, W. et al., 2024. The role of adsorbed species in 1-butene isomerization: Parahydrogen-induced polarization NMR of Pd-Au catalyzed butadiene hydrogenation. ACS Catalysis 14 (4), pp.2522–2531. (10.1021/acscatal.3c05968)
- Zhang, B. et al. 2024. Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester. Nature Communications 15 (1) 7837. (10.1038/s41467-024-52163-2)
2023
- Cao, J. et al., 2023. Methane conversion to methanol using Au/ZSM-5 is promoted by carbon. ACS Catalysis 13 (11), pp.7199-7209. (10.1021/acscatal.3c01226)
- Carter, J. H. et al., 2023. The selective oxidation of methane to methanol using in situ generated H 2 O 2 over palladium-based bimetallic catalysts †. Catalysis Science & Technology (10.1039/d3cy00116d)
- Daniel, I. et al. 2023. Electrochemical polarization of disparate catalytic sites drives thermochemical rate enhancement. ACS Catalysis 13 (21), pp.14189-14198. (10.1021/acscatal.3c03364)
- Dummer, N. F. et al. 2023. Methane oxidation to methanol. Chemical Reviews 9 , pp.6359-6411. (10.1021/acs.chemrev.2c00439)
- Kovačič, D. et al. 2023. A comparative study of palladium-gold and palladium-tin catalysts in the direct synthesis of H2O2. Green Chemistry 25 (24), pp.10436-10446. (10.1039/d3gc03706a)
- Lewis, R. J. et al. 2023. Selective Ammoximation of Ketones via In Situ H2O2 Synthesis. ACS Catalysis 13 , pp.1934-1945. (10.1021/acscatal.2c05799)
- Ni, F. et al. 2023. Selective oxidation of methane to methanol via in situ H2O2 synthesis. ACS Organic & Inorganic Au 3 (4), pp.177-183. (10.1021/acsorginorgau.3c00001)
- Richards, T. et al. 2023. The direct synthesis of Hydrogen Peroxide over supported Pd-based catalysts: an investigation into the role of the support and secondary metal modifiers. Catalysis Letters 153 , pp.32-40. (10.1007/s10562-022-03967-8)
- Stenner, A. et al. 2023. Chemo-enzymatic one-pot oxidation of cyclohexane via in-situ H2O2 production over supported AuPdPt catalysts. ChemCatChem 15 (10) e202300162. (10.1002/cctc.202300162)
- Wang, S. et al., 2023. H2-reduced phosphomolybdate promotes room-temperature aerobic oxidation of methane to methanol. Nature Catalysis 6 , pp.895-905. (10.1038/s41929-023-01011-5)
- Zhao, L. et al. 2023. Insights into the effect of metal ratio on cooperative redox enhancement effects over au- and pd-mediated alcohol oxidation. ACS Catalysis 13 (5), pp.2892-2903. (10.1021/acscatal.2c06284)
2022
- Barnes, A. et al. 2022. Enhancing catalytic performance of AuPd catalysts towards the direct synthesis of H2O2 through incorporation of base metals. Catalysis Science & Technology 12 , pp.1986-1995. (10.1039/D1CY01962G)
- Barnes, A. et al. 2022. Improving catalytic activity towards the direct synthesis of H2O2 through Cu incorporation into AuPd catalysts. Catalysts 12 (11) 1396. (10.3390/catal12111396)
- Brehm, J. et al. 2022. The direct synthesis of hydrogen peroxide over AuPd nanoparticles: an investigation into metal loading. Catalysis Letters 152 , pp.254-262. (10.1007/s10562-021-03632-6)
- Brehm, J. et al., 2022. Enhancing the Chemo-Enzymatic One-Pot Oxidation of Cyclohexane via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 12 (19), pp.11776–11789. (10.1021/acscatal.2c03051)
- Daniel, I. T. et al. 2022. Kinetic analysis to describe co-operative redox enhancement effects exhibited by bimetallic Au-Pd systems in aerobic oxidation. Catalysis Science & Technology (10.1039/D2CY01474B)
- Fortunato, G. V. et al., 2022. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nature Communications 13 1973. (10.1038/s41467-022-29536-6)
- Huang, X. et al. 2022. Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 603 , pp.271-275. (10.1038/s41586-022-04397-7)
