Dr Andrew Logsdail
(he/him)
BSc MRes FHEA MRSC CChem PhD
Reader
- Available for postgraduate supervision
Overview
The desktop computer has revolutionised the way science is investigated. It is now routine to perform computational simulations that validate an experimental observation or hypothesis, but more interestingly it is increasingly feasible to make predictions about how chemical systems and materials will behave before they are even considered in the laboratory.
In our research group, tamm@CCI, we are interested in harnessing modern computers to maximise the impact of predictive computational simulations, with a specific focus on material properties and applications therein towards catalysis. You can hear about some of our research on the "Next Generation Research" podcast series, and the areas that we specialise our research in are:
- developing computational models to better predict the chemical properties of molecules and materials
- applying computational models to contemporary challenges in developing new materials and catalytic chemistry
We work extensively with international communities, both in the domains of computational and experimental research. Our work is currently supported by a range of government funding bodies and industrial partners, including UKRI, EPSRC, bp, Koch Technology Solutions, and Johnson Matthey.
At an individual level, I am also passionate about the advocacy for chemistry and catalysis in our society. I participate in outreach activities, and am involved with leadership activities within the Royal Society of Chemistry and International Union of Pure and Applied Chemistry (see Biography).
Publication
2024
- Thomas, H. N., Wass, D. F., Offiler, C. A., Whiston, K. and Logsdail, A. J. 2024. First principles investigation of manganese catalyst structure and coordination in the p -xylene oxidation process. Catalysis Science & Technology 14(19), pp. 5634-5643. (10.1039/d4cy00284a)
- Stishenko, P., McSloy, A., Onat, B., Hourahine, B., Maurer, R. J., Kermode, J. R. and Logsdail, A. 2024. Integrated workflows and interfaces for data-driven semi-empirical electronic structure calculations. The Journal of Chemical Physics 161(1), article number: 12502. (10.1063/5.0209742)
- Bauer, S. et al. 2024. Roadmap on data-centric materials science. Modelling and Simulation in Materials Science and Engineering 32(6), article number: 63301. (10.1088/1361-651x/ad4d0d)
- Lindley, M. et al. 2024. Tuning the size of TiO2-supported Co nanoparticle Fischer-Tropsch catalysts using Mn additions. ACS Catalysis 14, pp. 10648–10657. (10.1021/acscatal.4c02721)
- Huang, J. et al. 2024. Exfoliated polymeric carbon nitride nanosheets for photocatalytic applications. ACS Applied Nano Material 7(7), pp. 7442–7452. (10.1021/acsanm.4c00133)
- Huang, J. et al. 2024. Fundamental structural and electronic understanding of palladium catalysts on nitride and oxide supports. Angewandte Chemie International Edition (10.1002/anie.202400174)
- Zou, R. et al. 2024. Anchoring highly dispersed metal nanoparticles by strong electrostatic adsorption (SEA) on a dealuminated beta zeolite for catalysis. Catalysis Science & Technology 14, pp. 164-173. (10.1039/d3cy01334k)
2023
- Beynon, O. T., Owens, A., Tarantino, G., Hammond, C. and Logsdail, A. J. 2023. Computational study of the solid-state incorporation of Sn(II) Acetate into Zeolite β. Journal of Physical Chemistry C 127(38), pp. 19072-19087. (10.1021/acs.jpcc.3c02679)
- Chaudhuri, S., Logsdail, A. J. and Maurer, R. J. 2023. Stability of single gold atoms on defective and doped diamond surfaces. Journal of Physical Chemistry C 127(32), pp. 16187-16203. (10.1021/acs.jpcc.3c03900)
- Beynon, O., Owens, A., Carbogno, C. and Logsdail, A. J. 2023. Evaluating the role of anharmonic vibrations in zeolite β materials. Journal of Physical Chemistry C 127(32), pp. 16030-16040. (10.1021/acs.jpcc.3c02863)
- Mayer, A. J. et al. 2023. Direct monitoring of the potassium charge carrier in Prussian blue cathodes using potassium K-edge X-ray absorption spectroscopy †. Journal of Materials Chemistry A: materials for energy and sustainability 11, pp. 19900-19913. (10.1039/d3ta02631k)
- Kabalan, L., Kowalec, I., Rigamonti, S., Troppenz, M., Draxl, C., Catlow, C. R. and Logsdail, A. J. 2023. Investigation of the Pd (1− x ) Zn x alloy phase diagram using ab initio modelling approaches. Journal of Physics: Condensed Matter 35(40), article number: 405402. (10.1088/1361-648x/ace01a)
- Guan, J. et al. 2023. Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2250), article number: 20220234. (10.1098/rsta.2022.0234)
- Stishenko, P. V., Keal, T. W., Woodley, S. M., Blum, V., Hourahine, B., Maurer, R. J. and Logsdail, A. J. 2023. Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. The Journal of Open Source Software 8(85), article number: 5186. (10.21105/joss.05186)
- Lu, Y. et al. 2023. Multiscale QM/MM modelling of catalytic systems with ChemShell †. Physical Chemistry Chemical Physics (10.1039/d3cp00648d)
- Bramley, G. A., Beynon, O. T., Stishenko, P. V. and Logsdail, A. J. 2023. The application of QM/MM simulations in heterogeneous catalysis. Physical Chemistry Chemical Physics 25(9), pp. 6562-6585. (10.1039/d2cp04537k)
2022
