Dr Steven Lind
BSc (Hons), PhD, PGCert, FHEA, CEng
Academic
- Available for postgraduate supervision
Overview
Dr Lind read mathematics and physics at the University of Bath before completing a PhD in applied mathematics at Cardiff University. He held research and teaching positions at the University of Manchester and MMU prior to his appointment as a Reader in the School of Engineering, Cardiff University, in 2024. Dr Lind's research is focused on the development of numerical methods, especially Smoothed Particle Hydrodynamics (SPH), for diverse engineering flow applications, including offshore marine and non-Newtonian flows. He has a particular interest in novel multi-phase, meshless, and high-order numerical schemes, and quantum computing.
Publication
2024
- Reece, G., Rogers, B. D., Fourtakas, G. and Lind, S. 2024. Buoyancy-driven circulation and multi-component mixing using SPH with a new adiabatic boundary condition. International Journal of Heat and Mass Transfer 233, article number: 125904. (10.1016/j.ijheatmasstransfer.2024.125904)
- King, J. and Lind, S. 2024. A mesh-free framework for high-order simulations of viscoelastic flows in complex geometries. Journal of Non-Newtonian Fluid Mechanics 330, article number: 105278. (10.1016/j.jnnfm.2024.105278)
- Cen, C., Fourtakas, G., Lind, S. and Rogers, B. D. 2024. A single-phase GPU-accelerated surface tension model using SPH. Computer Physics Communications 295, article number: 109012. (10.1016/j.cpc.2023.109012)
- Au-Yeung, R., Williams, A., Kendon, V. and Lind, S. 2024. Quantum algorithm for smoothed particle hydrodynamics. Computer Physics Communications 294, article number: 108909. (10.1016/j.cpc.2023.108909)
2023
- King, J., Lind, S., Rogers, B., Stansby, P. and Vacondio, R. 2023. Large eddy simulations of bubbly flows and breaking waves with smoothed particle hydrodynamics. Journal of Fluid Mechanics 972, article number: A24. (10.1017/jfm.2023.649)
2022
- Chow, A. D., Stansby, P. K., Rogers, B. D., Lind, S. J. and Fang, Q. 2022. Focused wave interaction with a partially-immersed rectangular box using 2-D incompressible SPH on a GPU comparing with experiment and linear theory. European Journal of Mechanics - B/Fluids 95, pp. 252-275. (10.1016/j.euromechflu.2022.05.007)
- English, A. et al. 2022. Modified dynamic boundary conditions (mDBC) for general-purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems. Computational Particle Mechanics 9(5), pp. 1–15. (10.1007/s40571-021-00403-3)
- O'Connor, J., Domínguez, J. M., Rogers, B. D., Lind, S. J. and Stansby, P. K. 2022. Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs. Computer Physics Communications 273, article number: 108263. (10.1016/j.cpc.2021.108263)
- King, J. and Lind, S. 2022. High-order simulations of isothermal flows using the local anisotropic basis function method (LABFM). Journal of Computational Physics 449, article number: 110760. (10.1016/j.jcp.2021.110760)
2021
- Nasar, A., Fourtakas, G., Lind, S., King, J., Rogers, B. and Stansby, P. 2021. High-order consistent SPH with the pressure projection method in 2-D and 3-D. Journal of Computational Physics 444, article number: 110563. (10.1016/j.jcp.2021.110563)
- King, J. and Lind, S. 2021. High Weissenberg number simulations with incompressible Smoothed Particle Hydrodynamics and the log-conformation formulation. Journal of Non-Newtonian Fluid Mechanics 293, article number: 104556. (10.1016/j.jnnfm.2021.104556)
- Nasar, A., Fourtakas, G., Lind, S., Rogers, B., Stansby, P. and King, J. 2021. High-order velocity and pressure wall boundary conditions in Eulerian incompressible SPH. Journal of Computational Physics 434, article number: 109793. (10.1016/j.jcp.2020.109793)
- Vacondio, R. et al. 2021. Grand challenges for Smoothed Particle Hydrodynamics numerical schemes. Computational Particle Mechanics 8(3), pp. 575–588. (10.1007/s40571-020-00354-1)
2020
- Lind, S. J., Rogers, B. D. and Stansby, P. K. 2020. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476(2241), article number: 20190801. (10.1098/rspa.2019.0801)
