Professor Christopher MacLeod
- Available for postgraduate supervision
Teams and roles for Christopher MacLeod
Overview
Interests
- oceanic detachment faults: deformation mechanisms, life cycle, 3D extent; magma-tectonic-hydrothermal interactions
- lower crustal accretion and lithospheric architecture at slow- and ultraslow-spreading ridges
- magma chamber processes and mechanisms of construction of the lower crust at fast-spreading mid-ocean ridges (Hess Deep, Oman ophiolite)
- geodynamic setting of ophiolites and relationship to intraoceanic subduction initiation
- limits and limitations of the mid-ocean ridge–ophiolite analogy
Publication
2025
- Martin, A. J. et al., 2025. Deep-sea drilling of the 13°30? N oceanic core complex: Assessing links between fluid flow, metal enrichment and seafloor massive sulfide deposit formation near Semenov-1. Lithos: Journal of Petrology, Mineralogy and Geochemistry 494-5 107921. (10.1016/j.lithos.2024.107921)
- Zhang, W. et al., 2025. The role of detachment faulting in the genesis of oceanic felsic melts. Communications Earth & Environment 6 (1) 109. (10.1038/s43247-025-02098-3)
2024
- Jansen, M. N. et al. 2024. Relationship between of D-MORB and E-MORB magmatism during crustal accretion at mid-ocean ridges: evidence from the Masirah ophiolite (Oman). Geochemistry, Geophysics, Geosystems 25 (3) e2023GC011361. (10.1029/2023GC011361)
2023
- Martin, A. J. et al., 2023. Trace metal and sulfur cycling in a hydrothermally active arc volcano: deep-sea drilling of the Brothers volcano, Kermadec arc, New Zealand. Mineralium Deposita 58 (2), pp.402-425. (10.1007/s00126-022-01135-x)
- Martin, A. J. et al., 2023. Ultramafic-hosted Ni-Cu-Co-(As) mineralization from an ancient oceanic transform fault zone in the Troodos ophiolite, Cyprus: an analogue for ultramafic sea floor massive sulfide mineralization?. Economic Geology 118 (5), pp.1125-1147. (10.5382/econgeo.4996)
- Quichimbo Miguitama, E. A. et al. 2023. Assessing the sensitivity of modelled water partitioning to global precipitation datasets in a data‐scarce dryland region. Hydrological Processes 37 (12) e15047. (10.1002/hyp.15047)
- Ribeiro, J. , MacLeod, C. J. and Lissenberg, C. J. 2023. Did the Troodos ophiolite of Cyprus form during subduction inception?. Chemical Geology 641 121774. (10.1016/j.chemgeo.2023.121774)
2022
- Ferrando, C. et al., 2022. Brown amphibole as tracer of tectono-magmatic evolution of the Atlantis Bank Oceanic Core Complex (IODP Hole U1473A). Journal of Petrology 63 (9) egac089. (10.1093/petrology/egac089)
- Peirce, C. et al., 2022. Three-dimensional S-wave velocity structure of oceanic core complexes at 13°N on the Mid-Atlantic Ridge. Geophysical Journal International 232 (1), pp.615-642. (10.1093/gji/ggac350)
- Ribeiro, J. et al., 2022. Origin and evolution of the slab fluids since subduction inception in the Izu-Bonin-Mariana: A comparison with the southeast Mariana fore-arc rift. Chemical Geology 601 120813. (10.1016/j.chemgeo.2022.120813)
2021
- Cox, S. , Fagereng, Å. and MacLeod, C. J. 2021. Shear zone development in serpentinised mantle: Implications for the strength of oceanic transform faults. Journal of Geophysical Research: Solid Earth 126 (5) e2020JB020763. (10.1029/2020JB020763)
- Cox, S. et al. 2021. Frictional characteristics of oceanic transform faults: progressive deformation and alteration controls seismic style. Geophysical Research Letters 48 (24) e2021GL096292. (10.1029/2021GL096292)
- Martin, A. J. et al., 2021. Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: implications for metal and sulfur sources in mafic VMS deposits. Mineralium Deposita 57 (6), pp.911-933. (10.1007/s00126-021-01080-1)
- Parnell-Turner, R. et al., 2021. Seismicity trends and detachment fault structure at 13N, Mid-Atlantic Ridge. Geology 49 (3), pp.320-324. (10.1130/G48420.1)
2020
- Martin, A. J. et al. 2020. Effects of magmatic volatile influx in mafic VMS hydrothermal systems: evidence from the Troodos ophiolite, Cyprus. Chemical Geology 531 119325. (10.1016/j.chemgeo.2019.119325)
- Martin, A. J. et al. 2020. Low-temperature silica-rich gold mineralization in mafic VMS systems: evidence from the Troodos ophiolite, Cyprus. Mineralium Deposita , pp.805-822. (10.1007/s00126-020-01007-2)
- Peirce, C. et al., 2020. Magmatism versus serpentinization-crustal structure along the 13°N segment at the Mid-Atlantic Ridge. Geophysical Journal International 221 (2), pp.981-1001. (10.1093/gji/ggaa052)
- Sanfilippo, A. et al., 2020. Early-stage melt-rock reaction in a cooling crystal mush beneath a slow-spreading mid-ocean ridge (IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge). Frontiers in Earth Science 8 579138. (10.3389/feart.2020.579138)