- Lewis, R. J. et al. 2022. N-heterocyclic carbene modified palladium catalysts for the direct synthesis of hydrogen peroxide. Journal of the American Chemical Society 144 (34), pp.15431-15436. (10.1021/jacs.2c04828)
- Lewis, R. J. et al. 2022. Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalysts. Green Chemistry 24 , pp.9496-9507. (10.1039/D2GC02689A)
- Lewis, R. J. et al. 2022. Highly efficient catalytic production of oximes from ketones using in situ–generated H2O2. Science 376 (6593), pp.615-620. (10.1126/science.abl4822)
- Paris, C. B. et al. 2022. Impact of the experimental parameters on catalytic activity when preparing polymer protected bimetallic nanoparticle catalysts on activated carbon. ACS Catalysis 12 , pp.4440–4454. (10.1021/acscatal.1c05904)
- Qi, G. et al., 2022. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nature Catalysis 5 (10.1038/s41929-021-00725-8)
- Santos, A. et al. 2022. The oxidative degradation of phenol via in situ H2O2 synthesis using Pd supported Fe-modified ZSM-5 catalysts. Catalysis Science & Technology 12 (9), pp.2943-2953. (10.1039/D2CY00283C)
- Sun, S. et al. 2022. Selective oxidation of methane to methanol and methyl hydroperoxide over palladium modified MoO3 photocatalyst under ambient conditions. Catalysis Science & Technology 12 (11), pp.3727-3736. (10.1039/D2CY00240J)
2021
- Crombie, C. M. et al. 2021. The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catalysis Letters 151 , pp.164-171. (10.1007/s10562-020-03281-1)
- Crombie, C. M. et al. 2021. The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catalysis Letters 151 , pp.2762-2774. (10.1007/s10562-020-03511-6)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11 , pp.2701–2714. (10.1021/acscatal.0c04586)
- Lewis, R. J. et al. 2021. Improving the performance of Pd based catalysts for the direct synthesis of hydrogen peroxide via acid incorporation during catalyst synthesis. Catalysis Communications 161 106358. (10.1016/j.catcom.2021.106358)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4 , pp.575-585. (10.1038/s41929-021-00642-w)
- Santos, A. et al. 2021. The degradation of phenol via in situ H2O2 production over supported Pd-based catalysts. Catalysis Science & Technology 11 (24), pp.7866-7874. (10.1039/D1CY01897C)
- Sun, S. et al. 2021. Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. Catalysis Science & Technology 11 (24), pp.8052-8064. (10.1039/D1CY01643A)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47 , pp.303-324. (10.1007/s11164-020-04333-2)
- Wilbers, D. et al., 2021. Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. Green Chemistry 23 (11), pp.4170-4180. (10.1039/D0GC04320F)
2020
- Akram, A. et al. 2020. The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology 10 (24), pp.8203-8212. (10.1039/D0CY01163K)
- Crole, D. A. et al. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ni/TiO2 catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200062. (10.1098/rsta.2020.0062)
- Freakley, S. J. et al., 2020. Gold–palladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. Catalysis Science and Technology 10 (17), pp.5935-5944. (10.1039/D0CY00915F)
- Gong, X. et al. 2020. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catalysis Science and Technology 10 (14), pp.4635-4644. (10.1039/D0CY01079K)
- Wang, S. et al., 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd–Ga and Pd–In catalysts. Catalysis Science and Technology 10 , pp.1925-1932. (10.1039/C9CY02210D)
2019
- Alotaibi, F. et al., 2019. Direct synthesis of hydrogen peroxide using Cs-containing heteropolyacid-supported palladium-copper catalysts. Catalysis Letters 149 (4), pp.998-1006. (10.1007/s10562-019-02680-3)
