Dr Andrew Logsdail
(he/him)
BSc MRes FHEA MRSC CChem PhD
- Available for postgraduate supervision
Teams and roles for Andrew Logsdail
Reader
Overview
The desktop computer has revolutionised the way science is investigated. It is now routine to perform computational simulations that validate an experimental observation or hypothesis, but more interestingly it is increasingly feasible to make predictions about how chemical systems and materials will behave before they are even considered in the laboratory.
In our research group, tamm@CCI, we are interested in harnessing modern computers to maximise the impact of predictive computational simulations, with a specific focus on material properties and applications therein towards catalysis. You can hear about some of our research on the "Next Generation Research" podcast series, and the areas that we specialise our research in are:
- developing computational models to better predict the chemical properties of molecules and materials
- applying computational models to contemporary challenges in developing new materials and catalytic chemistry
We work extensively with international communities, both in the domains of computational and experimental research. Our work is currently supported by a range of government funding bodies and industrial partners, including UKRI, EPSRC, bp, Koch Technology Solutions, and Johnson Matthey.
At an individual level, I am also passionate about the advocacy for chemistry and catalysis in our society. I participate in outreach activities, and am involved with leadership activities within the Royal Society of Chemistry and International Union of Pure and Applied Chemistry (see Biography).
Publication
2025
- Bramley, G. , van Vuren, O. and Logsdail, A. J. 2025. A computational study of the formation of surface methoxy species in H-SSZ-13 and H-SAPO-34 frameworks. Physical Chemistry Chemical Physics 27 (24), pp.12996-13010. (10.1039/D5CP00256G)
- Chaudhari, A. , Agrawal, K. and Logsdail, A. J. 2025. Machine learning generalised DFT+ U projectors in a numerical atom-centred orbital framework. Digital Discovery (10.1039/d5dd00292c)
- Chaudhari, A. , Logsdail, A. J. and Folli, A. 2025. Polymorph-induced reducibility and electron trapping energetics of Nb and W Dopants in TiO2. The Journal of Physical Chemistry C 129 (34), pp.15453-15461. (10.1021/acs.jpcc.5c04364)
2024
- Bauer, S. et al., 2024. Roadmap on data-centric materials science. Modelling and Simulation in Materials Science and Engineering 32 (6) 063301. (10.1088/1361-651x/ad4d0d)
- Huang, J. et al., 2024. Exfoliated polymeric carbon nitride nanosheets for photocatalytic applications. ACS Applied Nano Material 7 (7), pp.7442–7452. (10.1021/acsanm.4c00133)
- Huang, J. et al., 2024. Fundamental structural and electronic understanding of palladium catalysts on nitride and oxide supports. Angewandte Chemie International Edition (10.1002/anie.202400174)
- Lindley, M. et al., 2024. Tuning the size of TiO2-supported Co nanoparticle Fischer-Tropsch catalysts using Mn additions. ACS Catalysis 14 , pp.10648–10657. (10.1021/acscatal.4c02721)
- Stishenko, P. et al. 2024. Integrated workflows and interfaces for data-driven semi-empirical electronic structure calculations. The Journal of Chemical Physics 161 (1) 012502. (10.1063/5.0209742)
- Thomas, H. N. et al. 2024. First principles investigation of manganese catalyst structure and coordination in the p -xylene oxidation process. Catalysis Science & Technology 14 (19), pp.5634-5643. (10.1039/d4cy00284a)
- Zou, R. et al., 2024. Anchoring highly dispersed metal nanoparticles by strong electrostatic adsorption (SEA) on a dealuminated beta zeolite for catalysis. Catalysis Science & Technology 14 , pp.164-173. (10.1039/d3cy01334k)
2023
- Beynon, O. T. et al. 2023. Computational study of the solid-state incorporation of Sn(II) Acetate into Zeolite β. Journal of Physical Chemistry C 127 (38), pp.19072-19087. (10.1021/acs.jpcc.3c02679)
- Beynon, O. et al., 2023. Evaluating the role of anharmonic vibrations in zeolite β materials. Journal of Physical Chemistry C 127 (32), pp.16030-16040. (10.1021/acs.jpcc.3c02863)
- Bramley, G. A. et al. 2023. The application of QM/MM simulations in heterogeneous catalysis. Physical Chemistry Chemical Physics 25 (9), pp.6562-6585. (10.1039/d2cp04537k)
- Chaudhuri, S. , Logsdail, A. J. and Maurer, R. J. 2023. Stability of single gold atoms on defective and doped diamond surfaces. Journal of Physical Chemistry C 127 (32), pp.16187-16203. (10.1021/acs.jpcc.3c03900)
- Guan, J. et al., 2023. Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381 (2250) 20220234. (10.1098/rsta.2022.0234)