- Simão, N. M. et al., 2020. 3-D P-wave velocity structure of oceanic core complexes at 13°N on the Mid-Atlantic Ridge. Geophysical Journal International 221 (3), pp.1555-1570. (10.1093/gji/ggaa093)
2019
- Dick, H. J. B. et al., 2019. Dynamic accretion beneath a slow-spreading ridge segment: IODP Hole 1473A and the Atlantis Bank Oceanic Core complex. Journal of Geophysical Research. Solid Earth 124 (12), pp.12631-12659. (10.1029/2018JB016858)
- Dick, H. J. B. et al., 2019. The Atlantis Bank Gabbro Massif, Southwest Indian Ridge. Progress in Earth and Planetary Science 6 64. (10.1186/s40645-019-0307-9)
- Fagereng, A. and MacLeod, C. 2019. On seismicity and structural style of oceanic transform faults: A field geological perspective from the Troodos Ophiolite, Cyprus. In: Duarte, J. S. ed. Transform Plate Boundaries and Fracture Zones. Elsevier Books. , pp.437-459. (10.1016/B978-0-12-812064-4.00018-9)
- Lissenberg, C. J. , MacLeod, C. J. and Bennett, E. N. 2019. Consequences of a crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 377 (2139)(10.1098/rsta.2018.0014)
- Martin, A. J. et al. 2019. Trace element systematics and ore-forming processes in mafic VMS deposits: Evidence from the Troodos ophiolite, Cyprus. Ore Geology Reviews 106 , pp.205-225. (10.1016/j.oregeorev.2019.01.024)
- Morris, A. et al., 2019. What do variable magnetic fabrics in gabbros of the Oman ophiolite reveal about lower oceanic crustal magmatism at fast spreading ridges?. Geology 47 (3), pp.275-278. (10.1130/G45442.1)
- Peirce, C. et al., 2019. Constraints on crustal structure of adjacent OCCs and segment boundaries at 13°N on the Mid-Atlantic Ridge. Geophysical Journal International 217 (2), pp.988-1010. (10.1093/gji/ggz074)
- Searle, R. C. et al., 2019. The mid‐atlantic ridge near 13°20′N: High‐resolution magnetic and bathymetry imaging. Geochemistry, Geophysics, Geosystems 20 (1), pp.295-313. (10.1029/2018GC007940)
2018
- Bubeck, A. et al., 2018. Normal fault growth in layered basaltic rocks: The role of strain rate in fault evolution. Journal of Structural Geology 115 , pp.103-120. (10.1016/j.jsg.2018.07.017)
- Jansen, M. N. et al. 2018. Isotopic variation in Semail Ophiolite lower crust reveals crustal-level melt aggregation. Geochemical Perspectives Letters 8 , pp.37-42. (10.7185/geochemlet.1827)
- Martin, A. J. et al. 2018. Extreme enrichment of selenium in the Apliki Cyprus-type VMS deposit, Troodos, Cyprus. Mineralogical Magazine 82 (SI3), pp.697-724. (10.1180/mgm.2018.81)
- Nguyen, D. K. et al., 2018. Occurrence of felsic rocks in Oceanic Gabbros from IODP Hole U1473A: implications for evolved melt migration in the lower oceanic crust. Minerals 8 (12) 583. (10.3390/min8120583)
2017
- Bubeck, A. et al., 2017. Extension parallel to the rift zone during segmented fault growth: application to the evolution of the NE Atlantic. Solid Eart 8 , pp.1161-1180. (10.5194/se-8-1161-2017)
- Escartín, J. et al., 2017. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20’N and 13°30’N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems 18 (4), pp.1451-1482. (10.1002/2016GC006775)
- Parnell-Turner, R. et al., 2017. Oceanic detachment faults generate compression in extension. Geology 45 (10), pp.923-926. (10.1130/G39232.1)
2016
- Escartín, J. et al., 2016. First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history. Earth and Planetary Science Letters 450 , pp.96-107. (10.1016/j.epsl.2016.06.024)
- Lissenberg, C. J. and MacLeod, C. J. 2016. A reactive porous flow control on mid-ocean ridge magmatic evolution. Journal of Petrology 57 (11-12), pp.2195-2220. (10.1093/petrology/egw074)
- Lissenberg, C. J. et al. 2016. Crystallization depth beneath an oceanic detachment fault (ODP Hole 923A, Mid-Atlantic Ridge). Geochemistry Geophysics Geosystems 17 (1), pp.162-180. (10.1002/2015GC006027)
- Morris, A. et al., 2016. Clockwise rotation of the entire Oman ophiolite occurred in a suprasubduction zone setting. Geology 44 (12), pp.1055-1058. (10.1130/G38380.1)
- Tominaga, M. et al., 2016. Characterization of the in situ magnetic architecture of oceanic crust (Hess Deep) using near-source vector magnetic data. Journal of Geophysical Research: Solid Earth 121 (6), pp.4130-4146. (10.1002/2015JB012783)
2015
- Dick, H. J. , MacLeod, C. J. and Blum, P. 2015. Southwest Indian Ridge lower crust and Moho: the nature of the lower crust and Moho at slower spreading ridges (SloMo-Leg 1). International Ocean Discovery Program Scientific Prospectus, 360. Project Report.[Online].International Ocean Discovery Program. Available at: http://dx.doi.org/10.14379/iodp.sp.360.2015.