- Freakley, S. J. et al. 2019. A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2. Nature Communications 10 (1) 4178. (10.1038/s41467-019-12120-w)
- Hutchings, G. J. and Lewis, R. 2019. A review of recent advances in the direct synthesis of H2O2. ChemCatChem 11 (1), pp.298-308. (10.1002/cctc.201801435)
- Lewis, R. et al. 2019. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11 (6), pp.1673-1680. (10.1002/cctc.201900100)
- Lewis, R. J. et al. 2019. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catalysis Letters 149 (11), pp.3066-3075. (10.1007/s10562-019-02876-7)
- Santos Hernandez, A. et al. 2019. The direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions. Industrial & Engineering Chemistry Research 58 (28), pp.12623-12631. (10.1021/acs.iecr.9b02211)
2018
2017
2016
2015
Articles
- Akram, A. et al. 2020. The direct synthesis of hydrogen peroxide using a combination of a hydrophobic solvent and water. Catalysis Science and Technology 10 (24), pp.8203-8212. (10.1039/D0CY01163K)
- Alotaibi, F. et al., 2019. Direct synthesis of hydrogen peroxide using Cs-containing heteropolyacid-supported palladium-copper catalysts. Catalysis Letters 149 (4), pp.998-1006. (10.1007/s10562-019-02680-3)
- Barnes, A. et al. 2022. Enhancing catalytic performance of AuPd catalysts towards the direct synthesis of H2O2 through incorporation of base metals. Catalysis Science & Technology 12 , pp.1986-1995. (10.1039/D1CY01962G)
- Barnes, A. et al. 2022. Improving catalytic activity towards the direct synthesis of H2O2 through Cu incorporation into AuPd catalysts. Catalysts 12 (11) 1396. (10.3390/catal12111396)
- Berko, M. B. et al., 2026. Continuous methane partial oxidation over Au/ZSM-5 catalysts. Catalysis Today 461 115531. (10.1016/j.cattod.2025.115531)
- Brehm, J. et al. 2022. The direct synthesis of hydrogen peroxide over AuPd nanoparticles: an investigation into metal loading. Catalysis Letters 152 , pp.254-262. (10.1007/s10562-021-03632-6)
- Brehm, J. et al., 2022. Enhancing the Chemo-Enzymatic One-Pot Oxidation of Cyclohexane via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 12 (19), pp.11776–11789. (10.1021/acscatal.2c03051)
- Cao, J. et al., 2023. Methane conversion to methanol using Au/ZSM-5 is promoted by carbon. ACS Catalysis 13 (11), pp.7199-7209. (10.1021/acscatal.3c01226)
- Cao, J. et al., 2024. Partially bonded aluminum site on the external surface of post-treated Au/ZSM-5 enhances methane oxidation to oxygenates. ACS Catalysis 14 , pp.1797-1807. (10.1021/acscatal.3c05030)
- Carter, J. H. et al., 2023. The selective oxidation of methane to methanol using in situ generated H 2 O 2 over palladium-based bimetallic catalysts †. Catalysis Science & Technology (10.1039/d3cy00116d)
- Crole, D. A. et al. 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd-Ni/TiO2 catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200062. (10.1098/rsta.2020.0062)
- Crombie, C. M. et al. 2021. The influence of reaction conditions on the oxidation of cyclohexane via the in-situ production of H2O2. Catalysis Letters 151 , pp.164-171. (10.1007/s10562-020-03281-1)
- Crombie, C. M. et al. 2021. The selective oxidation of cyclohexane via In-situ H2O2 production over supported Pd-based catalysts. Catalysis Letters 151 , pp.2762-2774. (10.1007/s10562-020-03511-6)
- Crombie, C. M. et al. 2021. Enhanced selective oxidation of benzyl alcohol via in situ H2O2 production over supported Pd-based catalysts. ACS Catalysis 11 , pp.2701–2714. (10.1021/acscatal.0c04586)
- Daniel, I. T. et al. 2025. Uncovering cooperative redox enhancement effects in bimetallic catalysis. Accounts of Chemical Research 58 (21), pp.3235-3246. (10.1021/acs.accounts.5c00446)