- King, J., Lind, S. and Nasar, A. 2020. High order difference schemes using the local anisotropic basis function method. Journal of Computational Physics 415, article number: 109549. (10.1016/j.jcp.2020.109549)
- Reece, G., Rogers, B. D., Lind, S. and Fourtakas, G. 2020. New instability and mixing simulations using SPH and a novel mixing measure. Journal of Hydrodynamics 32(4), pp. 684–698. (10.1007/s42241-020-0045-x)
- Xenakis, A. M., Lind, S. J., Stansby, P. K. and Rogers, B. D. 2020. An incompressible smoothed particle hydrodynamics scheme for Newtonian/non-Newtonian multiphase flows including semi-analytical solutions for two-phase inelastic Poiseuille flows. International Journal for Numerical Methods in Fluids 92(7), pp. 703-726. (10.1002/fld.4802)
2019
- King, J. and Lind, S. 2019. The Kaye effect: new experiments and a mechanistic explanation. Journal of Non-Newtonian Fluid Mechanics 273, article number: 104165. (10.1016/j.jnnfm.2019.104165)
- Chow, A. D., Rogers, B. D., Lind, S. J. and Stansby, P. K. 2019. Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases. Computers and Fluids 179, pp. 543-562. (10.1016/j.compfluid.2018.11.022)
- Nasar, A., Rogers, B., Revell, A., Stansby, P. and Lind, S. 2019. Eulerian weakly compressible smoothed particle hydrodynamics (SPH) with the immersed boundary method for thin slender bodies. Journal of Fluids and Structures 84, pp. 263-282. (10.1016/j.jfluidstructs.2018.11.005)
2018
- Guo, X., Rogers, B. D., Lind, S. and Stansby, P. K. 2018. New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow. Computer Physics Communications 233, pp. 16-28. (10.1016/j.cpc.2018.06.006)
- Fourtakas, G., Stansby, P., Rogers, B., Lind, S., Yan, S. and Ma, Q. 2018. On the coupling of incompressible SPH with a finite element potential flow solver for nonlinear free-surface flows. International Journal of Offshore and Polar Engineering 28(3), pp. 248–254. (10.17736/ijope.2018.ak28)
- Chow, A. D., Rogers, B. D., Lind, S. J. and Stansby, P. K. 2018. Incompressible SPH (ISPH) with fast Poisson solver on a GPU. Computer Physics Communications 226, pp. 81-103. (10.1016/j.cpc.2018.01.005)
- Fourtakas, G., Stansby, P., Rogers, B. and Lind, S. 2018. An Eulerian-Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface. Computer Methods in Applied Mechanics and Engineering 329, pp. 532-552. (10.1016/j.cma.2017.09.029)
2017
- Rowlatt, C. F. and Lind, S. J. 2017. Bubble collapse near a fluid-fluid interface using the spectral element marker particle method with applications in bioengineering. International Journal of Multiphase Flow 90, pp. 118-143. (10.1016/j.ijmultiphaseflow.2016.11.010)
- Xenakis, A. M., Lind, S. J., Stansby, P. K. and Rogers, B. D. 2017. Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2199), article number: 20160674. (10.1098/rspa.2016.0674)
2016
- Lind, S. and Stansby, P. 2016. High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion. Journal of Computational Physics 326, pp. 290-311. (10.1016/j.jcp.2016.08.047)
- Lind, S. J., Stansby, P. K. and Rogers, B. D. 2016. Fixed and moored bodies in steep and breaking waves using SPH with the Froude-Krylov approximation. Journal of Ocean Engineering and Marine Energy 2, pp. 331–354. (10.1007/s40722-016-0056-4)
- Lind, S., Stansby, P. and Rogers, B. 2016. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH). Journal of Computational Physics 309, pp. 129-147. (10.1016/j.jcp.2015.12.005)
2015
- Xenakis, A., Lind, S., Stansby, P. and Rogers, B. 2015. An incompressible SPH scheme with improved pressure predictions for free-surface generalised Newtonian flows. Journal of Non-Newtonian Fluid Mechanics 218, pp. 1-15. (10.1016/j.jnnfm.2015.01.006)
- Lind, S., Stansby, P., Rogers, B. and Lloyd, P. 2015. Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics. Applied Ocean Research 49, pp. 57-71. (10.1016/j.apor.2014.11.001)
2014