2014
- France, L. et al., 2014. Contamination of MORB by anatexis of magma chamber roof rocks: constraints from a geochemical study of experimental melts and associated residues. Lithos 202-03 , pp.120-137. (10.1016/j.lithos.2014.05.018)
- Goodenough, K. M. et al., 2014. Records of ocean growth and destruction in the Oman-UAE ophiolite. Elements 10 (2), pp.109-114. (10.2113/gselements.10.2.109)
2013
- Ferrini, V. L. et al., 2013. Evidence of mass failure in the Hess Deep Rift from multi-resolutional bathymetry data. Marine Geology 339 , pp.13-21. (10.1016/j.margeo.2013.03.006)
- Kelemen, P. et al., 2013. Scientific drilling and related research in the Samail Ophiolite, Sultanate of Oman. Scientific Drilling 15 , pp.64-71. (10.5194/sd-15-64-2013)
- Lissenberg, C. J. et al. 2013. Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth and Planetary Science Letters 361 , pp.436-447. (10.1016/j.epsl.2012.11.012)
- MacLeod, C. J. , Lissenberg, C. J. and Bibby, L. E. 2013. "Moist MORB" axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin. Geology 41 (4), pp.459-462. (10.1130/G33904.1)
- Sauter, D. et al., 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience 6 (4), pp.314-320. (10.1038/ngeo1771)
2012
- Rioux, M. et al., 2012. Protracted timescales of lower crustal growth at the fast-spreading East Pacific Rise. Nature Geoscience 5 (4), pp.275-278. (10.1038/NGEO1378)
2011
- Blackman, D. K. et al., 2011. Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N. Journal of Geophysical Research: Solid Earth 116 (B7) B07103. (10.1029/2010JB007931)
- MacLeod, C. J. et al. 2011. Quantitative constraint on footwall rotations at the 15°45'N oceanic core complex, Mid-Atlantic Ridge: implications for oceanic detachment fault processes. Geochemistry, Geophysics, Geosystems 12 (5) Q0AG03. (10.1029/2011GC003503)
2009
- MacLeod, C. J. et al. 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters 287 (3-4), pp.333-344. (10.1016/j.epsl.2009.08.016)
- Morris, A. et al., 2009. Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples. Earth and Planetary Science Letters 287 (1-2), pp.217-228. (10.1016/j.epsl.2009.08.007)
2007
- Ildefonse, B. et al., 2007. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology -Boulder- 35 (7), pp.623-626. (10.1130/G23531A.1)
- McCaig, A. M. et al., 2007. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology -Boulder- 35 (10), pp.935-938. (10.1130/G23657A.1)
2005
- Davies, R. J. et al., 2005. Termination of a fossil continent-ocean fracture zone imaged with three-dimensional seismic data: The Chain Fracture Zone, eastern equatorial Atlantic. Geology -Boulder- 33 (8), pp.641-644. (10.1130/G21530AR.1)
2004
- Coogan, L. A. et al., 2004. A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: evidence for temporal changes in mantle dynamics?. Chemical Geology 207 (1-2), pp.13-30. (10.1016/j.chemgeo.2004.01.016)
2003
- Coogan, L. A. et al., 2003. Hidden melting signatures recorded in the Troodos ophiolite plutonic suite: evidence for widespread generation of depleted melts and intra-crustal melt aggregation. Contributions to Mineralogy and Petrology 144 (4), pp.484-506. (10.1007/s00410-002-0413-2)
- Escartin, J. et al., 2003. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45'N. Geochemistry Geophysics Geosystems 4 (8), pp.1-37. (10.1029/2002GC000472)
- Mahmood, K. et al., 2003. Platinum-group element assemblages in chromitites from the Muslim Bagh ophiolite, Balochistan, Pakistan. Platinum-group element assemblages in chromitites from the Muslim Bagh ophiolite, Balochistan, Pakistan.. Acta Mineralogica Pakistanica 13 , pp.9-20.
2002
- Coogan, L. A. , Thompson, G. and MacLeod, C. J. 2002. A textural and geochemical investigation of high level gabbros from the Oman ophiolite: implications for the role of the axial magma chamber at fast-spreading ridges. Lithos 63 (1-2), pp.67-82. (10.1016/S0024-4937(02)00114-7)
- Coogan, L. A. et al., 2002. Petrology and geochemistry of the lower ocean crust formed at the East Pacific Rise and exposed at Hess Deep: A synthesis and new results. Geochemistry Geophysics Geosystems 3 (11), pp.1-30. (10.1029/2001GC000230)
- MacLeod, C. J. et al. 2002. Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, 15°45'N. Geology 30 (10), pp.879-882. (10.1130/0091-7613(2002)030<0879:DGEFOD>2.0.CO;2)
2001
- Coogan, L. A. et al., 2001. Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochimica et Cosmochimica Acta 65 (23), pp.4339-4357. (10.1016/S0016-7037(01)00714-1)
- Coogan, L. A. et al., 2001. Whole-rock geochemistry of gabbros from the Southwest Indian Ridge: constraints on geochemical fractionations between the upper and lower oceanic crust and magma chamber processes at (very) slow-spreading ridges. Chemical Geology 178 (1-4), pp.1-22. (10.1016/S0009-2541(00)00424-1)
2000
- MacLeod, C. J. and Yaouancq, G. 2000. A fossil melt lens in the Oman ophiolite: implications for magma chamber processes at fast spreading ridges. Earth and Planetary Science Letters 176 (3-4), pp.357-373. (10.1016/S0012-821X(00)00020-0)
- Manning, C. E. , MacLeod, C. J. and Weston, P. E. 2000. Lower-crustal cracking front at fast-spreading ridges: evidence from the East Pacific Rise and the Oman ophiolite. Special Papers of the Geological Society of America 349 , pp.261-272. (10.1130/0-8137-2349-3.261)
- Wright, D. J. et al., 2000. Bathymetry of the Tonga Trench and Forearc: a map series. Marine Geophysical Researches 21 (5), pp.489-511. (10.1023/A:1026514914220)
- Yaouancq, G. and MacLeod, C. J. 2000. Petrofabric investigation of Gabbros from the Oman ophiolite: comparison between AMS and rock fabric. Marine Geophysical Researches 21 (3-4), pp.289-305. (10.1023/A:1026774111021)
1999
- Benaouda, D. et al., 1999. Inferring the lithology of borehole rocks by applying neural network classifiers to downhole logs: an example from the Ocean Drilling Program. Geophysical Journal International 136 (2), pp.477-491. (10.1046/j.1365-246X.1999.00746.x)
- Clift, P. D. and MacLeod, C. J. 1999. Slow rates of subduction erosion estimated from subsidence and tilting of the Tonga forearc. Geology -Boulder- 27 (5), pp.411-414. (10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2)
- Escartín, J. et al., 1999. Quantifying tectonic strain and magmatic accretion at a slow spreading ridge segment, Mid-Atlantic Ridge, 29°N. Journal of Geophysical Research: Solid Earth 104 (B5), pp.10421-10437. (10.1029/1998JB900097)
- Hutchinson, D. , Prichard, H. M. and MacLeod, C. J. 1999. Evidence for partial melting and melt impregnation of mantle peridotites leading-to PGM deposition: a comparison of samples from the Lizard and Troodos ophiolites and the Tonga Trench. Presented at: 5th Biennial Meeting of the Society for Geology Applied to Mineral Deposits (SGA) and the 10th Quadrennial Symposium of the International Association on the Genesis of Ore Deposits (IAGOD) London, UK 22-25 August 1999. Published in: Stanley, C. J. ed. Mineral Deposits: Processes to Processing. Vol. 1.Rotterdam: A.A.Balkema Publishers. , pp.729-732.