- Kabalan, L. et al. 2023. Investigation of the Pd (1− x ) Zn x alloy phase diagram using ab initio modelling approaches. Journal of Physics: Condensed Matter 35 (40) 405402. (10.1088/1361-648x/ace01a)
- Lu, Y. et al., 2023. Multiscale QM/MM modelling of catalytic systems with ChemShell †. Physical Chemistry Chemical Physics (10.1039/d3cp00648d)
- Mayer, A. J. et al., 2023. Direct monitoring of the potassium charge carrier in Prussian blue cathodes using potassium K-edge X-ray absorption spectroscopy †. Journal of Materials Chemistry A: materials for energy and sustainability 11 , pp.19900-19913. (10.1039/d3ta02631k)
- Stishenko, P. V. et al. 2023. Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. The Journal of Open Source Software 8 (85) 5186. (10.21105/joss.05186)
2022
- Agrawal, K. et al. 2022. Dehydrogenation and dehydration of formic acid over orthorhombic molybdenum carbide. Catalysis Today 384-6 , pp.197-208. (10.1016/j.cattod.2021.04.011)
- Agrawal, K. et al. 2022. Hydrodeoxygenation of guaiacol over orthorhombic molybdenum carbide: a DFT and microkinetic study. Catalysis Science & Technology 12 (3), pp.843-854. (10.1039/D1CY01273H)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12 (9), pp.5371-5379. (10.1021/acscatal.2c00552)
- Chaudhuri, S. et al., 2022. Coexistence of carbonyl and ether groups on oxygen-terminated (110)-oriented diamond surfaces. Communications Materials 3 (1) 6. (10.1038/s43246-022-00228-4)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122 (6), pp.6795-6849. (10.1021/acs.chemrev.1c00493)
- Keal, T. et al., 2022. Materials and molecular modelling at the Exascale. Computing in Science and Engineering 24 (1), pp.36-45. (10.1109/MCSE.2022.3141328)
- Kowalec, I. et al. 2022. A computational study of direct CO2 hydrogenation to methanol on Pd surfaces. Physical Chemistry Chemical Physics 24 (16), pp.9360-9373. (10.1039/D2CP01019D)
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Navar, R. et al. 2022. Tracking the solid-state incorporation of Sn into the framework of dealuminated zeolite beta, and consequences for catalyst design. Journal of Materials Chemistry A: materials for energy and sustainability 2022 (10), pp.22025-22041. (10.1039/D2TA03837D)
- Smalley, C. et al. 2022. A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of L-tyrosine. Chemical Science 13 (18), pp.5277-5288. (10.1039/D1SC06467C)
- Smalley, C. J. H. et al. 2022. Solid-state structural properties of alloxazine determined from powder XRD data in conjunction with DFT-D calculations and solid-state NMR spectroscopy: unraveling the tautomeric identity and pathways for tautomeric interconversion. Crystal Growth and Design 22 (1), pp.524-534. (10.1021/acs.cgd.1c01114)
2021
- Kabalan, L. et al. 2021. A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces. Physical Chemistry Chemical Physics 23 (27), pp.14649-14661. (10.1039/D1CP01602D)
- Nastase, S. A. F. , Logsdail, A. J. and Catlow, C. R. A. 2021. QM/MM study of the reactivity of zeolite bound methoxy and carbene groups. Physical Chemistry Chemical Physics 23 (32), pp.17634-17644. (10.1039/D1CP02535J)
- Nastase, S. A. F. , Catlow, C. R. A. and Logsdail, A. J. 2021. QM/MM study of the stability of dimethyl ether in zeolites H-ZSM-5 and H-Y. Physical Chemistry Chemical Physics 23 (3), pp.2088-2096. (10.1039/D0CP05392A)
- Omojola, T. et al., 2021. A quantitative multiscale perspective on primary olefin formation from methanol. Physical Chemistry Chemical Physics 23 (38), pp.21437-21469. (10.1039/D1CP02551A)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Sarma, P. J. et al., 2021. Tuning the transition barrier of H2 dissociation in the hydrogenation of CO2 to formic acid on Ti-doped Sn2O4 cluster. Physical Chemistry Chemical Physics 23 (1), pp.204-210. (10.1039/D0CP04472E)
2020
- Aprà, E. et al., 2020. NWChem: Past, present, and future. Journal of Chemical Physics 152 (18) 184102. (10.1063/5.0004997)
- Matam, S. K. et al. 2020. Methanol loading dependent methoxylation in zeolite H-ZSM-5. Chemical Science 11 (26), pp.6805-6814. (10.1039/D0SC01924K)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120 (8), pp.3890-3938. (10.1021/acs.chemrev.9b00662)
- Nastase, S. A. F. et al. 2020. Mechanistic insight into the framework methylation of H-ZSM-5 for varying methanol loading and Si/Al ratio using first principles molecular dynamics simulations. ACS Catalysis 10 , pp.8904-8915. (10.1021/acscatal.0c01454)
- O'Malley, A. J. et al. 2020. Modelling metal centres, acid sites and reaction mechanisms in microporous catalysts. Faraday Discussions 188 , pp.235-255. (10.1039/C6FD00010J)
- Yan, Y. et al. 2020. Polymorphism in a multicomponent crystal system of trimesic acid and t-butylamine. Crystal Growth and Design 20 (9), pp.5736-5744. (10.1021/acs.cgd.0c00163)