- Lind, S. J. 2014. On the dynamics of non-spherical magnetic microbubbles. Physics of Fluids 26(6), article number: 61901. (10.1063/1.4878338)
2013
- Skillen, A., Lind, S., Stansby, P. K. and Rogers, B. D. 2013. Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Computer Methods in Applied Mechanics and Engineering 265, pp. 163-173. (10.1016/j.cma.2013.05.017)
- Lind, S. and Phillips, T. N. 2013. Bubble collapse in compressible fluids using a spectral element marker particle method. Part 2. Viscoelastic fluids. International Journal for Numerical Methods in Fluids 71(9), pp. 1103-1130. (10.1002/fld.3701)
- Lind, S. and Phillips, T. N. 2013. The effect of viscoelasticity on the dynamics of gas bubbles near free surfaces. Physics of Fluids 25(2), pp. 022104-022135. (10.1063/1.4790512)
2012
- Lind, S. and Phillips, T. N. 2012. Bubble collapse in compressible fluids using a spectral element marker particle method. Part 1. Newtonian fluids. International Journal for Numerical Methods in Fluids 70(9), pp. 1167-1187. (10.1002/fld.2737)
- Lind, S. and Phillips, T. N. 2012. The effect of viscoelasticity on the dynamics of two gas bubbles near a rigid boundary. IMA Journal of Applied Mathematics 77(5), pp. 652-677. (10.1093/imamat/hxs041)
- Lind, S., Xu, R., Stansby, P. and Rogers, B. 2012. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics 231(4), pp. 1499-1523. (10.1016/j.jcp.2011.10.027)
2011
- Lind, S. and Phillips, T. N. 2011. The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary. Theoretical and Computational Fluid Dynamics 26(1-4), pp. 245-277. (10.1007/s00162-011-0227-9)
2010
- Lind, S. and Phillips, T. N. 2010. Spherical bubble collapse in viscoelastic fluids. Journal of non-Newtonian fluid mechanics 165(1-2), pp. 56-64. (10.1016/j.jnnfm.2009.09.002)
- Lind, S. and Phillips, T. N. 2010. The effect of viscoelasticity on a rising gas bubble. Journal of non-Newtonian fluid mechanics 165(15-16), pp. 852-865. (10.1016/j.jnnfm.2010.04.002)
Articles
- Reece, G., Rogers, B. D., Fourtakas, G. and Lind, S. 2024. Buoyancy-driven circulation and multi-component mixing using SPH with a new adiabatic boundary condition. International Journal of Heat and Mass Transfer 233, article number: 125904. (10.1016/j.ijheatmasstransfer.2024.125904)
- King, J. and Lind, S. 2024. A mesh-free framework for high-order simulations of viscoelastic flows in complex geometries. Journal of Non-Newtonian Fluid Mechanics 330, article number: 105278. (10.1016/j.jnnfm.2024.105278)
- Cen, C., Fourtakas, G., Lind, S. and Rogers, B. D. 2024. A single-phase GPU-accelerated surface tension model using SPH. Computer Physics Communications 295, article number: 109012. (10.1016/j.cpc.2023.109012)
- Au-Yeung, R., Williams, A., Kendon, V. and Lind, S. 2024. Quantum algorithm for smoothed particle hydrodynamics. Computer Physics Communications 294, article number: 108909. (10.1016/j.cpc.2023.108909)
- King, J., Lind, S., Rogers, B., Stansby, P. and Vacondio, R. 2023. Large eddy simulations of bubbly flows and breaking waves with smoothed particle hydrodynamics. Journal of Fluid Mechanics 972, article number: A24. (10.1017/jfm.2023.649)
- Chow, A. D., Stansby, P. K., Rogers, B. D., Lind, S. J. and Fang, Q. 2022. Focused wave interaction with a partially-immersed rectangular box using 2-D incompressible SPH on a GPU comparing with experiment and linear theory. European Journal of Mechanics - B/Fluids 95, pp. 252-275. (10.1016/j.euromechflu.2022.05.007)
- English, A. et al. 2022. Modified dynamic boundary conditions (mDBC) for general-purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems. Computational Particle Mechanics 9(5), pp. 1–15. (10.1007/s40571-021-00403-3)
- O'Connor, J., Domínguez, J. M., Rogers, B. D., Lind, S. J. and Stansby, P. K. 2022. Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs. Computer Physics Communications 273, article number: 108263. (10.1016/j.cpc.2021.108263)