1998
- Clift, P. D. et al., 1998. Tectonic controls on sedimentation and diagenesis in the Tonga Trench and forearc, southwest Pacific. Geological Society of America Bulletin 110 (4), pp.483-496. (10.1130/0016-7606(1998)110<0483:TCOSAD>2.3.CO;2)
- Searle, R. C. et al., 1998. Fault structure and detailed evolution of a slow spreading ridge segment: the Mid-Atlantic Ridge at 29 degrees N. Earth and Planetary Science Letters 154 (1-4), pp.167-183. (10.1016/S0012-821X(97)00160-X)
- Wadge, G. et al., 1998. Lithological classification within ODP holes using neural networks trained from integrated core-log data. Geological Society, London, Special Publications 136 (1), pp.129-140. (10.1144/GSL.SP.1998.136.01.11)
1996
- Boudier, F. , MacLeod, C. and Bolou, L. 1996. Structures in Peridotites from Site 895, Hess Deep: Implications for the geometry of mantle flow beneath the East Pacific Rise. In: Proceedings of the Ocean Drilling Program. Scientific Results. Proceedings of the Ocean Drilling Program. Scientific Results Vol. 147.College Station, Texas: Ocean Drilling Program. , pp.347-356. (10.2973/odp.proc.sr.147.021.1996)
- MacLeod, C. et al. 1996. Gabbro fabrics from Site 894, Hess Deep: Implications for magma chamber processes at the East Pacific Rise. In: Proceedings of the Ocean Drilling Program. Scientific Results. Proceedings of the Ocean Drilling Program. Scientific Results Vol. 147.College Station, Texas: Ocean Drilling Program. , pp.317-328. (10.2973/odp.proc.sr.147.018.1996)
- MacLeod, C. et al. 1996. Tectonics of Hess Deep: a synthesis of drilling results from Leg 147. In: Proceedings of the Ocean Drilling Program. Scientific Results. Proceedings of the Ocean Drilling Program. Scientific Results Vol. 147.College Station, Texas: Ocean Drilling Program. , pp.461-475. (10.2973/odp.proc.sr.147.032.1996)
- Manning, C. E. and MacLeod, C. 1996. Fracture-controlled metamorphism of Hess Deep Gabbros, Site 894: constraints on the roots of mid-ocean-ridge hydrothermal systems at fast-spreading centers. In: Proceedings of the Ocean Drilling Program. Scientific Results. Proceedings of the Ocean Drilling Program. Scientific Results Vol. 147.College Station, Texas: Ocean Drilling Program. , pp.189-212. (10.2973/odp.proc.sr.147.011.1996)
1995
- Bloomer, S. H. et al., 1995. Early arc volcanism and the ophiolite problem: a perspective from drilling in the western Pacific. In: Active margins and marginal basins of the Western Pacific. Geophysical monograph series Vol. 88.American Geophysical Union. , pp.1-30. (10.1029/GM088p0001)
- MacLeod, C. J. and Murton, B. J. 1995. On the sense of slip of the southern troodos transform-fault zone, Cyprus.. Geology 23 (3), pp.257-260. (10.1130/0091-7613(1995)023<0257:OTSOSO>2.3.CO;2)
1994
- Gass, I. G. et al., 1994. The geological evolution of the Southern Troodos transform fault zone. Memoir Vol. 9Nicosia, Cyprus: Geological Survey Department.