- Navar, R. et al. 2022. Tracking the solid-state incorporation of Sn into the framework of dealuminated zeolite beta, and consequences for catalyst design. Journal of Materials Chemistry A: materials for energy and sustainability 2022(10), pp. 22025-22041. (10.1039/D2TA03837D)
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Smalley, C. et al. 2022. A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of L-tyrosine. Chemical Science 13(18), pp. 5277-5288. (10.1039/D1SC06467C)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12(9), pp. 5371-5379. (10.1021/acscatal.2c00552)
- Kowalec, I., Kabalan, L., Catlow, C. R. A. and Logsdail, A. J. 2022. A computational study of direct CO2 hydrogenation to methanol on Pd surfaces. Physical Chemistry Chemical Physics 24(16), pp. 9360-9373. (10.1039/D2CP01019D)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122(6), pp. 6795-6849. (10.1021/acs.chemrev.1c00493)
- Agrawal, K., Roldan, A., Kishore, N. and Logsdail, A. J. 2022. Dehydrogenation and dehydration of formic acid over orthorhombic molybdenum carbide. Catalysis Today 384-6, pp. 197-208. (10.1016/j.cattod.2021.04.011)
- Agrawal, K., Roldan, A., Kishore, N. and Logsdail, A. J. 2022. Hydrodeoxygenation of guaiacol over orthorhombic molybdenum carbide: a DFT and microkinetic study. Catalysis Science & Technology 12(3), pp. 843-854. (10.1039/D1CY01273H)
- Keal, T. et al. 2022. Materials and molecular modelling at the Exascale. Computing in Science and Engineering 24(1), pp. 36-45. (10.1109/MCSE.2022.3141328)
- Chaudhuri, S., Hall, S. J., Klein, B. P., Walker, M., Logsdail, A. J., Macpherson, J. V. and Maurer, R. J. 2022. Coexistence of carbonyl and ether groups on oxygen-terminated (110)-oriented diamond surfaces. Communications Materials 3(1), article number: 6. (10.1038/s43246-022-00228-4)
- Smalley, C. J. H., Logsdail, A. J., Hughes, C. E., Iuga, D., Young, M. T. and Harris, K. D. M. 2022. Solid-state structural properties of alloxazine determined from powder XRD data in conjunction with DFT-D calculations and solid-state NMR spectroscopy: unraveling the tautomeric identity and pathways for tautomeric interconversion. Crystal Growth and Design 22(1), pp. 524-534. (10.1021/acs.cgd.1c01114)
2021
- Omojola, T., Logsdail, A. J., van Veen, A. C. and Nastase, S. A. F. 2021. A quantitative multiscale perspective on primary olefin formation from methanol. Physical Chemistry Chemical Physics 23(38), pp. 21437-21469. (10.1039/D1CP02551A)
- Nastase, S. A. F., Logsdail, A. J. and Catlow, C. R. A. 2021. QM/MM study of the reactivity of zeolite bound methoxy and carbene groups. Physical Chemistry Chemical Physics 23(32), pp. 17634-17644. (10.1039/D1CP02535J)
- Kabalan, L., Kowalec, I., Catlow, C. R. A. and Logsdail, A. J. 2021. A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces. Physical Chemistry Chemical Physics 23(27), pp. 14649-14661. (10.1039/D1CP01602D)
- Sainna, M. et al. 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229, pp. 108-130. (10.1039/D0FD00005A)
- Nastase, S. A. F., Catlow, C. R. A. and Logsdail, A. J. 2021. QM/MM study of the stability of dimethyl ether in zeolites H-ZSM-5 and H-Y. Physical Chemistry Chemical Physics 23(3), pp. 2088-2096. (10.1039/D0CP05392A)
- Sarma, P. J., Dowerah, D., Gour, N. K., Logsdail, A. J., Catlow, C. R. A. and Deka, R. 2021. Tuning the transition barrier of H2 dissociation in the hydrogenation of CO2 to formic acid on Ti-doped Sn2O4 cluster. Physical Chemistry Chemical Physics 23(1), pp. 204-210. (10.1039/D0CP04472E)
2020
- Yan, Y., Kariuki, B. M., Hughes, C. E., Logsdail, A. J. and Harris, K. D. M. 2020. Polymorphism in a multicomponent crystal system of trimesic acid and t-butylamine. Crystal Growth and Design 20(9), pp. 5736-5744. (10.1021/acs.cgd.0c00163)
- Matam, S. K., Nastase, S. A. F., Logsdail, A. J. and Catlow, C. R. A. 2020. Methanol loading dependent methoxylation in zeolite H-ZSM-5. Chemical Science 11(26), pp. 6805-6814. (10.1039/D0SC01924K)
- O'Malley, A. J., Logsdail, A. J., Sokol, A. . A. and Catlow, C. R. A. 2020. Modelling metal centres, acid sites and reaction mechanisms in microporous catalysts. Faraday Discussions 188, pp. 235-255. (10.1039/C6FD00010J)
- Aprà, E. et al. 2020. NWChem: Past, present, and future. Journal of Chemical Physics 152(18), article number: 184102. (10.1063/5.0004997)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120(8), pp. 3890-3938. (10.1021/acs.chemrev.9b00662)
- Nastase, S. A. F., Cnudde, P., Vanduyfhuys, L., De Wispelaere, K., Van Speybroeck, V., Catlow, C. R. A. and Logsdail, A. J. 2020. Mechanistic insight into the framework methylation of H-ZSM-5 for varying methanol loading and Si/Al ratio using first principles molecular dynamics simulations. ACS Catalysis 10, pp. 8904-8915. (10.1021/acscatal.0c01454)
2019
- Al Rahal, O., Hughes, C. E., Williams, P. A., Logsdail, A. J., Diskin-Posner, Y. and Harris, K. D. M. 2019. Polymorphism of L-tryptophan. Angewandte Chemie International Edition 58(52), pp. 18788-18792. (10.1002/anie.201908247)
- Sarma, P. . J., Dey Baruah, S., Logsdail, A. and Deka, R. C. 2019. Hydride pinning pathway in the hydrogenation of CO2 into formic acid on dimeric tin dioxide. ChemPhysChem 20(5), pp. 680-686. (10.1002/cphc.201801194)