- King, J. and Lind, S. 2022. High-order simulations of isothermal flows using the local anisotropic basis function method (LABFM). Journal of Computational Physics 449, article number: 110760. (10.1016/j.jcp.2021.110760)
- Nasar, A., Fourtakas, G., Lind, S., King, J., Rogers, B. and Stansby, P. 2021. High-order consistent SPH with the pressure projection method in 2-D and 3-D. Journal of Computational Physics 444, article number: 110563. (10.1016/j.jcp.2021.110563)
- King, J. and Lind, S. 2021. High Weissenberg number simulations with incompressible Smoothed Particle Hydrodynamics and the log-conformation formulation. Journal of Non-Newtonian Fluid Mechanics 293, article number: 104556. (10.1016/j.jnnfm.2021.104556)
- Nasar, A., Fourtakas, G., Lind, S., Rogers, B., Stansby, P. and King, J. 2021. High-order velocity and pressure wall boundary conditions in Eulerian incompressible SPH. Journal of Computational Physics 434, article number: 109793. (10.1016/j.jcp.2020.109793)
- Vacondio, R. et al. 2021. Grand challenges for Smoothed Particle Hydrodynamics numerical schemes. Computational Particle Mechanics 8(3), pp. 575–588. (10.1007/s40571-020-00354-1)
- Lind, S. J., Rogers, B. D. and Stansby, P. K. 2020. Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476(2241), article number: 20190801. (10.1098/rspa.2019.0801)
- King, J., Lind, S. and Nasar, A. 2020. High order difference schemes using the local anisotropic basis function method. Journal of Computational Physics 415, article number: 109549. (10.1016/j.jcp.2020.109549)
- Reece, G., Rogers, B. D., Lind, S. and Fourtakas, G. 2020. New instability and mixing simulations using SPH and a novel mixing measure. Journal of Hydrodynamics 32(4), pp. 684–698. (10.1007/s42241-020-0045-x)
- Xenakis, A. M., Lind, S. J., Stansby, P. K. and Rogers, B. D. 2020. An incompressible smoothed particle hydrodynamics scheme for Newtonian/non-Newtonian multiphase flows including semi-analytical solutions for two-phase inelastic Poiseuille flows. International Journal for Numerical Methods in Fluids 92(7), pp. 703-726. (10.1002/fld.4802)
- King, J. and Lind, S. 2019. The Kaye effect: new experiments and a mechanistic explanation. Journal of Non-Newtonian Fluid Mechanics 273, article number: 104165. (10.1016/j.jnnfm.2019.104165)
- Chow, A. D., Rogers, B. D., Lind, S. J. and Stansby, P. K. 2019. Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases. Computers and Fluids 179, pp. 543-562. (10.1016/j.compfluid.2018.11.022)
- Nasar, A., Rogers, B., Revell, A., Stansby, P. and Lind, S. 2019. Eulerian weakly compressible smoothed particle hydrodynamics (SPH) with the immersed boundary method for thin slender bodies. Journal of Fluids and Structures 84, pp. 263-282. (10.1016/j.jfluidstructs.2018.11.005)
- Guo, X., Rogers, B. D., Lind, S. and Stansby, P. K. 2018. New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow. Computer Physics Communications 233, pp. 16-28. (10.1016/j.cpc.2018.06.006)
- Fourtakas, G., Stansby, P., Rogers, B., Lind, S., Yan, S. and Ma, Q. 2018. On the coupling of incompressible SPH with a finite element potential flow solver for nonlinear free-surface flows. International Journal of Offshore and Polar Engineering 28(3), pp. 248–254. (10.17736/ijope.2018.ak28)
- Chow, A. D., Rogers, B. D., Lind, S. J. and Stansby, P. K. 2018. Incompressible SPH (ISPH) with fast Poisson solver on a GPU. Computer Physics Communications 226, pp. 81-103. (10.1016/j.cpc.2018.01.005)
- Fourtakas, G., Stansby, P., Rogers, B. and Lind, S. 2018. An Eulerian-Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface. Computer Methods in Applied Mechanics and Engineering 329, pp. 532-552. (10.1016/j.cma.2017.09.029)
- Rowlatt, C. F. and Lind, S. J. 2017. Bubble collapse near a fluid-fluid interface using the spectral element marker particle method with applications in bioengineering. International Journal of Multiphase Flow 90, pp. 118-143. (10.1016/j.ijmultiphaseflow.2016.11.010)
- Xenakis, A. M., Lind, S. J., Stansby, P. K. and Rogers, B. D. 2017. Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2199), article number: 20160674. (10.1098/rspa.2016.0674)