- Daniel, I. T. et al. 2022. Kinetic analysis to describe co-operative redox enhancement effects exhibited by bimetallic Au-Pd systems in aerobic oxidation. Catalysis Science & Technology (10.1039/D2CY01474B)
- Daniel, I. et al. 2023. Electrochemical polarization of disparate catalytic sites drives thermochemical rate enhancement. ACS Catalysis 13 (21), pp.14189-14198. (10.1021/acscatal.3c03364)
- Dummer, N. F. et al. 2023. Methane oxidation to methanol. Chemical Reviews 9 , pp.6359-6411. (10.1021/acs.chemrev.2c00439)
- Edwards, J. K. et al. 2015. Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Catalysis Today 248 , pp.3-9. (10.1016/j.cattod.2014.03.011)
- Fortunato, G. V. et al., 2022. Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nature Communications 13 1973. (10.1038/s41467-022-29536-6)
- Freakley, S. J. et al., 2020. Gold–palladium colloids as catalysts for hydrogen peroxide synthesis, degradation and methane oxidation: effect of the PVP stabiliser. Catalysis Science and Technology 10 (17), pp.5935-5944. (10.1039/D0CY00915F)
- Freakley, S. J. et al. 2019. A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2. Nature Communications 10 (1) 4178. (10.1038/s41467-019-12120-w)
- Freakley, S. J. et al. 2015. Direct synthesis of hydrogen peroxide using Au-Pd supported and ion-exchanged heteropolyacids precipitated with various metal ions. Catalysis Today 248 , pp.10-17. (10.1016/j.cattod.2014.01.012)
- Gao, Z. et al., 2025. Asymmetrically Coordinated Ru-O Site Facilitates H2 Heterolytic Cleavage for Efficient Green Reductive Amination of Octanol to Octylamine: a mechanistic investigation. Applied Catalysis B: Environment and Energy 379 125708. (10.1016/j.apcatb.2025.125708)
- Gong, X. et al. 2020. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catalysis Science and Technology 10 (14), pp.4635-4644. (10.1039/D0CY01079K)
- Huang, X. et al. 2022. Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 603 , pp.271-275. (10.1038/s41586-022-04397-7)
- Hutchings, G. J. and Lewis, R. 2019. A review of recent advances in the direct synthesis of H2O2. ChemCatChem 11 (1), pp.298-308. (10.1002/cctc.201801435)
- Kazi Aurnob, A. et al., 2026. Methane partial oxidation over Rh/ZSM-5 catalysts in a high-pressure continuous flow reactor. Catalysis Today 462 115558. (10.1016/j.cattod.2025.115558)
- Kim, B. et al., 2025. Galvanic coupling measurements are a predictive tool for cooperative redox enhancement (CORE) in thermocatalytic alcohol oxidation. ACS Catalysis 15 , pp.18063-18068. (10.1021/acscatal.5c04484)
- Kovačič, D. et al. 2023. A comparative study of palladium-gold and palladium-tin catalysts in the direct synthesis of H2O2. Green Chemistry 25 (24), pp.10436-10446. (10.1039/d3gc03706a)
- Lewis, R. et al. 2017. Solid acid additives as recoverable promoters for the direct synthesis of hydrogen peroxide. Industrial & Engineering Chemistry Research 56 (45), pp.13287-13293. (10.1021/acs.iecr.7b01800)
- Lewis, R. et al. 2019. The direct synthesis of H2O2 using TS-1 supported catalysts. ChemCatChem 11 (6), pp.1673-1680. (10.1002/cctc.201900100)
- Lewis, R. J. et al. 2019. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catalysis Letters 149 (11), pp.3066-3075. (10.1007/s10562-019-02876-7)
- Lewis, R. J. and Hutchings, G. J. 2024. Selective oxidation using In situ-generated hydrogen peroxide. Accounts of Chemical Research 57 (1), pp.106–119. (10.1021/acs.accounts.3c00581)
- Lewis, R. J. et al. 2022. N-heterocyclic carbene modified palladium catalysts for the direct synthesis of hydrogen peroxide. Journal of the American Chemical Society 144 (34), pp.15431-15436. (10.1021/jacs.2c04828)