- Nastase, S. A., O'Malley, A. J., Catlow, C. . R. A. and Logsdail, A. J. 2019. Computational QM/MM investigation of the adsorption of MTH active species in H-Y and H-ZSM-5. Physical Chemistry Chemical Physics 21(5), pp. 2639-2650. (10.1039/C8CP06736H)
- Zhang, I. Y., Logsdail, A., Ren, X., Levchenko, S. V., Ghiringhelli, L. M. and Scheffler, M. 2019. Main-group test set for materials science and engineering with user-friendly graphical tools for error analysis: Systematic benchmark of the numerical and intrinsic errors in state-of-the-art electronic-structure approximations. New Journal of Physics 21, pp. -., article number: 13025. (10.1088/1367-2630/aaf751)
2018
- Lu, Y. et al. 2018. Open-source, python-based redevelopment of the ChemShell multiscale QM/MM environment. Journal of Chemical Theory and Computation 15(2), pp. 1317-1328. (10.1021/acs.jctc.8b01036)
- Logsdail, A. J., Downing, C. A., Keal, T. W., Sherwood, P., Sokol, A. A. and Catlow, C. R. A. 2018. Hybrid-DFT modelling of lattice and surface vacancies in MnO. Journal of Physical Chemistry C 123(13), pp. 8133-8144. (10.1021/acs.jpcc.8b07846)
- Arrigo, R., Logsdail, A. J. and Torrente-Murciano, L. 2018. Highlights from faraday discussion on designing nanoparticle systems for catalysis, London, UK, May 2018. Chemical Communications 54(68), pp. 9385-9393. (10.1039/C8CC90324G)
- Buckeridge, J. et al. 2018. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides. Physical Review Materials 2(5), pp. -., article number: 54604. (10.1103/PhysRevMaterials.2.054604)
- Catlow, C. R. A. and Logsdail, A. 2018. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1-5, 147) and monometallic Au and Ag low-energy surfaces. European Physical Journal B 91, article number: 32. (10.1140/epjb/e2017-80280-7)
- Logsdail, A. J., Paz-Borbon, L. O. and Downing, C. A. 2018. DFT-Computed trends in the properties of bimetallic precious-metal nanoparticles with Core@shell segregation. Journal of Physical Chemistry C 122(10), pp. 5721-5730. (10.1021/acs.jpcc.7b10614)
2017
- Logsdail, A. J., Downing, C. A., Catlow, C. R. A. and Sokol, A. A. 2017. Magnetic coupling constants for MnO as calculated using hybrid density functional theory. Chemical Physics Letters 690, pp. 47-53. (10.1016/j.cplett.2017.10.027)
2016
- Gould, A. L., Rossi, K., Catlow, C. R. A., Baletto, F. and Logsdail, A. J. 2016. Controlling structural transitions in AuAg nanoparticles through precise compositional design. Journal of Physical Chemistry Letters 7(21), pp. 4414-4419. (10.1021/acs.jpclett.6b02181)
- Logsdail, A., Downing, C. A., Keal, T. W., Sherwood, P., Sokol, A. A. and Catlow, C. R. 2016. Modelling the chemistry of Mn-doped MgO for bulk and (100) surfaces. Physical Chemistry Chemical Physics 18(41), pp. 28648-28660. (10.1039/C6CP04622C)
2015
- Logsdail, A., Mora-Fonz, D., Scanlon, D. O. and Catlow, C. R. 2015. Structural, energetic and electronic properties of (100) surfaces for alkaline earth metal oxides as calculated with hybrid density functional theory. Surface Science 642, pp. 58-65. (10.1016/j.susc.2015.06.012)
- Gould, A. L., Logsdail, A. and Catlow, C. R. 2015. Influence of composition and chemical arrangement on the kinetic stability of 147-atom Au-Ag bimetallic nanoclusters. Journal of Physical Chemistry C 119(41), pp. 23685-23697. (10.1021/acs.jpcc.5b03577)
- Gould, A. L., Kadkhodazadeh, S., Wagner, J. B., Catlow, C. R., Logsdail, A. and Di Vece, M. 2015. Understanding the thermal stability of silver nanoparticles embedded in a-Si. Journal of Physical Chemistry C 119(41), pp. 23767-23773. (10.1021/acs.jpcc.5b07324)
- Rogers, S. M. et al. 2015. Tailoring gold nanoparticle characteristics and the impact on aqueous-phase oxidation of glycerol. ACS Catalysis 5(7), pp. 4377-4384. (10.1021/acscatal.5b00754)
- Buckeridge, J. et al. 2015. Polymorph engineering of TiO2: demonstrating how absolute reference potentials are determined by local coordination. Chemistry of Materials 27(11), pp. 3844-3851. (10.1021/acs.chemmater.5b00230)
- Mora-Fonz, D., Buckeridge, J., Logsdail, A., Scanlon, D. O., Sokol, A. A., Woodley, S. and Catlow, C. R. 2015. Morphological features and band bending at nonpolar surfaces of ZnO. Journal of Physical Chemistry C 119(21), pp. 11598-11611. (10.1021/acs.jpcc.5b01331)
2014
- Sokol, A. A., Farrow, M. R., Buckeridge, J., Logsdail, A., Catlow, C., Scanlon, O. and Woodley, S. M. 2014. Double bubbles: a new structural motif for enhanced electron-hole separation in solids. Physical Chemistry Chemical Physics -Cambridge- Royal Society of Chemistry 16(39), pp. 21098-21105. (10.1039/C4CP01900H)
- Logsdail, A., Scanlon, D. O. and Catlow, C. R. 2014. Bulk ionization potentials and band alignments from three-dimensional periodic calculations as demonstrated on rocksalt oxides. Physical Review B: Condensed Matter and Materials Physics 90(15), article number: 155106. (10.1103/PhysRevB.90.155106)
- Berger, D. et al. 2014. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. Journal of Chemical Physics 141(2), article number: 24105. (10.1063/1.4885816)
- Farrow, M., Buckeridge, J., Catlow, C. R., Logsdail, A., Scanlon, D., Sokol, A. and Woodley, S. 2014. From stable ZnO and GaN clusters to novel double bubbles and frameworks. Inorganics 2(2), pp. 248-263. (10.3390/inorganics2020248)