- Lind, S. and Stansby, P. 2016. High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion. Journal of Computational Physics 326, pp. 290-311. (10.1016/j.jcp.2016.08.047)
- Lind, S. J., Stansby, P. K. and Rogers, B. D. 2016. Fixed and moored bodies in steep and breaking waves using SPH with the Froude-Krylov approximation. Journal of Ocean Engineering and Marine Energy 2, pp. 331–354. (10.1007/s40722-016-0056-4)
- Lind, S., Stansby, P. and Rogers, B. 2016. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH). Journal of Computational Physics 309, pp. 129-147. (10.1016/j.jcp.2015.12.005)
- Xenakis, A., Lind, S., Stansby, P. and Rogers, B. 2015. An incompressible SPH scheme with improved pressure predictions for free-surface generalised Newtonian flows. Journal of Non-Newtonian Fluid Mechanics 218, pp. 1-15. (10.1016/j.jnnfm.2015.01.006)
- Lind, S., Stansby, P., Rogers, B. and Lloyd, P. 2015. Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics. Applied Ocean Research 49, pp. 57-71. (10.1016/j.apor.2014.11.001)
- Lind, S. J. 2014. On the dynamics of non-spherical magnetic microbubbles. Physics of Fluids 26(6), article number: 61901. (10.1063/1.4878338)
- Skillen, A., Lind, S., Stansby, P. K. and Rogers, B. D. 2013. Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Computer Methods in Applied Mechanics and Engineering 265, pp. 163-173. (10.1016/j.cma.2013.05.017)
- Lind, S. and Phillips, T. N. 2013. Bubble collapse in compressible fluids using a spectral element marker particle method. Part 2. Viscoelastic fluids. International Journal for Numerical Methods in Fluids 71(9), pp. 1103-1130. (10.1002/fld.3701)
- Lind, S. and Phillips, T. N. 2013. The effect of viscoelasticity on the dynamics of gas bubbles near free surfaces. Physics of Fluids 25(2), pp. 022104-022135. (10.1063/1.4790512)
- Lind, S. and Phillips, T. N. 2012. Bubble collapse in compressible fluids using a spectral element marker particle method. Part 1. Newtonian fluids. International Journal for Numerical Methods in Fluids 70(9), pp. 1167-1187. (10.1002/fld.2737)
- Lind, S. and Phillips, T. N. 2012. The effect of viscoelasticity on the dynamics of two gas bubbles near a rigid boundary. IMA Journal of Applied Mathematics 77(5), pp. 652-677. (10.1093/imamat/hxs041)
- Lind, S., Xu, R., Stansby, P. and Rogers, B. 2012. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics 231(4), pp. 1499-1523. (10.1016/j.jcp.2011.10.027)
- Lind, S. and Phillips, T. N. 2011. The influence of viscoelasticity on the collapse of cavitation bubbles near a rigid boundary. Theoretical and Computational Fluid Dynamics 26(1-4), pp. 245-277. (10.1007/s00162-011-0227-9)
- Lind, S. and Phillips, T. N. 2010. Spherical bubble collapse in viscoelastic fluids. Journal of non-Newtonian fluid mechanics 165(1-2), pp. 56-64. (10.1016/j.jnnfm.2009.09.002)
- Lind, S. and Phillips, T. N. 2010. The effect of viscoelasticity on a rising gas bubble. Journal of non-Newtonian fluid mechanics 165(15-16), pp. 852-865. (10.1016/j.jnnfm.2010.04.002)
Biography
- 2024-present, Cardiff University (Reader)
- 2014-2024, University of Manchester (Lecturer-Reader)
Honours and awards
- Recipient of the Joe Monaghan Prize (2022) for SPH research
- Winner of the Vernon Harrison Award of the British Society of Rheology (2010)
- Research project income totalling approximately £5M to date, from EPSRC/UKRI and other funders
Professional memberships
CEng, Member of the IMechE
Committees and reviewing
2023-present, Chair of the UK Fluids Network (UKFN) Special Interest Group on SPH
Supervisions
- Meshless methods, including Smoothed Particle Hydrodynamics (SPH)
- Offshore / Marine energy flows
- Non-Newtonian flows
- High-order numerical methods and boundary element methods
Contact Details
Research themes
Specialisms
- Computational fluid dynamics
- Smoothed Particle Hydrodynamics
- Numerical Methods
- Offshore Marine Energy flows
- Non-Newtonian fluid flows