2019
- Al Rahal, O. et al. 2019. Polymorphism of L-tryptophan. Angewandte Chemie International Edition 58 (52), pp.18788-18792. (10.1002/anie.201908247)
- Nastase, S. A. et al. 2019. Computational QM/MM investigation of the adsorption of MTH active species in H-Y and H-ZSM-5. Physical Chemistry Chemical Physics 21 (5), pp.2639-2650. (10.1039/C8CP06736H)
- Sarma, P. J. et al., 2019. Hydride pinning pathway in the hydrogenation of CO2 into formic acid on dimeric tin dioxide. ChemPhysChem 20 (5), pp.680-686. (10.1002/cphc.201801194)
- Zhang, I. Y. et al., 2019. Main-group test set for materials science and engineering with user-friendly graphical tools for error analysis: Systematic benchmark of the numerical and intrinsic errors in state-of-the-art electronic-structure approximations. New Journal of Physics 21 , pp.-. 013025. (10.1088/1367-2630/aaf751)
2018
- Arrigo, R. , Logsdail, A. J. and Torrente-Murciano, L. 2018. Highlights from faraday discussion on designing nanoparticle systems for catalysis, London, UK, May 2018. Chemical Communications 54 (68), pp.9385-9393. (10.1039/C8CC90324G)
- Buckeridge, J. et al., 2018. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides. Physical Review Materials 2 (5), pp.-. 054604. (10.1103/PhysRevMaterials.2.054604)
- Catlow, C. R. A. and Logsdail, A. 2018. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1-5, 147) and monometallic Au and Ag low-energy surfaces. European Physical Journal B 91 32. (10.1140/epjb/e2017-80280-7)
- Logsdail, A. J. et al. 2018. Hybrid-DFT modelling of lattice and surface vacancies in MnO. Journal of Physical Chemistry C 123 (13), pp.8133-8144. (10.1021/acs.jpcc.8b07846)
- Logsdail, A. J. , Paz-Borbon, L. O. and Downing, C. A. 2018. DFT-Computed trends in the properties of bimetallic precious-metal nanoparticles with Core@shell segregation. Journal of Physical Chemistry C 122 (10), pp.5721-5730. (10.1021/acs.jpcc.7b10614)
- Lu, Y. et al., 2018. Open-source, python-based redevelopment of the ChemShell multiscale QM/MM environment. Journal of Chemical Theory and Computation 15 (2), pp.1317-1328. (10.1021/acs.jctc.8b01036)
2017
- Logsdail, A. J. et al. 2017. Magnetic coupling constants for MnO as calculated using hybrid density functional theory. Chemical Physics Letters 690 , pp.47-53. (10.1016/j.cplett.2017.10.027)
2016
- Gould, A. L. et al., 2016. Controlling structural transitions in AuAg nanoparticles through precise compositional design. Journal of Physical Chemistry Letters 7 (21), pp.4414-4419. (10.1021/acs.jpclett.6b02181)
- Logsdail, A. et al. 2016. Modelling the chemistry of Mn-doped MgO for bulk and (100) surfaces. Physical Chemistry Chemical Physics 18 (41), pp.28648-28660. (10.1039/C6CP04622C)
2015
- Buckeridge, J. et al., 2015. Polymorph engineering of TiO2: demonstrating how absolute reference potentials are determined by local coordination. Chemistry of Materials 27 (11), pp.3844-3851. (10.1021/acs.chemmater.5b00230)
- Gould, A. L. et al., 2015. Understanding the thermal stability of silver nanoparticles embedded in a-Si. Journal of Physical Chemistry C 119 (41), pp.23767-23773. (10.1021/acs.jpcc.5b07324)
- Gould, A. L. , Logsdail, A. and Catlow, C. R. 2015. Influence of composition and chemical arrangement on the kinetic stability of 147-atom Au-Ag bimetallic nanoclusters. Journal of Physical Chemistry C 119 (41), pp.23685-23697. (10.1021/acs.jpcc.5b03577)
- Logsdail, A. et al. 2015. Structural, energetic and electronic properties of (100) surfaces for alkaline earth metal oxides as calculated with hybrid density functional theory. Surface Science 642 , pp.58-65. (10.1016/j.susc.2015.06.012)
- Mora-Fonz, D. et al., 2015. Morphological features and band bending at nonpolar surfaces of ZnO. Journal of Physical Chemistry C 119 (21), pp.11598-11611. (10.1021/acs.jpcc.5b01331)
- Rogers, S. M. et al., 2015. Tailoring gold nanoparticle characteristics and the impact on aqueous-phase oxidation of glycerol. ACS Catalysis 5 (7), pp.4377-4384. (10.1021/acscatal.5b00754)
2014
- Berger, D. et al., 2014. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. Journal of Chemical Physics 141 (2) 024105. (10.1063/1.4885816)
- Catlow, C. R. et al. 2014. Segregation effects on the properties of (AuAg)147. Physical Chemistry Chemical Physics -Cambridge- Royal Society of Chemistry 16 (39), pp.21049-21061. (10.1039/C4CP00753K)
- Farrow, M. et al., 2014. From stable ZnO and GaN clusters to novel double bubbles and frameworks. Inorganics 2 (2), pp.248-263. (10.3390/inorganics2020248)