- Su, R. et al. 2014. Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8(4), pp. 3490-3497. (10.1021/nn500963m)
- Catlow, C. R., Gould, A., Heard, C. and Logsdail, A. 2014. Segregation effects on the properties of (AuAg)147. Physical Chemistry Chemical Physics -Cambridge- Royal Society of Chemistry 16(39), pp. 21049-21061. (10.1039/C4CP00753K)
2013
- Logsdail, A., Johnston, R. L. and Akola, J. 2013. Improving the adsorption of Au atoms and nanoparticles on graphite via Li intercalation. Journal of Physical Chemistry C 117(44), pp. 22683-22695. (10.1021/jp405670v)
- Fennell, J., He, D., Tanyi, A. M., Logsdail, A., Johnston, R. L., Li, Z. Y. and Horswell, S. L. 2013. A selective blocking method To control the overgrowth of Pt on Au Nanorods. Journal of the American Chemical Society 135(17), pp. 6554-6561. (10.1021/ja4003475)
- Logsdail, A., Li, Z. Y. and Johnston, R. L. 2013. Faceting preferences for AuN and PdN nanoclusters with high-symmetry motifs. Physical Chemistry Chemical Physics 15(21), pp. 8392-8400. (10.1039/c3cp50978h)
2012
- Logsdail, A. and Johnston, R. L. 2012. Predicting the Optical Properties of Core-Shell and Janus Segregated Au-M Nanoparticles (M = Ag, Pd). Journal of Physical Chemistry C 116(44), pp. 23616-23628. (10.1021/jp306000u)
- Logsdail, A. and Johnston, R. L. 2012. Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters. RSC Advances 2(13), pp. 5863-5869. (10.1039/c2ra20309j)
- Chantry, R. L., Siriwatcharapiboon, W., Horswell, S. L., Logsdail, A., Johnston, R. L. and Li, Z. Y. 2012. Overgrowth of rhodium on gold nanorods. Journal of Physical Chemistry C 116(18), pp. 10312-10317. (10.1021/jp212432g)
- Logsdail, A., Li, Z. Y. and Johnston, R. L. 2012. Development and optimization of a novel genetic algorithm for identifying nanoclusters from scanning transmission electron microscopy images. Journal of Computational Chemistry 33(4), pp. 391-400. (10.1002/jcc.21976)
- Heiles, S., Logsdail, A., Schäfer, R. and Johnston, R. L. 2012. Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys. Nanoscale 4(4), pp. 1109-1115. (10.1039/C1NR11053E)
2011
- Logsdail, A. and Akola, J. 2011. Interaction of Au16Nanocluster with defects in supporting graphite: A density-functional study. Journal of Physical Chemistry C 115(31), pp. 15240. (10.1021/jp203274a)
2010
- Logsdail, A., Cookson, N. J., Horswell, S. L., Wang, Z. W., Li, Z. Y. and Johnston, R. L. 2010. Theoretical and Experimental Studies of the Optical Properties of Conjoined Gold-Palladium Nanospheres. Journal of Physical Chemistry C 114(49), pp. 21247-21251. (10.1021/jp108486a)
2009
- Logsdail, A., Paz-Borbón, L. O. and Johnston, R. L. 2009. Structures and Stabilities of Platinum-Gold Nanoclusters. Journal of Computational and Theoretical Nanoscience 6(4), pp. 857-866. (10.1166/jctn.2009.1118)
Articles
- Thomas, H. N., Wass, D. F., Offiler, C. A., Whiston, K. and Logsdail, A. J. 2024. First principles investigation of manganese catalyst structure and coordination in the p -xylene oxidation process. Catalysis Science & Technology 14(19), pp. 5634-5643. (10.1039/d4cy00284a)
- Stishenko, P., McSloy, A., Onat, B., Hourahine, B., Maurer, R. J., Kermode, J. R. and Logsdail, A. 2024. Integrated workflows and interfaces for data-driven semi-empirical electronic structure calculations. The Journal of Chemical Physics 161(1), article number: 12502. (10.1063/5.0209742)
- Bauer, S. et al. 2024. Roadmap on data-centric materials science. Modelling and Simulation in Materials Science and Engineering 32(6), article number: 63301. (10.1088/1361-651x/ad4d0d)
- Lindley, M. et al. 2024. Tuning the size of TiO2-supported Co nanoparticle Fischer-Tropsch catalysts using Mn additions. ACS Catalysis 14, pp. 10648–10657. (10.1021/acscatal.4c02721)
- Huang, J. et al. 2024. Exfoliated polymeric carbon nitride nanosheets for photocatalytic applications. ACS Applied Nano Material 7(7), pp. 7442–7452. (10.1021/acsanm.4c00133)
- Huang, J. et al. 2024. Fundamental structural and electronic understanding of palladium catalysts on nitride and oxide supports. Angewandte Chemie International Edition (10.1002/anie.202400174)
- Zou, R. et al. 2024. Anchoring highly dispersed metal nanoparticles by strong electrostatic adsorption (SEA) on a dealuminated beta zeolite for catalysis. Catalysis Science & Technology 14, pp. 164-173. (10.1039/d3cy01334k)
- Beynon, O. T., Owens, A., Tarantino, G., Hammond, C. and Logsdail, A. J. 2023. Computational study of the solid-state incorporation of Sn(II) Acetate into Zeolite β. Journal of Physical Chemistry C 127(38), pp. 19072-19087. (10.1021/acs.jpcc.3c02679)
- Chaudhuri, S., Logsdail, A. J. and Maurer, R. J. 2023. Stability of single gold atoms on defective and doped diamond surfaces. Journal of Physical Chemistry C 127(32), pp. 16187-16203. (10.1021/acs.jpcc.3c03900)
- Beynon, O., Owens, A., Carbogno, C. and Logsdail, A. J. 2023. Evaluating the role of anharmonic vibrations in zeolite β materials. Journal of Physical Chemistry C 127(32), pp. 16030-16040. (10.1021/acs.jpcc.3c02863)