1992
- MacLeod, C. J. et al. 1992. Comment [on “Tectonic evolution of the Troodos ophiolite within the Tethyan framework” by Y. Dilek, P. Thy, E. M. Moores, and T. W. Ramsden]. Tectonics 11 (4), pp.910-915. (10.1029/92TC00458)
1990
- MacLeod, C. J. et al. 1990. Structure of a fossil ridge-transform intersection in the troodos ophiolite. Nature 348 (6303), pp.717-720. (10.1038/348717a0)
Articles
- Benaouda, D. et al., 1999. Inferring the lithology of borehole rocks by applying neural network classifiers to downhole logs: an example from the Ocean Drilling Program. Geophysical Journal International 136 (2), pp.477-491. (10.1046/j.1365-246X.1999.00746.x)
- Blackman, D. K. et al., 2011. Drilling constraints on lithospheric accretion and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N. Journal of Geophysical Research: Solid Earth 116 (B7) B07103. (10.1029/2010JB007931)
- Bubeck, A. et al., 2018. Normal fault growth in layered basaltic rocks: The role of strain rate in fault evolution. Journal of Structural Geology 115 , pp.103-120. (10.1016/j.jsg.2018.07.017)
- Bubeck, A. et al., 2017. Extension parallel to the rift zone during segmented fault growth: application to the evolution of the NE Atlantic. Solid Eart 8 , pp.1161-1180. (10.5194/se-8-1161-2017)
- Clift, P. D. and MacLeod, C. J. 1999. Slow rates of subduction erosion estimated from subsidence and tilting of the Tonga forearc. Geology -Boulder- 27 (5), pp.411-414. (10.1130/0091-7613(1999)027<0411:SROSEE>2.3.CO;2)
- Clift, P. D. et al., 1998. Tectonic controls on sedimentation and diagenesis in the Tonga Trench and forearc, southwest Pacific. Geological Society of America Bulletin 110 (4), pp.483-496. (10.1130/0016-7606(1998)110<0483:TCOSAD>2.3.CO;2)
- Coogan, L. A. et al., 2003. Hidden melting signatures recorded in the Troodos ophiolite plutonic suite: evidence for widespread generation of depleted melts and intra-crustal melt aggregation. Contributions to Mineralogy and Petrology 144 (4), pp.484-506. (10.1007/s00410-002-0413-2)
- Coogan, L. A. , Thompson, G. and MacLeod, C. J. 2002. A textural and geochemical investigation of high level gabbros from the Oman ophiolite: implications for the role of the axial magma chamber at fast-spreading ridges. Lithos 63 (1-2), pp.67-82. (10.1016/S0024-4937(02)00114-7)
- Coogan, L. A. et al., 2004. A combined basalt and peridotite perspective on 14 million years of melt generation at the Atlantis Bank segment of the Southwest Indian Ridge: evidence for temporal changes in mantle dynamics?. Chemical Geology 207 (1-2), pp.13-30. (10.1016/j.chemgeo.2004.01.016)
- Coogan, L. A. et al., 2001. Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochimica et Cosmochimica Acta 65 (23), pp.4339-4357. (10.1016/S0016-7037(01)00714-1)
- Coogan, L. A. et al., 2002. Petrology and geochemistry of the lower ocean crust formed at the East Pacific Rise and exposed at Hess Deep: A synthesis and new results. Geochemistry Geophysics Geosystems 3 (11), pp.1-30. (10.1029/2001GC000230)
- Coogan, L. A. et al., 2001. Whole-rock geochemistry of gabbros from the Southwest Indian Ridge: constraints on geochemical fractionations between the upper and lower oceanic crust and magma chamber processes at (very) slow-spreading ridges. Chemical Geology 178 (1-4), pp.1-22. (10.1016/S0009-2541(00)00424-1)
- Cox, S. , Fagereng, Å. and MacLeod, C. J. 2021. Shear zone development in serpentinised mantle: Implications for the strength of oceanic transform faults. Journal of Geophysical Research: Solid Earth 126 (5) e2020JB020763. (10.1029/2020JB020763)
- Cox, S. et al. 2021. Frictional characteristics of oceanic transform faults: progressive deformation and alteration controls seismic style. Geophysical Research Letters 48 (24) e2021GL096292. (10.1029/2021GL096292)
- Davies, R. J. et al., 2005. Termination of a fossil continent-ocean fracture zone imaged with three-dimensional seismic data: The Chain Fracture Zone, eastern equatorial Atlantic. Geology -Boulder- 33 (8), pp.641-644. (10.1130/G21530AR.1)
- Dick, H. J. B. et al., 2019. Dynamic accretion beneath a slow-spreading ridge segment: IODP Hole 1473A and the Atlantis Bank Oceanic Core complex. Journal of Geophysical Research. Solid Earth 124 (12), pp.12631-12659. (10.1029/2018JB016858)
- Dick, H. J. B. et al., 2019. The Atlantis Bank Gabbro Massif, Southwest Indian Ridge. Progress in Earth and Planetary Science 6 64. (10.1186/s40645-019-0307-9)
- Escartín, J. et al., 1999. Quantifying tectonic strain and magmatic accretion at a slow spreading ridge segment, Mid-Atlantic Ridge, 29°N. Journal of Geophysical Research: Solid Earth 104 (B5), pp.10421-10437. (10.1029/1998JB900097)
- Escartin, J. et al., 2003. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45'N. Geochemistry Geophysics Geosystems 4 (8), pp.1-37. (10.1029/2002GC000472)