- Logsdail, A. , Scanlon, D. O. and Catlow, C. R. 2014. Bulk ionization potentials and band alignments from three-dimensional periodic calculations as demonstrated on rocksalt oxides. Physical Review B: Condensed Matter and Materials Physics 90 (15) 155106. (10.1103/PhysRevB.90.155106)
- Sokol, A. A. et al., 2014. Double bubbles: a new structural motif for enhanced electron-hole separation in solids. Physical Chemistry Chemical Physics -Cambridge- Royal Society of Chemistry 16 (39), pp.21098-21105. (10.1039/C4CP01900H)
- Su, R. et al. 2014. Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8 (4), pp.3490-3497. (10.1021/nn500963m)
2013
- Fennell, J. et al., 2013. A selective blocking method To control the overgrowth of Pt on Au Nanorods. Journal of the American Chemical Society 135 (17), pp.6554-6561. (10.1021/ja4003475)
- Logsdail, A. , Johnston, R. L. and Akola, J. 2013. Improving the adsorption of Au atoms and nanoparticles on graphite via Li intercalation. Journal of Physical Chemistry C 117 (44), pp.22683-22695. (10.1021/jp405670v)
- Logsdail, A. , Li, Z. Y. and Johnston, R. L. 2013. Faceting preferences for AuN and PdN nanoclusters with high-symmetry motifs. Physical Chemistry Chemical Physics 15 (21), pp.8392-8400. (10.1039/c3cp50978h)
2012
- Chantry, R. L. et al., 2012. Overgrowth of rhodium on gold nanorods. Journal of Physical Chemistry C 116 (18), pp.10312-10317. (10.1021/jp212432g)
- Heiles, S. et al., 2012. Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys. Nanoscale 4 (4), pp.1109-1115. (10.1039/C1NR11053E)
- Logsdail, A. and Johnston, R. L. 2012. Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters. RSC Advances 2 (13), pp.5863-5869. (10.1039/c2ra20309j)
- Logsdail, A. and Johnston, R. L. 2012. Predicting the Optical Properties of Core-Shell and Janus Segregated Au-M Nanoparticles (M = Ag, Pd). Journal of Physical Chemistry C 116 (44), pp.23616-23628. (10.1021/jp306000u)
- Logsdail, A. , Li, Z. Y. and Johnston, R. L. 2012. Development and optimization of a novel genetic algorithm for identifying nanoclusters from scanning transmission electron microscopy images. Journal of Computational Chemistry 33 (4), pp.391-400. (10.1002/jcc.21976)
2011
- Logsdail, A. and Akola, J. 2011. Interaction of Au16Nanocluster with defects in supporting graphite: A density-functional study. Journal of Physical Chemistry C 115 (31), pp.15240. (10.1021/jp203274a)
2010
- Logsdail, A. et al. 2010. Theoretical and Experimental Studies of the Optical Properties of Conjoined Gold-Palladium Nanospheres. Journal of Physical Chemistry C 114 (49), pp.21247-21251. (10.1021/jp108486a)
2009
- Logsdail, A. , Paz-Borbón, L. O. and Johnston, R. L. 2009. Structures and Stabilities of Platinum-Gold Nanoclusters. Journal of Computational and Theoretical Nanoscience 6 (4), pp.857-866. (10.1166/jctn.2009.1118)
Articles
- Agrawal, K. et al. 2022. Dehydrogenation and dehydration of formic acid over orthorhombic molybdenum carbide. Catalysis Today 384-6 , pp.197-208. (10.1016/j.cattod.2021.04.011)
- Agrawal, K. et al. 2022. Hydrodeoxygenation of guaiacol over orthorhombic molybdenum carbide: a DFT and microkinetic study. Catalysis Science & Technology 12 (3), pp.843-854. (10.1039/D1CY01273H)
- Al Rahal, O. et al. 2019. Polymorphism of L-tryptophan. Angewandte Chemie International Edition 58 (52), pp.18788-18792. (10.1002/anie.201908247)
- Aprà, E. et al., 2020. NWChem: Past, present, and future. Journal of Chemical Physics 152 (18) 184102. (10.1063/5.0004997)
- Arrigo, R. , Logsdail, A. J. and Torrente-Murciano, L. 2018. Highlights from faraday discussion on designing nanoparticle systems for catalysis, London, UK, May 2018. Chemical Communications 54 (68), pp.9385-9393. (10.1039/C8CC90324G)
- Bauer, S. et al., 2024. Roadmap on data-centric materials science. Modelling and Simulation in Materials Science and Engineering 32 (6) 063301. (10.1088/1361-651x/ad4d0d)
- Berger, D. et al., 2014. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. Journal of Chemical Physics 141 (2) 024105. (10.1063/1.4885816)
- Beynon, O. T. et al. 2023. Computational study of the solid-state incorporation of Sn(II) Acetate into Zeolite β. Journal of Physical Chemistry C 127 (38), pp.19072-19087. (10.1021/acs.jpcc.3c02679)
- Beynon, O. et al., 2023. Evaluating the role of anharmonic vibrations in zeolite β materials. Journal of Physical Chemistry C 127 (32), pp.16030-16040. (10.1021/acs.jpcc.3c02863)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12 (9), pp.5371-5379. (10.1021/acscatal.2c00552)
- Bramley, G. , van Vuren, O. and Logsdail, A. J. 2025. A computational study of the formation of surface methoxy species in H-SSZ-13 and H-SAPO-34 frameworks. Physical Chemistry Chemical Physics 27 (24), pp.12996-13010. (10.1039/D5CP00256G)