- Lewis, R. J. et al. 2021. Improving the performance of Pd based catalysts for the direct synthesis of hydrogen peroxide via acid incorporation during catalyst synthesis. Catalysis Communications 161 106358. (10.1016/j.catcom.2021.106358)
- Lewis, R. J. et al. 2022. Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalysts. Green Chemistry 24 , pp.9496-9507. (10.1039/D2GC02689A)
- Lewis, R. J. et al. 2022. Highly efficient catalytic production of oximes from ketones using in situ–generated H2O2. Science 376 (6593), pp.615-620. (10.1126/science.abl4822)
- Lewis, R. J. et al. 2023. Selective Ammoximation of Ketones via In Situ H2O2 Synthesis. ACS Catalysis 13 , pp.1934-1945. (10.1021/acscatal.2c05799)
- Li, R. et al. 2025. Promoting H2O2 direct synthesis through Fe incorporation into AuPd catalysts. Green Chemistry 27 (7), pp.2065-2077. (10.1039/D5GC00134J)
- Li, R. et al. 2025. Balancing activity and stability in phenol oxidation via in situ H2O2 generation over Fe‐modified AuPd catalysts. ChemCatChem 17 (22) e01264. (10.1002/cctc.202501264)
- Li, R. et al. 2025. Oxidative degradation of phenol via in-situ generation of H2O2 in a flow reactor. Catalysis Letters 155 (11) 373. (10.1007/s10562-025-05221-3)
- Li, X. et al., 2024. Solvent-free benzyl alcohol oxidation using spatially separated carbon-supported Au and Pd nanoparticles. ACS Catalysis 14 , pp.16551–16561. (10.1021/acscatal.4c05019)
- Li, X. et al., 2025. Partial oxidation of methane to acetic acid with oxygen using AuPd/ZSM-5. ACS Catalysis 15 (21), pp.18663-18674. (10.1021/acscatal.5c03918)
- Lin, D. et al. 2025. Radical-constructed intergrown titanosilicalite interfaces for efficient direct propene epoxidation with H 2 and O 2. Nature Communications 16 (1) 5515. (10.1038/s41467-025-60637-0)
- Lin, D. et al., 2024. Selective Oxidation by TS-1 coupled with in-situ Synthesised H2O2. Fundamental Research (10.1016/j.fmre.2024.03.023)
- Ni, F. et al. 2024. The direct synthesis of H2O2 and in situ oxidation of methane: An investigation into the role of the support. Catalysis Today 442 114910. (10.1016/j.cattod.2024.114910)
- Ni, F. et al. 2023. Selective oxidation of methane to methanol via in situ H2O2 synthesis. ACS Organic & Inorganic Au 3 (4), pp.177-183. (10.1021/acsorginorgau.3c00001)
- Paris, C. B. et al. 2022. Impact of the experimental parameters on catalytic activity when preparing polymer protected bimetallic nanoparticle catalysts on activated carbon. ACS Catalysis 12 , pp.4440–4454. (10.1021/acscatal.1c05904)
- Qi, G. et al., 2022. Au-ZSM-5 catalyses the selective oxidation of CH4 to CH3OH and CH3COOH using O2. Nature Catalysis 5 (10.1038/s41929-021-00725-8)
- Richards, T. et al. 2021. A residue-free approach to water disinfection using catalytic in situ generation of reactive oxygen species. Nature Catalysis 4 , pp.575-585. (10.1038/s41929-021-00642-w)
- Richards, T. et al. 2023. The direct synthesis of Hydrogen Peroxide over supported Pd-based catalysts: an investigation into the role of the support and secondary metal modifiers. Catalysis Letters 153 , pp.32-40. (10.1007/s10562-022-03967-8)
- Santos, A. et al. 2021. The degradation of phenol via in situ H2O2 production over supported Pd-based catalysts. Catalysis Science & Technology 11 (24), pp.7866-7874. (10.1039/D1CY01897C)
- Santos, A. et al. 2022. The oxidative degradation of phenol via in situ H2O2 synthesis using Pd supported Fe-modified ZSM-5 catalysts. Catalysis Science & Technology 12 (9), pp.2943-2953. (10.1039/D2CY00283C)