- Mayer, A. J. et al. 2023. Direct monitoring of the potassium charge carrier in Prussian blue cathodes using potassium K-edge X-ray absorption spectroscopy †. Journal of Materials Chemistry A: materials for energy and sustainability 11, pp. 19900-19913. (10.1039/d3ta02631k)
- Kabalan, L., Kowalec, I., Rigamonti, S., Troppenz, M., Draxl, C., Catlow, C. R. and Logsdail, A. J. 2023. Investigation of the Pd (1− x ) Zn x alloy phase diagram using ab initio modelling approaches. Journal of Physics: Condensed Matter 35(40), article number: 405402. (10.1088/1361-648x/ace01a)
- Guan, J. et al. 2023. Computational infrared and Raman spectra by hybrid QM/MM techniques: a study on molecular and catalytic material systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 381(2250), article number: 20220234. (10.1098/rsta.2022.0234)
- Stishenko, P. V., Keal, T. W., Woodley, S. M., Blum, V., Hourahine, B., Maurer, R. J. and Logsdail, A. J. 2023. Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. The Journal of Open Source Software 8(85), article number: 5186. (10.21105/joss.05186)
- Lu, Y. et al. 2023. Multiscale QM/MM modelling of catalytic systems with ChemShell †. Physical Chemistry Chemical Physics (10.1039/d3cp00648d)
- Bramley, G. A., Beynon, O. T., Stishenko, P. V. and Logsdail, A. J. 2023. The application of QM/MM simulations in heterogeneous catalysis. Physical Chemistry Chemical Physics 25(9), pp. 6562-6585. (10.1039/d2cp04537k)
- Navar, R. et al. 2022. Tracking the solid-state incorporation of Sn into the framework of dealuminated zeolite beta, and consequences for catalyst design. Journal of Materials Chemistry A: materials for energy and sustainability 2022(10), pp. 22025-22041. (10.1039/D2TA03837D)
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Smalley, C. et al. 2022. A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of L-tyrosine. Chemical Science 13(18), pp. 5277-5288. (10.1039/D1SC06467C)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12(9), pp. 5371-5379. (10.1021/acscatal.2c00552)
- Kowalec, I., Kabalan, L., Catlow, C. R. A. and Logsdail, A. J. 2022. A computational study of direct CO2 hydrogenation to methanol on Pd surfaces. Physical Chemistry Chemical Physics 24(16), pp. 9360-9373. (10.1039/D2CP01019D)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122(6), pp. 6795-6849. (10.1021/acs.chemrev.1c00493)
- Agrawal, K., Roldan, A., Kishore, N. and Logsdail, A. J. 2022. Dehydrogenation and dehydration of formic acid over orthorhombic molybdenum carbide. Catalysis Today 384-6, pp. 197-208. (10.1016/j.cattod.2021.04.011)
- Agrawal, K., Roldan, A., Kishore, N. and Logsdail, A. J. 2022. Hydrodeoxygenation of guaiacol over orthorhombic molybdenum carbide: a DFT and microkinetic study. Catalysis Science & Technology 12(3), pp. 843-854. (10.1039/D1CY01273H)
- Keal, T. et al. 2022. Materials and molecular modelling at the Exascale. Computing in Science and Engineering 24(1), pp. 36-45. (10.1109/MCSE.2022.3141328)
- Chaudhuri, S., Hall, S. J., Klein, B. P., Walker, M., Logsdail, A. J., Macpherson, J. V. and Maurer, R. J. 2022. Coexistence of carbonyl and ether groups on oxygen-terminated (110)-oriented diamond surfaces. Communications Materials 3(1), article number: 6. (10.1038/s43246-022-00228-4)
- Smalley, C. J. H., Logsdail, A. J., Hughes, C. E., Iuga, D., Young, M. T. and Harris, K. D. M. 2022. Solid-state structural properties of alloxazine determined from powder XRD data in conjunction with DFT-D calculations and solid-state NMR spectroscopy: unraveling the tautomeric identity and pathways for tautomeric interconversion. Crystal Growth and Design 22(1), pp. 524-534. (10.1021/acs.cgd.1c01114)
- Omojola, T., Logsdail, A. J., van Veen, A. C. and Nastase, S. A. F. 2021. A quantitative multiscale perspective on primary olefin formation from methanol. Physical Chemistry Chemical Physics 23(38), pp. 21437-21469. (10.1039/D1CP02551A)
- Nastase, S. A. F., Logsdail, A. J. and Catlow, C. R. A. 2021. QM/MM study of the reactivity of zeolite bound methoxy and carbene groups. Physical Chemistry Chemical Physics 23(32), pp. 17634-17644. (10.1039/D1CP02535J)
- Kabalan, L., Kowalec, I., Catlow, C. R. A. and Logsdail, A. J. 2021. A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces. Physical Chemistry Chemical Physics 23(27), pp. 14649-14661. (10.1039/D1CP01602D)
- Sainna, M. et al. 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229, pp. 108-130. (10.1039/D0FD00005A)
- Nastase, S. A. F., Catlow, C. R. A. and Logsdail, A. J. 2021. QM/MM study of the stability of dimethyl ether in zeolites H-ZSM-5 and H-Y. Physical Chemistry Chemical Physics 23(3), pp. 2088-2096. (10.1039/D0CP05392A)
- Sarma, P. J., Dowerah, D., Gour, N. K., Logsdail, A. J., Catlow, C. R. A. and Deka, R. 2021. Tuning the transition barrier of H2 dissociation in the hydrogenation of CO2 to formic acid on Ti-doped Sn2O4 cluster. Physical Chemistry Chemical Physics 23(1), pp. 204-210. (10.1039/D0CP04472E)
- Yan, Y., Kariuki, B. M., Hughes, C. E., Logsdail, A. J. and Harris, K. D. M. 2020. Polymorphism in a multicomponent crystal system of trimesic acid and t-butylamine. Crystal Growth and Design 20(9), pp. 5736-5744. (10.1021/acs.cgd.0c00163)
- Matam, S. K., Nastase, S. A. F., Logsdail, A. J. and Catlow, C. R. A. 2020. Methanol loading dependent methoxylation in zeolite H-ZSM-5. Chemical Science 11(26), pp. 6805-6814. (10.1039/D0SC01924K)