- Bramley, G. A. et al. 2023. The application of QM/MM simulations in heterogeneous catalysis. Physical Chemistry Chemical Physics 25 (9), pp.6562-6585. (10.1039/d2cp04537k)
- Buckeridge, J. et al., 2018. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides. Physical Review Materials 2 (5), pp.-. 054604. (10.1103/PhysRevMaterials.2.054604)
- Buckeridge, J. et al., 2015. Polymorph engineering of TiO2: demonstrating how absolute reference potentials are determined by local coordination. Chemistry of Materials 27 (11), pp.3844-3851. (10.1021/acs.chemmater.5b00230)
- Catlow, C. R. et al. 2014. Segregation effects on the properties of (AuAg)147. Physical Chemistry Chemical Physics -Cambridge- Royal Society of Chemistry 16 (39), pp.21049-21061. (10.1039/C4CP00753K)
- Catlow, C. R. A. and Logsdail, A. 2018. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1-5, 147) and monometallic Au and Ag low-energy surfaces. European Physical Journal B 91 32. (10.1140/epjb/e2017-80280-7)
- Chantry, R. L. et al., 2012. Overgrowth of rhodium on gold nanorods. Journal of Physical Chemistry C 116 (18), pp.10312-10317. (10.1021/jp212432g)
- Chaudhari, A. , Agrawal, K. and Logsdail, A. J. 2025. Machine learning generalised DFT+ U projectors in a numerical atom-centred orbital framework. Digital Discovery (10.1039/d5dd00292c)
- Chaudhari, A. , Logsdail, A. J. and Folli, A. 2025. Polymorph-induced reducibility and electron trapping energetics of Nb and W Dopants in TiO2. The Journal of Physical Chemistry C 129 (34), pp.15453-15461. (10.1021/acs.jpcc.5c04364)
- Chaudhuri, S. et al., 2022. Coexistence of carbonyl and ether groups on oxygen-terminated (110)-oriented diamond surfaces. Communications Materials 3 (1) 6. (10.1038/s43246-022-00228-4)
- Chaudhuri, S. , Logsdail, A. J. and Maurer, R. J. 2023. Stability of single gold atoms on defective and doped diamond surfaces. Journal of Physical Chemistry C 127 (32), pp.16187-16203. (10.1021/acs.jpcc.3c03900)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122 (6), pp.6795-6849. (10.1021/acs.chemrev.1c00493)
- Farrow, M. et al., 2014. From stable ZnO and GaN clusters to novel double bubbles and frameworks. Inorganics 2 (2), pp.248-263. (10.3390/inorganics2020248)
- Fennell, J. et al., 2013. A selective blocking method To control the overgrowth of Pt on Au Nanorods. Journal of the American Chemical Society 135 (17), pp.6554-6561. (10.1021/ja4003475)
- Gould, A. L. et al., 2015. Understanding the thermal stability of silver nanoparticles embedded in a-Si. Journal of Physical Chemistry C 119 (41), pp.23767-23773. (10.1021/acs.jpcc.5b07324)
- Gould, A. L. , Logsdail, A. and Catlow, C. R. 2015. Influence of composition and chemical arrangement on the kinetic stability of 147-atom Au-Ag bimetallic nanoclusters. Journal of Physical Chemistry C 119 (41), pp.23685-23697. (10.1021/acs.jpcc.5b03577)
- Gould, A. L. et al., 2016. Controlling structural transitions in AuAg nanoparticles through precise compositional design. Journal of Physical Chemistry Letters 7 (21), pp.4414-4419. (10.1021/acs.jpclett.6b02181)
- Guan, J. et al., 2023. Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381 (2250) 20220234. (10.1098/rsta.2022.0234)
- Heiles, S. et al., 2012. Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys. Nanoscale 4 (4), pp.1109-1115. (10.1039/C1NR11053E)
- Huang, J. et al., 2024. Exfoliated polymeric carbon nitride nanosheets for photocatalytic applications. ACS Applied Nano Material 7 (7), pp.7442–7452. (10.1021/acsanm.4c00133)
- Huang, J. et al., 2024. Fundamental structural and electronic understanding of palladium catalysts on nitride and oxide supports. Angewandte Chemie International Edition (10.1002/anie.202400174)
- Kabalan, L. et al. 2021. A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces. Physical Chemistry Chemical Physics 23 (27), pp.14649-14661. (10.1039/D1CP01602D)
- Kabalan, L. et al. 2023. Investigation of the Pd (1− x ) Zn x alloy phase diagram using ab initio modelling approaches. Journal of Physics: Condensed Matter 35 (40) 405402. (10.1088/1361-648x/ace01a)
- Keal, T. et al., 2022. Materials and molecular modelling at the Exascale. Computing in Science and Engineering 24 (1), pp.36-45. (10.1109/MCSE.2022.3141328)
- Kowalec, I. et al. 2022. A computational study of direct CO2 hydrogenation to methanol on Pd surfaces. Physical Chemistry Chemical Physics 24 (16), pp.9360-9373. (10.1039/D2CP01019D)
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Lindley, M. et al., 2024. Tuning the size of TiO2-supported Co nanoparticle Fischer-Tropsch catalysts using Mn additions. ACS Catalysis 14 , pp.10648–10657. (10.1021/acscatal.4c02721)