- Escartín, J. et al., 2017. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20’N and 13°30’N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems 18 (4), pp.1451-1482. (10.1002/2016GC006775)
- Escartín, J. et al., 2016. First direct observation of coseismic slip and seafloor rupture along a submarine normal fault and implications for fault slip history. Earth and Planetary Science Letters 450 , pp.96-107. (10.1016/j.epsl.2016.06.024)
- Ferrando, C. et al., 2022. Brown amphibole as tracer of tectono-magmatic evolution of the Atlantis Bank Oceanic Core Complex (IODP Hole U1473A). Journal of Petrology 63 (9) egac089. (10.1093/petrology/egac089)
- Ferrini, V. L. et al., 2013. Evidence of mass failure in the Hess Deep Rift from multi-resolutional bathymetry data. Marine Geology 339 , pp.13-21. (10.1016/j.margeo.2013.03.006)
- France, L. et al., 2014. Contamination of MORB by anatexis of magma chamber roof rocks: constraints from a geochemical study of experimental melts and associated residues. Lithos 202-03 , pp.120-137. (10.1016/j.lithos.2014.05.018)
- Goodenough, K. M. et al., 2014. Records of ocean growth and destruction in the Oman-UAE ophiolite. Elements 10 (2), pp.109-114. (10.2113/gselements.10.2.109)
- Ildefonse, B. et al., 2007. Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology -Boulder- 35 (7), pp.623-626. (10.1130/G23531A.1)
- Jansen, M. N. et al. 2018. Isotopic variation in Semail Ophiolite lower crust reveals crustal-level melt aggregation. Geochemical Perspectives Letters 8 , pp.37-42. (10.7185/geochemlet.1827)
- Jansen, M. N. et al. 2024. Relationship between of D-MORB and E-MORB magmatism during crustal accretion at mid-ocean ridges: evidence from the Masirah ophiolite (Oman). Geochemistry, Geophysics, Geosystems 25 (3) e2023GC011361. (10.1029/2023GC011361)
- Kelemen, P. et al., 2013. Scientific drilling and related research in the Samail Ophiolite, Sultanate of Oman. Scientific Drilling 15 , pp.64-71. (10.5194/sd-15-64-2013)
- Lissenberg, C. J. and MacLeod, C. J. 2016. A reactive porous flow control on mid-ocean ridge magmatic evolution. Journal of Petrology 57 (11-12), pp.2195-2220. (10.1093/petrology/egw074)
- Lissenberg, C. J. , MacLeod, C. J. and Bennett, E. N. 2019. Consequences of a crystal mush-dominated magma plumbing system: a mid-ocean ridge perspective. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 377 (2139)(10.1098/rsta.2018.0014)
- Lissenberg, C. J. et al. 2013. Pervasive reactive melt migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean). Earth and Planetary Science Letters 361 , pp.436-447. (10.1016/j.epsl.2012.11.012)
- Lissenberg, C. J. et al. 2016. Crystallization depth beneath an oceanic detachment fault (ODP Hole 923A, Mid-Atlantic Ridge). Geochemistry Geophysics Geosystems 17 (1), pp.162-180. (10.1002/2015GC006027)
- MacLeod, C. J. et al. 1990. Structure of a fossil ridge-transform intersection in the troodos ophiolite. Nature 348 (6303), pp.717-720. (10.1038/348717a0)
- MacLeod, C. J. et al. 2011. Quantitative constraint on footwall rotations at the 15°45'N oceanic core complex, Mid-Atlantic Ridge: implications for oceanic detachment fault processes. Geochemistry, Geophysics, Geosystems 12 (5) Q0AG03. (10.1029/2011GC003503)
- MacLeod, C. J. et al. 2002. Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, 15°45'N. Geology 30 (10), pp.879-882. (10.1130/0091-7613(2002)030<0879:DGEFOD>2.0.CO;2)
- MacLeod, C. J. , Lissenberg, C. J. and Bibby, L. E. 2013. "Moist MORB" axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin. Geology 41 (4), pp.459-462. (10.1130/G33904.1)
- MacLeod, C. J. and Murton, B. J. 1995. On the sense of slip of the southern troodos transform-fault zone, Cyprus.. Geology 23 (3), pp.257-260. (10.1130/0091-7613(1995)023<0257:OTSOSO>2.3.CO;2)
- MacLeod, C. J. et al. 1992. Comment [on “Tectonic evolution of the Troodos ophiolite within the Tethyan framework” by Y. Dilek, P. Thy, E. M. Moores, and T. W. Ramsden]. Tectonics 11 (4), pp.910-915. (10.1029/92TC00458)
- MacLeod, C. J. et al. 2009. Life cycle of oceanic core complexes. Earth and Planetary Science Letters 287 (3-4), pp.333-344. (10.1016/j.epsl.2009.08.016)
- MacLeod, C. J. and Yaouancq, G. 2000. A fossil melt lens in the Oman ophiolite: implications for magma chamber processes at fast spreading ridges. Earth and Planetary Science Letters 176 (3-4), pp.357-373. (10.1016/S0012-821X(00)00020-0)
- Mahmood, K. et al., 2003. Platinum-group element assemblages in chromitites from the Muslim Bagh ophiolite, Balochistan, Pakistan. Platinum-group element assemblages in chromitites from the Muslim Bagh ophiolite, Balochistan, Pakistan.. Acta Mineralogica Pakistanica 13 , pp.9-20.