- Santos Hernandez, A. et al. 2019. The direct synthesis of hydrogen peroxide over Au-Pd supported nanoparticles under ambient conditions. Industrial & Engineering Chemistry Research 58 (28), pp.12623-12631. (10.1021/acs.iecr.9b02211)
- Sharp, G. et al. 2024. Benzyl alcohol valorization via the in situ production of reactive oxygen species. ACS Catalysis 14 , pp.15279–15293. (10.1021/acscatal.4c04698)
- Sharp, G. et al. 2025. Highly efficient benzyl alcohol valorisation via the in situ synthesis of H2O2 and associated reactive oxygen species. Green Chemistry 27 (19), pp.5567-5580. (10.1039/D5GC00680E)
- Stenner, A. et al. 2023. Chemo-enzymatic one-pot oxidation of cyclohexane via in-situ H2O2 production over supported AuPdPt catalysts. ChemCatChem 15 (10) e202300162. (10.1002/cctc.202300162)
- Stenner, A. et al., 2025. The complex interplay of chemo- and bio-catalysis for one-pot oxidation cascades – indole oxidation in focus. Green Chemistry (10.1039/d5gc05367f)
- Sun, S. et al. 2021. Lanthanum modified Fe-ZSM-5 zeolites for selective methane oxidation with H2O2. Catalysis Science & Technology 11 (24), pp.8052-8064. (10.1039/D1CY01643A)
- Sun, S. et al. 2022. Selective oxidation of methane to methanol and methyl hydroperoxide over palladium modified MoO3 photocatalyst under ambient conditions. Catalysis Science & Technology 12 (11), pp.3727-3736. (10.1039/D2CY00240J)
- Sun, Z. et al. 2025. Tailoring an Fe-Ov-Ce triggered phase-reversible oxygen carrier for intensified chemical looping CO2 splitting. Carbon Energy 7 (9) e70011. (10.1002/cey2.70011)
- Underhill, R. et al. 2021. Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species. Research on Chemical Intermediates 47 , pp.303-324. (10.1007/s11164-020-04333-2)
- Underhill, R. et al. 2018. Oxidative degradation of phenol using in situ generated hydrogen peroxide combined with Fenton's process. Johnson Matthey Technology Review 62 (4), pp.417-425. (10.1595/205651318X15302623075041)
- Wang, K. et al., 2025. The effect of support calcination on carbon supported palladium catalysts for solvent-free benzyl alcohol oxidation. Catalysis Science & Technology 15 (18), pp.5346-5353. (10.1039/d5cy00027k)
- Wang, S. et al., 2020. The direct synthesis of hydrogen peroxide from H2 and O2 using Pd–Ga and Pd–In catalysts. Catalysis Science and Technology 10 , pp.1925-1932. (10.1039/C9CY02210D)
- Wang, S. et al., 2023. H2-reduced phosphomolybdate promotes room-temperature aerobic oxidation of methane to methanol. Nature Catalysis 6 , pp.895-905. (10.1038/s41929-023-01011-5)
- Wang, W. et al., 2024. The role of adsorbed species in 1-butene isomerization: Parahydrogen-induced polarization NMR of Pd-Au catalyzed butadiene hydrogenation. ACS Catalysis 14 (4), pp.2522–2531. (10.1021/acscatal.3c05968)
- Wilbers, D. et al., 2021. Controlling product selectivity with nanoparticle composition in tandem chemo-biocatalytic styrene oxidation. Green Chemistry 23 (11), pp.4170-4180. (10.1039/D0GC04320F)
- Zhang, B. et al. 2024. Ambient-pressure alkoxycarbonylation for sustainable synthesis of ester. Nature Communications 15 (1) 7837. (10.1038/s41467-024-52163-2)
- Zhang, L. et al. 2025. Chemo-enzymatic phenol polymerisation via in-situ H2O2 synthesis. Catalysis Today 454 115292. (10.1016/j.cattod.2025.115292)
- Zhang, Y. et al., 2025. Direct synthesis of H2O2 by spatially separate hydrogen and oxygen activation sites on tailored Pt–Au catalysts. Angewandte Chemie International Edition e21118. (10.1002/anie.202521118)
- Zhao, L. et al. 2023. Insights into the effect of metal ratio on cooperative redox enhancement effects over au- and pd-mediated alcohol oxidation. ACS Catalysis 13 (5), pp.2892-2903. (10.1021/acscatal.2c06284)
Thesis