- Logsdail, A. and Akola, J. 2011. Interaction of Au16Nanocluster with defects in supporting graphite: A density-functional study. Journal of Physical Chemistry C 115 (31), pp.15240. (10.1021/jp203274a)
- Logsdail, A. et al. 2010. Theoretical and Experimental Studies of the Optical Properties of Conjoined Gold-Palladium Nanospheres. Journal of Physical Chemistry C 114 (49), pp.21247-21251. (10.1021/jp108486a)
- Logsdail, A. et al. 2016. Modelling the chemistry of Mn-doped MgO for bulk and (100) surfaces. Physical Chemistry Chemical Physics 18 (41), pp.28648-28660. (10.1039/C6CP04622C)
- Logsdail, A. and Johnston, R. L. 2012. Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters. RSC Advances 2 (13), pp.5863-5869. (10.1039/c2ra20309j)
- Logsdail, A. and Johnston, R. L. 2012. Predicting the Optical Properties of Core-Shell and Janus Segregated Au-M Nanoparticles (M = Ag, Pd). Journal of Physical Chemistry C 116 (44), pp.23616-23628. (10.1021/jp306000u)
- Logsdail, A. , Johnston, R. L. and Akola, J. 2013. Improving the adsorption of Au atoms and nanoparticles on graphite via Li intercalation. Journal of Physical Chemistry C 117 (44), pp.22683-22695. (10.1021/jp405670v)
- Logsdail, A. , Li, Z. Y. and Johnston, R. L. 2012. Development and optimization of a novel genetic algorithm for identifying nanoclusters from scanning transmission electron microscopy images. Journal of Computational Chemistry 33 (4), pp.391-400. (10.1002/jcc.21976)
- Logsdail, A. , Li, Z. Y. and Johnston, R. L. 2013. Faceting preferences for AuN and PdN nanoclusters with high-symmetry motifs. Physical Chemistry Chemical Physics 15 (21), pp.8392-8400. (10.1039/c3cp50978h)
- Logsdail, A. et al. 2015. Structural, energetic and electronic properties of (100) surfaces for alkaline earth metal oxides as calculated with hybrid density functional theory. Surface Science 642 , pp.58-65. (10.1016/j.susc.2015.06.012)
- Logsdail, A. , Paz-Borbón, L. O. and Johnston, R. L. 2009. Structures and Stabilities of Platinum-Gold Nanoclusters. Journal of Computational and Theoretical Nanoscience 6 (4), pp.857-866. (10.1166/jctn.2009.1118)
- Logsdail, A. , Scanlon, D. O. and Catlow, C. R. 2014. Bulk ionization potentials and band alignments from three-dimensional periodic calculations as demonstrated on rocksalt oxides. Physical Review B: Condensed Matter and Materials Physics 90 (15) 155106. (10.1103/PhysRevB.90.155106)
- Logsdail, A. J. et al. 2017. Magnetic coupling constants for MnO as calculated using hybrid density functional theory. Chemical Physics Letters 690 , pp.47-53. (10.1016/j.cplett.2017.10.027)
- Logsdail, A. J. et al. 2018. Hybrid-DFT modelling of lattice and surface vacancies in MnO. Journal of Physical Chemistry C 123 (13), pp.8133-8144. (10.1021/acs.jpcc.8b07846)
- Logsdail, A. J. , Paz-Borbon, L. O. and Downing, C. A. 2018. DFT-Computed trends in the properties of bimetallic precious-metal nanoparticles with Core@shell segregation. Journal of Physical Chemistry C 122 (10), pp.5721-5730. (10.1021/acs.jpcc.7b10614)
- Lu, Y. et al., 2018. Open-source, python-based redevelopment of the ChemShell multiscale QM/MM environment. Journal of Chemical Theory and Computation 15 (2), pp.1317-1328. (10.1021/acs.jctc.8b01036)
- Lu, Y. et al., 2023. Multiscale QM/MM modelling of catalytic systems with ChemShell †. Physical Chemistry Chemical Physics (10.1039/d3cp00648d)
- Matam, S. K. et al. 2020. Methanol loading dependent methoxylation in zeolite H-ZSM-5. Chemical Science 11 (26), pp.6805-6814. (10.1039/D0SC01924K)
- Mayer, A. J. et al., 2023. Direct monitoring of the potassium charge carrier in Prussian blue cathodes using potassium K-edge X-ray absorption spectroscopy †. Journal of Materials Chemistry A: materials for energy and sustainability 11 , pp.19900-19913. (10.1039/d3ta02631k)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120 (8), pp.3890-3938. (10.1021/acs.chemrev.9b00662)
- Mora-Fonz, D. et al., 2015. Morphological features and band bending at nonpolar surfaces of ZnO. Journal of Physical Chemistry C 119 (21), pp.11598-11611. (10.1021/acs.jpcc.5b01331)
- Nastase, S. A. F. et al. 2020. Mechanistic insight into the framework methylation of H-ZSM-5 for varying methanol loading and Si/Al ratio using first principles molecular dynamics simulations. ACS Catalysis 10 , pp.8904-8915. (10.1021/acscatal.0c01454)
- Nastase, S. A. F. , Logsdail, A. J. and Catlow, C. R. A. 2021. QM/MM study of the reactivity of zeolite bound methoxy and carbene groups. Physical Chemistry Chemical Physics 23 (32), pp.17634-17644. (10.1039/D1CP02535J)
- Nastase, S. A. et al. 2019. Computational QM/MM investigation of the adsorption of MTH active species in H-Y and H-ZSM-5. Physical Chemistry Chemical Physics 21 (5), pp.2639-2650. (10.1039/C8CP06736H)