- Manning, C. E. , MacLeod, C. J. and Weston, P. E. 2000. Lower-crustal cracking front at fast-spreading ridges: evidence from the East Pacific Rise and the Oman ophiolite. Special Papers of the Geological Society of America 349 , pp.261-272. (10.1130/0-8137-2349-3.261)
- Martin, A. J. et al., 2023. Trace metal and sulfur cycling in a hydrothermally active arc volcano: deep-sea drilling of the Brothers volcano, Kermadec arc, New Zealand. Mineralium Deposita 58 (2), pp.402-425. (10.1007/s00126-022-01135-x)
- Martin, A. J. et al. 2019. Trace element systematics and ore-forming processes in mafic VMS deposits: Evidence from the Troodos ophiolite, Cyprus. Ore Geology Reviews 106 , pp.205-225. (10.1016/j.oregeorev.2019.01.024)
- Martin, A. J. et al. 2020. Effects of magmatic volatile influx in mafic VMS hydrothermal systems: evidence from the Troodos ophiolite, Cyprus. Chemical Geology 531 119325. (10.1016/j.chemgeo.2019.119325)
- Martin, A. J. et al., 2023. Ultramafic-hosted Ni-Cu-Co-(As) mineralization from an ancient oceanic transform fault zone in the Troodos ophiolite, Cyprus: an analogue for ultramafic sea floor massive sulfide mineralization?. Economic Geology 118 (5), pp.1125-1147. (10.5382/econgeo.4996)
- Martin, A. J. et al., 2021. Mineral-scale variation in the trace metal and sulfur isotope composition of pyrite: implications for metal and sulfur sources in mafic VMS deposits. Mineralium Deposita 57 (6), pp.911-933. (10.1007/s00126-021-01080-1)
- Martin, A. J. et al. 2018. Extreme enrichment of selenium in the Apliki Cyprus-type VMS deposit, Troodos, Cyprus. Mineralogical Magazine 82 (SI3), pp.697-724. (10.1180/mgm.2018.81)
- Martin, A. J. et al. 2020. Low-temperature silica-rich gold mineralization in mafic VMS systems: evidence from the Troodos ophiolite, Cyprus. Mineralium Deposita , pp.805-822. (10.1007/s00126-020-01007-2)
- Martin, A. J. et al., 2025. Deep-sea drilling of the 13°30? N oceanic core complex: Assessing links between fluid flow, metal enrichment and seafloor massive sulfide deposit formation near Semenov-1. Lithos: Journal of Petrology, Mineralogy and Geochemistry 494-5 107921. (10.1016/j.lithos.2024.107921)
- McCaig, A. M. et al., 2007. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology -Boulder- 35 (10), pp.935-938. (10.1130/G23657A.1)
- Morris, A. et al., 2009. Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples. Earth and Planetary Science Letters 287 (1-2), pp.217-228. (10.1016/j.epsl.2009.08.007)
- Morris, A. et al., 2016. Clockwise rotation of the entire Oman ophiolite occurred in a suprasubduction zone setting. Geology 44 (12), pp.1055-1058. (10.1130/G38380.1)
- Morris, A. et al., 2019. What do variable magnetic fabrics in gabbros of the Oman ophiolite reveal about lower oceanic crustal magmatism at fast spreading ridges?. Geology 47 (3), pp.275-278. (10.1130/G45442.1)
- Nguyen, D. K. et al., 2018. Occurrence of felsic rocks in Oceanic Gabbros from IODP Hole U1473A: implications for evolved melt migration in the lower oceanic crust. Minerals 8 (12) 583. (10.3390/min8120583)
- Parnell-Turner, R. et al., 2017. Oceanic detachment faults generate compression in extension. Geology 45 (10), pp.923-926. (10.1130/G39232.1)
- Parnell-Turner, R. et al., 2021. Seismicity trends and detachment fault structure at 13N, Mid-Atlantic Ridge. Geology 49 (3), pp.320-324. (10.1130/G48420.1)
- Peirce, C. et al., 2022. Three-dimensional S-wave velocity structure of oceanic core complexes at 13°N on the Mid-Atlantic Ridge. Geophysical Journal International 232 (1), pp.615-642. (10.1093/gji/ggac350)
- Peirce, C. et al., 2019. Constraints on crustal structure of adjacent OCCs and segment boundaries at 13°N on the Mid-Atlantic Ridge. Geophysical Journal International 217 (2), pp.988-1010. (10.1093/gji/ggz074)
- Peirce, C. et al., 2020. Magmatism versus serpentinization-crustal structure along the 13°N segment at the Mid-Atlantic Ridge. Geophysical Journal International 221 (2), pp.981-1001. (10.1093/gji/ggaa052)
- Quichimbo Miguitama, E. A. et al. 2023. Assessing the sensitivity of modelled water partitioning to global precipitation datasets in a data‐scarce dryland region. Hydrological Processes 37 (12) e15047. (10.1002/hyp.15047)
- Ribeiro, J. et al., 2022. Origin and evolution of the slab fluids since subduction inception in the Izu-Bonin-Mariana: A comparison with the southeast Mariana fore-arc rift. Chemical Geology 601 120813. (10.1016/j.chemgeo.2022.120813)
- Ribeiro, J. , MacLeod, C. J. and Lissenberg, C. J. 2023. Did the Troodos ophiolite of Cyprus form during subduction inception?. Chemical Geology 641 121774. (10.1016/j.chemgeo.2023.121774)
- Rioux, M. et al., 2012. Protracted timescales of lower crustal growth at the fast-spreading East Pacific Rise. Nature Geoscience 5 (4), pp.275-278. (10.1038/NGEO1378)
- Sanfilippo, A. et al., 2020. Early-stage melt-rock reaction in a cooling crystal mush beneath a slow-spreading mid-ocean ridge (IODP Hole U1473A, Atlantis Bank, Southwest Indian Ridge). Frontiers in Earth Science 8 579138. (10.3389/feart.2020.579138)
- Sauter, D. et al., 2013. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nature Geoscience 6 (4), pp.314-320. (10.1038/ngeo1771)
- Searle, R. C. et al., 1998. Fault structure and detailed evolution of a slow spreading ridge segment: the Mid-Atlantic Ridge at 29 degrees N. Earth and Planetary Science Letters 154 (1-4), pp.167-183. (10.1016/S0012-821X(97)00160-X)
- Searle, R. C. et al., 2019. The mid‐atlantic ridge near 13°20′N: High‐resolution magnetic and bathymetry imaging. Geochemistry, Geophysics, Geosystems 20 (1), pp.295-313. (10.1029/2018GC007940)