- O'Malley, A. J., Logsdail, A. J., Sokol, A. . A. and Catlow, C. R. A. 2020. Modelling metal centres, acid sites and reaction mechanisms in microporous catalysts. Faraday Discussions 188, pp. 235-255. (10.1039/C6FD00010J)
- Aprà, E. et al. 2020. NWChem: Past, present, and future. Journal of Chemical Physics 152(18), article number: 184102. (10.1063/5.0004997)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120(8), pp. 3890-3938. (10.1021/acs.chemrev.9b00662)
- Nastase, S. A. F., Cnudde, P., Vanduyfhuys, L., De Wispelaere, K., Van Speybroeck, V., Catlow, C. R. A. and Logsdail, A. J. 2020. Mechanistic insight into the framework methylation of H-ZSM-5 for varying methanol loading and Si/Al ratio using first principles molecular dynamics simulations. ACS Catalysis 10, pp. 8904-8915. (10.1021/acscatal.0c01454)
- Al Rahal, O., Hughes, C. E., Williams, P. A., Logsdail, A. J., Diskin-Posner, Y. and Harris, K. D. M. 2019. Polymorphism of L-tryptophan. Angewandte Chemie International Edition 58(52), pp. 18788-18792. (10.1002/anie.201908247)
- Sarma, P. . J., Dey Baruah, S., Logsdail, A. and Deka, R. C. 2019. Hydride pinning pathway in the hydrogenation of CO2 into formic acid on dimeric tin dioxide. ChemPhysChem 20(5), pp. 680-686. (10.1002/cphc.201801194)
- Nastase, S. A., O'Malley, A. J., Catlow, C. . R. A. and Logsdail, A. J. 2019. Computational QM/MM investigation of the adsorption of MTH active species in H-Y and H-ZSM-5. Physical Chemistry Chemical Physics 21(5), pp. 2639-2650. (10.1039/C8CP06736H)
- Zhang, I. Y., Logsdail, A., Ren, X., Levchenko, S. V., Ghiringhelli, L. M. and Scheffler, M. 2019. Main-group test set for materials science and engineering with user-friendly graphical tools for error analysis: Systematic benchmark of the numerical and intrinsic errors in state-of-the-art electronic-structure approximations. New Journal of Physics 21, pp. -., article number: 13025. (10.1088/1367-2630/aaf751)
- Lu, Y. et al. 2018. Open-source, python-based redevelopment of the ChemShell multiscale QM/MM environment. Journal of Chemical Theory and Computation 15(2), pp. 1317-1328. (10.1021/acs.jctc.8b01036)
- Logsdail, A. J., Downing, C. A., Keal, T. W., Sherwood, P., Sokol, A. A. and Catlow, C. R. A. 2018. Hybrid-DFT modelling of lattice and surface vacancies in MnO. Journal of Physical Chemistry C 123(13), pp. 8133-8144. (10.1021/acs.jpcc.8b07846)
- Arrigo, R., Logsdail, A. J. and Torrente-Murciano, L. 2018. Highlights from faraday discussion on designing nanoparticle systems for catalysis, London, UK, May 2018. Chemical Communications 54(68), pp. 9385-9393. (10.1039/C8CC90324G)
- Buckeridge, J. et al. 2018. Deep vs shallow nature of oxygen vacancies and consequent n -type carrier concentrations in transparent conducting oxides. Physical Review Materials 2(5), pp. -., article number: 54604. (10.1103/PhysRevMaterials.2.054604)
- Catlow, C. R. A. and Logsdail, A. 2018. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1-5, 147) and monometallic Au and Ag low-energy surfaces. European Physical Journal B 91, article number: 32. (10.1140/epjb/e2017-80280-7)
- Logsdail, A. J., Paz-Borbon, L. O. and Downing, C. A. 2018. DFT-Computed trends in the properties of bimetallic precious-metal nanoparticles with Core@shell segregation. Journal of Physical Chemistry C 122(10), pp. 5721-5730. (10.1021/acs.jpcc.7b10614)
- Logsdail, A. J., Downing, C. A., Catlow, C. R. A. and Sokol, A. A. 2017. Magnetic coupling constants for MnO as calculated using hybrid density functional theory. Chemical Physics Letters 690, pp. 47-53. (10.1016/j.cplett.2017.10.027)
- Gould, A. L., Rossi, K., Catlow, C. R. A., Baletto, F. and Logsdail, A. J. 2016. Controlling structural transitions in AuAg nanoparticles through precise compositional design. Journal of Physical Chemistry Letters 7(21), pp. 4414-4419. (10.1021/acs.jpclett.6b02181)
- Logsdail, A., Downing, C. A., Keal, T. W., Sherwood, P., Sokol, A. A. and Catlow, C. R. 2016. Modelling the chemistry of Mn-doped MgO for bulk and (100) surfaces. Physical Chemistry Chemical Physics 18(41), pp. 28648-28660. (10.1039/C6CP04622C)
- Logsdail, A., Mora-Fonz, D., Scanlon, D. O. and Catlow, C. R. 2015. Structural, energetic and electronic properties of (100) surfaces for alkaline earth metal oxides as calculated with hybrid density functional theory. Surface Science 642, pp. 58-65. (10.1016/j.susc.2015.06.012)
- Gould, A. L., Logsdail, A. and Catlow, C. R. 2015. Influence of composition and chemical arrangement on the kinetic stability of 147-atom Au-Ag bimetallic nanoclusters. Journal of Physical Chemistry C 119(41), pp. 23685-23697. (10.1021/acs.jpcc.5b03577)
- Gould, A. L., Kadkhodazadeh, S., Wagner, J. B., Catlow, C. R., Logsdail, A. and Di Vece, M. 2015. Understanding the thermal stability of silver nanoparticles embedded in a-Si. Journal of Physical Chemistry C 119(41), pp. 23767-23773. (10.1021/acs.jpcc.5b07324)
- Rogers, S. M. et al. 2015. Tailoring gold nanoparticle characteristics and the impact on aqueous-phase oxidation of glycerol. ACS Catalysis 5(7), pp. 4377-4384. (10.1021/acscatal.5b00754)