- Nastase, S. A. F. , Catlow, C. R. A. and Logsdail, A. J. 2021. QM/MM study of the stability of dimethyl ether in zeolites H-ZSM-5 and H-Y. Physical Chemistry Chemical Physics 23 (3), pp.2088-2096. (10.1039/D0CP05392A)
- Navar, R. et al. 2022. Tracking the solid-state incorporation of Sn into the framework of dealuminated zeolite beta, and consequences for catalyst design. Journal of Materials Chemistry A: materials for energy and sustainability 2022 (10), pp.22025-22041. (10.1039/D2TA03837D)
- O'Malley, A. J. et al. 2020. Modelling metal centres, acid sites and reaction mechanisms in microporous catalysts. Faraday Discussions 188 , pp.235-255. (10.1039/C6FD00010J)
- Omojola, T. et al., 2021. A quantitative multiscale perspective on primary olefin formation from methanol. Physical Chemistry Chemical Physics 23 (38), pp.21437-21469. (10.1039/D1CP02551A)
- Rogers, S. M. et al., 2015. Tailoring gold nanoparticle characteristics and the impact on aqueous-phase oxidation of glycerol. ACS Catalysis 5 (7), pp.4377-4384. (10.1021/acscatal.5b00754)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Sarma, P. J. et al., 2019. Hydride pinning pathway in the hydrogenation of CO2 into formic acid on dimeric tin dioxide. ChemPhysChem 20 (5), pp.680-686. (10.1002/cphc.201801194)
- Sarma, P. J. et al., 2021. Tuning the transition barrier of H2 dissociation in the hydrogenation of CO2 to formic acid on Ti-doped Sn2O4 cluster. Physical Chemistry Chemical Physics 23 (1), pp.204-210. (10.1039/D0CP04472E)
- Smalley, C. et al. 2022. A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of L-tyrosine. Chemical Science 13 (18), pp.5277-5288. (10.1039/D1SC06467C)
- Smalley, C. J. H. et al. 2022. Solid-state structural properties of alloxazine determined from powder XRD data in conjunction with DFT-D calculations and solid-state NMR spectroscopy: unraveling the tautomeric identity and pathways for tautomeric interconversion. Crystal Growth and Design 22 (1), pp.524-534. (10.1021/acs.cgd.1c01114)
- Sokol, A. A. et al., 2014. Double bubbles: a new structural motif for enhanced electron-hole separation in solids. Physical Chemistry Chemical Physics -Cambridge- Royal Society of Chemistry 16 (39), pp.21098-21105. (10.1039/C4CP01900H)
- Stishenko, P. et al. 2024. Integrated workflows and interfaces for data-driven semi-empirical electronic structure calculations. The Journal of Chemical Physics 161 (1) 012502. (10.1063/5.0209742)
- Stishenko, P. V. et al. 2023. Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. The Journal of Open Source Software 8 (85) 5186. (10.21105/joss.05186)
- Su, R. et al. 2014. Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8 (4), pp.3490-3497. (10.1021/nn500963m)
- Thomas, H. N. et al. 2024. First principles investigation of manganese catalyst structure and coordination in the p -xylene oxidation process. Catalysis Science & Technology 14 (19), pp.5634-5643. (10.1039/d4cy00284a)
- Yan, Y. et al. 2020. Polymorphism in a multicomponent crystal system of trimesic acid and t-butylamine. Crystal Growth and Design 20 (9), pp.5736-5744. (10.1021/acs.cgd.0c00163)
- Zhang, I. Y. et al., 2019. Main-group test set for materials science and engineering with user-friendly graphical tools for error analysis: Systematic benchmark of the numerical and intrinsic errors in state-of-the-art electronic-structure approximations. New Journal of Physics 21 , pp.-. 013025. (10.1088/1367-2630/aaf751)
- Zou, R. et al., 2024. Anchoring highly dispersed metal nanoparticles by strong electrostatic adsorption (SEA) on a dealuminated beta zeolite for catalysis. Catalysis Science & Technology 14 , pp.164-173. (10.1039/d3cy01334k)
Research
My research focuses on the computational modelling of catalytic materials, and is divided in to two complementary themes of software development and chemical materials simulation. My research group is embedded within the Cardiff Catalysis Institute, which has allowed software development and chemical investigation to complement on-going investigations of homogeneous and heterogeneous catalytic systems. Computational catalysis is a fast-growing and exciting field due to the possibility of testing and tuning reactive systems on the computer before exhaustive laboratory investigation; in collaboration with partners in the CCI, some example research activities:
- the reactivity of multi-element nanoparticles for e.g. H2O2 synthesis and CO2 reduction;
- the catalytic and defect chemistry of TiO2;
- the structure and application of zeolites for MTH and biomass transformation;
- the upgrading of ethanol to butanol using Ru-based homogeneous catalysts.