- Buckeridge, J. et al. 2015. Polymorph engineering of TiO2: demonstrating how absolute reference potentials are determined by local coordination. Chemistry of Materials 27(11), pp. 3844-3851. (10.1021/acs.chemmater.5b00230)
- Mora-Fonz, D., Buckeridge, J., Logsdail, A., Scanlon, D. O., Sokol, A. A., Woodley, S. and Catlow, C. R. 2015. Morphological features and band bending at nonpolar surfaces of ZnO. Journal of Physical Chemistry C 119(21), pp. 11598-11611. (10.1021/acs.jpcc.5b01331)
- Sokol, A. A., Farrow, M. R., Buckeridge, J., Logsdail, A., Catlow, C., Scanlon, O. and Woodley, S. M. 2014. Double bubbles: a new structural motif for enhanced electron-hole separation in solids. Physical Chemistry Chemical Physics -Cambridge- Royal Society of Chemistry 16(39), pp. 21098-21105. (10.1039/C4CP01900H)
- Logsdail, A., Scanlon, D. O. and Catlow, C. R. 2014. Bulk ionization potentials and band alignments from three-dimensional periodic calculations as demonstrated on rocksalt oxides. Physical Review B: Condensed Matter and Materials Physics 90(15), article number: 155106. (10.1103/PhysRevB.90.155106)
- Berger, D. et al. 2014. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. Journal of Chemical Physics 141(2), article number: 24105. (10.1063/1.4885816)
- Farrow, M., Buckeridge, J., Catlow, C. R., Logsdail, A., Scanlon, D., Sokol, A. and Woodley, S. 2014. From stable ZnO and GaN clusters to novel double bubbles and frameworks. Inorganics 2(2), pp. 248-263. (10.3390/inorganics2020248)
- Su, R. et al. 2014. Designer titania-supported Au-Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8(4), pp. 3490-3497. (10.1021/nn500963m)
- Catlow, C. R., Gould, A., Heard, C. and Logsdail, A. 2014. Segregation effects on the properties of (AuAg)147. Physical Chemistry Chemical Physics -Cambridge- Royal Society of Chemistry 16(39), pp. 21049-21061. (10.1039/C4CP00753K)
- Logsdail, A., Johnston, R. L. and Akola, J. 2013. Improving the adsorption of Au atoms and nanoparticles on graphite via Li intercalation. Journal of Physical Chemistry C 117(44), pp. 22683-22695. (10.1021/jp405670v)
- Fennell, J., He, D., Tanyi, A. M., Logsdail, A., Johnston, R. L., Li, Z. Y. and Horswell, S. L. 2013. A selective blocking method To control the overgrowth of Pt on Au Nanorods. Journal of the American Chemical Society 135(17), pp. 6554-6561. (10.1021/ja4003475)
- Logsdail, A., Li, Z. Y. and Johnston, R. L. 2013. Faceting preferences for AuN and PdN nanoclusters with high-symmetry motifs. Physical Chemistry Chemical Physics 15(21), pp. 8392-8400. (10.1039/c3cp50978h)
- Logsdail, A. and Johnston, R. L. 2012. Predicting the Optical Properties of Core-Shell and Janus Segregated Au-M Nanoparticles (M = Ag, Pd). Journal of Physical Chemistry C 116(44), pp. 23616-23628. (10.1021/jp306000u)
- Logsdail, A. and Johnston, R. L. 2012. Interdependence of structure and chemical order in high symmetry (PdAu)N nanoclusters. RSC Advances 2(13), pp. 5863-5869. (10.1039/c2ra20309j)
- Chantry, R. L., Siriwatcharapiboon, W., Horswell, S. L., Logsdail, A., Johnston, R. L. and Li, Z. Y. 2012. Overgrowth of rhodium on gold nanorods. Journal of Physical Chemistry C 116(18), pp. 10312-10317. (10.1021/jp212432g)
- Logsdail, A., Li, Z. Y. and Johnston, R. L. 2012. Development and optimization of a novel genetic algorithm for identifying nanoclusters from scanning transmission electron microscopy images. Journal of Computational Chemistry 33(4), pp. 391-400. (10.1002/jcc.21976)
- Heiles, S., Logsdail, A., Schäfer, R. and Johnston, R. L. 2012. Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys. Nanoscale 4(4), pp. 1109-1115. (10.1039/C1NR11053E)
- Logsdail, A. and Akola, J. 2011. Interaction of Au16Nanocluster with defects in supporting graphite: A density-functional study. Journal of Physical Chemistry C 115(31), pp. 15240. (10.1021/jp203274a)
- Logsdail, A., Cookson, N. J., Horswell, S. L., Wang, Z. W., Li, Z. Y. and Johnston, R. L. 2010. Theoretical and Experimental Studies of the Optical Properties of Conjoined Gold-Palladium Nanospheres. Journal of Physical Chemistry C 114(49), pp. 21247-21251. (10.1021/jp108486a)
- Logsdail, A., Paz-Borbón, L. O. and Johnston, R. L. 2009. Structures and Stabilities of Platinum-Gold Nanoclusters. Journal of Computational and Theoretical Nanoscience 6(4), pp. 857-866. (10.1166/jctn.2009.1118)
Research
My research focuses on the computational modelling of catalytic materials, and is divided in to two complementary themes of software development and chemical materials simulation. My research group is embedded within the Cardiff Catalysis Institute, which has allowed software development and chemical investigation to complement on-going investigations of homogeneous and heterogeneous catalytic systems. Computational catalysis is a fast-growing and exciting field due to the possibility of testing and tuning reactive systems on the computer before exhaustive laboratory investigation; in collaboration with partners in the CCI, some example research activities:
- the reactivity of multi-element nanoparticles for e.g. H2O2 synthesis and CO2 reduction;
- the catalytic and defect chemistry of TiO2;
- the structure and application of zeolites for MTH and biomass transformation;
- the upgrading of ethanol to butanol using Ru-based homogeneous catalysts.
Our work to develop state-of-the-art computational models is realised through the hybrid quantum/molecular mechanical (QM/MM) software package "ChemShell", and other complementary packages such as the QM software packages "FHI-aims" and "NWChem". A broad skillset exists in our group in the field of software development, specifically the translation of chemical theory in to parallel computational implementations. The QM/MM approach opens up exciting opportunities that are inaccessible with mainstream methods, such as using high-level theory or modelling electronically charged systems. My applications of QM/MM focus on understanding the chemical properties of catalytic materials and/or catalyst supports; Increasingly this now also considers homogeneous systems as well as heterogeneous.
For more information on specific projects available with Dr Andrew Logsdail please review the Catalysis and interfacial science section of our research project themes.
Teaching
- Year 1/2: Physical Tutorials
- Year 3/4: Final Year Projects
- Year 4 : Advanced Materials
I am also personal tutor to ~15 undergraduate students.
Biography
- 2008 – 2012 PhD, Chemistry, University of Birmingham, UK
- 2006 – 2008 MRes, Materials and Nanochemistry, University of Birmingham, UK
- 2003 – 2006 BSc, Natural Sciences (2:1 with honours), University of Birmingham, UK
Professional memberships
- 2019 – Fellowship of the Higher Education Authority
- 2015 – Chartered Chemist, Royal Society of Chemistry
- 2006 – Member, Royal Society of Chemistry
Academic positions
- 2024 – Reader in Catalytic and Computational Chemistry, Cardiff University, UK
- 2022 – 2024 Senior Lecturer in Catalytic and Computational Chemistry, Cardiff University, UK
- 2020 – UKRI Future Leaders Fellow
- 2019 – 2022 Lecturer in Catalytic and Computational Chemistry, Cardiff University, UK
- 2016 – 2019 University Research Fellow, School of Chemistry, Cardiff University, UK
- 2014 – 2016 Ramsay Research Fellow, Department of Chemistry, University College London, UK
- 2012 – 2014 Postdoctoral Research Associate, Department of Chemistry, University College London, UK
Committees and reviewing
- 2024 – Titular Member, IUPAC Division II (Inorganic Chemistry)
- 2024 – Division II Representative, IUPAC CPCDS Standing Committee
- 2023 – Member, Steering Board, Engineering Porous Materials at Multiple Scales (EPSRC Network Grant)
- 2023 – Member, RSC Faraday Council
- 2022 – Member, RSC Faraday Council Prize Nomination Working Group
- 2021 – 2024 Chair, RSC Wales Regional Steering Group
- 2021 – 2024 Member, RSC Member Networks Committee
- 2022 – 2023 National Representative, IUPAC Division II (Inorganic Chemistry)
- 2021 – 2022 Member, FLF Development Network Advisory Board
- 2020 – Member, Executive Committee Collaborative Computational Project 5 (EPSRC Network Grant)
- 2019 – Member, RSC South East Wales Local Section Committee
- 2018 – 2024 Academic Representative, RSC Wales Regional Steering Group
- 2016 – 2018 Fixed-term Representative, RSC Solid State Chemistry Group
Supervisions
We have a dynamic and exciting research team, and are always welcoming to new researchers in the field of computational and catalytic chemistry. Research areas that we are interested in supervising projects in includes:
- Developing approaches for simulating process at materials surfaces and during catalysis
- Chemical processes relevant to achieving net zero, and supporting the circular economy
- Designing bespoke materials with properties fit for 21st century applications
- Integration of data driven processes into the computational discovery protocols, accelerating catalyst discovery
We welcome contact from potential students and researchers to discuss research ideas and opportunities.
Current supervision
Oscar Van Vuren
Graduate Demonstrator
Akash Hiregange
Graduate Demonstrator
Harry Thomas
Research student
Zhongwei Lu
Graduate Demonstrator
Contact Details
+44 29225 10162
Translational Research Hub, Floor 3, Room 3.15, Maindy Road, Cathays, Cardiff, CF24 4HQ
Research themes
Specialisms
- Computational chemistry
- heterogeneous catalysis
- Homogeneous catalysis
- Inorganic materials
- Nanomaterials