Our work to develop state-of-the-art computational models is realised through the hybrid quantum/molecular mechanical (QM/MM) software package "ChemShell", and other complementary packages such as the QM software packages "FHI-aims" and "NWChem". A broad skillset exists in our group in the field of software development, specifically the translation of chemical theory in to parallel computational implementations. The QM/MM approach opens up exciting opportunities that are inaccessible with mainstream methods, such as using high-level theory or modelling electronically charged systems. My applications of QM/MM focus on understanding the chemical properties of catalytic materials and/or catalyst supports; Increasingly this now also considers homogeneous systems as well as heterogeneous.
For more information on specific projects available with Dr Andrew Logsdail please review the Catalysis and interfacial science section of our research project themes.
Teaching
- Year 1/2: Physical Tutorials
- Year 3/4: Final Year Projects
- Year 4 : Advanced Materials
I am also personal tutor to ~15 undergraduate students.
Biography
- 2008 – 2012 PhD, Chemistry, University of Birmingham, UK
- 2006 – 2008 MRes, Materials and Nanochemistry, University of Birmingham, UK
- 2003 – 2006 BSc, Natural Sciences (2:1 with honours), University of Birmingham, UK
Professional memberships
- 2019 – Fellowship of the Higher Education Authority
- 2015 – Chartered Chemist, Royal Society of Chemistry
- 2006 – Member, Royal Society of Chemistry
Academic positions
- 2024 – Reader in Catalytic and Computational Chemistry, Cardiff University, UK
- 2022 – 2024 Senior Lecturer in Catalytic and Computational Chemistry, Cardiff University, UK
- 2020 – UKRI Future Leaders Fellow
- 2019 – 2022 Lecturer in Catalytic and Computational Chemistry, Cardiff University, UK
- 2016 – 2019 University Research Fellow, School of Chemistry, Cardiff University, UK
- 2014 – 2016 Ramsay Research Fellow, Department of Chemistry, University College London, UK
- 2012 – 2014 Postdoctoral Research Associate, Department of Chemistry, University College London, UK
Committees and reviewing
- 2024 – Titular Member, IUPAC Division II (Inorganic Chemistry)
- 2024 – Division II Representative, IUPAC CPCDS Standing Committee
- 2023 – Member, Steering Board, Engineering Porous Materials at Multiple Scales (EPSRC Network Grant)
- 2023 – Member, RSC Faraday Council
- 2022 – Member, RSC Faraday Council Prize Nomination Working Group
- 2021 – 2024 Chair, RSC Wales Regional Steering Group
- 2021 – 2024 Member, RSC Member Networks Committee
- 2022 – 2023 National Representative, IUPAC Division II (Inorganic Chemistry)
- 2021 – 2022 Member, FLF Development Network Advisory Board
- 2020 – 2024 Member, Executive Committee Collaborative Computational Project 5 (EPSRC Network Grant)
- 2019 – Member, RSC South East Wales Local Section Committee
- 2018 – 2024 Academic Representative, RSC Wales Regional Steering Group
- 2016 – 2018 Fixed-term Representative, RSC Solid State Chemistry Group
Supervisions
We have a dynamic and exciting research team, and are always welcoming to new researchers in the field of computational and catalytic chemistry. Research areas that we are interested in supervising projects in includes:
- Developing approaches for simulating process at materials surfaces and during catalysis
- Chemical processes relevant to achieving net zero, and supporting the circular economy
- Designing bespoke materials with properties fit for 21st century applications
- Integration of data driven processes into the computational discovery protocols, accelerating catalyst discovery
We welcome contact from potential students and researchers to discuss research ideas and opportunities.
Current supervision
Contact Details
+44 29225 10162
Translational Research Hub, Floor 3, Room 3.15, Maindy Road, Cathays, Cardiff, CF24 4HQ
Research themes
Specialisms
- Computational chemistry
- Homogeneous catalysis
- Inorganic materials
- Nanomaterials
- heterogeneous catalysis