- Simão, N. M. et al., 2020. 3-D P-wave velocity structure of oceanic core complexes at 13°N on the Mid-Atlantic Ridge. Geophysical Journal International 221 (3), pp.1555-1570. (10.1093/gji/ggaa093)
- Tominaga, M. et al., 2016. Characterization of the in situ magnetic architecture of oceanic crust (Hess Deep) using near-source vector magnetic data. Journal of Geophysical Research: Solid Earth 121 (6), pp.4130-4146. (10.1002/2015JB012783)
- Wadge, G. et al., 1998. Lithological classification within ODP holes using neural networks trained from integrated core-log data. Geological Society, London, Special Publications 136 (1), pp.129-140. (10.1144/GSL.SP.1998.136.01.11)
- Wright, D. J. et al., 2000. Bathymetry of the Tonga Trench and Forearc: a map series. Marine Geophysical Researches 21 (5), pp.489-511. (10.1023/A:1026514914220)
- Yaouancq, G. and MacLeod, C. J. 2000. Petrofabric investigation of Gabbros from the Oman ophiolite: comparison between AMS and rock fabric. Marine Geophysical Researches 21 (3-4), pp.289-305. (10.1023/A:1026774111021)
- Zhang, W. et al., 2025. The role of detachment faulting in the genesis of oceanic felsic melts. Communications Earth & Environment 6 (1) 109. (10.1038/s43247-025-02098-3)
Book sections
- Bloomer, S. H. et al., 1995. Early arc volcanism and the ophiolite problem: a perspective from drilling in the western Pacific. In: Active margins and marginal basins of the Western Pacific. Geophysical monograph series Vol. 88.American Geophysical Union. , pp.1-30. (10.1029/GM088p0001)
- Boudier, F. , MacLeod, C. and Bolou, L. 1996. Structures in Peridotites from Site 895, Hess Deep: Implications for the geometry of mantle flow beneath the East Pacific Rise. In: Proceedings of the Ocean Drilling Program. Scientific Results. Proceedings of the Ocean Drilling Program. Scientific Results Vol. 147.College Station, Texas: Ocean Drilling Program. , pp.347-356. (10.2973/odp.proc.sr.147.021.1996)
- Fagereng, A. and MacLeod, C. 2019. On seismicity and structural style of oceanic transform faults: A field geological perspective from the Troodos Ophiolite, Cyprus. In: Duarte, J. S. ed. Transform Plate Boundaries and Fracture Zones. Elsevier Books. , pp.437-459. (10.1016/B978-0-12-812064-4.00018-9)
- MacLeod, C. et al. 1996. Gabbro fabrics from Site 894, Hess Deep: Implications for magma chamber processes at the East Pacific Rise. In: Proceedings of the Ocean Drilling Program. Scientific Results. Proceedings of the Ocean Drilling Program. Scientific Results Vol. 147.College Station, Texas: Ocean Drilling Program. , pp.317-328. (10.2973/odp.proc.sr.147.018.1996)
- MacLeod, C. et al. 1996. Tectonics of Hess Deep: a synthesis of drilling results from Leg 147. In: Proceedings of the Ocean Drilling Program. Scientific Results. Proceedings of the Ocean Drilling Program. Scientific Results Vol. 147.College Station, Texas: Ocean Drilling Program. , pp.461-475. (10.2973/odp.proc.sr.147.032.1996)
- Manning, C. E. and MacLeod, C. 1996. Fracture-controlled metamorphism of Hess Deep Gabbros, Site 894: constraints on the roots of mid-ocean-ridge hydrothermal systems at fast-spreading centers. In: Proceedings of the Ocean Drilling Program. Scientific Results. Proceedings of the Ocean Drilling Program. Scientific Results Vol. 147.College Station, Texas: Ocean Drilling Program. , pp.189-212. (10.2973/odp.proc.sr.147.011.1996)
Books
- Gass, I. G. et al., 1994. The geological evolution of the Southern Troodos transform fault zone. Memoir Vol. 9Nicosia, Cyprus: Geological Survey Department.
Conferences
- Hutchinson, D. , Prichard, H. M. and MacLeod, C. J. 1999. Evidence for partial melting and melt impregnation of mantle peridotites leading-to PGM deposition: a comparison of samples from the Lizard and Troodos ophiolites and the Tonga Trench. Presented at: 5th Biennial Meeting of the Society for Geology Applied to Mineral Deposits (SGA) and the 10th Quadrennial Symposium of the International Association on the Genesis of Ore Deposits (IAGOD) London, UK 22-25 August 1999. Published in: Stanley, C. J. ed. Mineral Deposits: Processes to Processing. Vol. 1.Rotterdam: A.A.Balkema Publishers. , pp.729-732.
Monographs
- Dick, H. J. , MacLeod, C. J. and Blum, P. 2015. Southwest Indian Ridge lower crust and Moho: the nature of the lower crust and Moho at slower spreading ridges (SloMo-Leg 1). International Ocean Discovery Program Scientific Prospectus, 360. Project Report.[Online].International Ocean Discovery Program. Available at: http://dx.doi.org/10.14379/iodp.sp.360.2015.
Research
I conduct observation-based, multi-disciplinary, meso-scale geological investigations of modern ocean floor and of ophiolites to address the processes of formation and deformation of ocean lithosphere at mid-ocean ridges. Whether on land or at sea I apply fine-scale mapping, structural geology, rock magnetics/palaeomagnetism, petrology, geochemistry and geophysics to answer fundamental geological questions about mid-ocean ridge processes. In the marine realm I have developed methodologies to reorientate IODP drillcore using wireline image logs and hence conduct structural geological/tectonic studies comparable to those applied on land. With the British Geological Survey I have also been prime mover behind the development and application of robotic seabed rock drills to collect directly orientated seafloor samples from hard-rock substrates.
. Current projects include:
- SW Indian Ridge Lower Crust and Moho: drilling the lower crust and Moho at an ultraslow spreading ridge (International Ocean Discovery Program Expedition 360: http://iodp.tamu.edu/scienceops/expeditions/indian_ridge_moho.html)
- Mid-Atlantic Ridge 13°N: multidisciplinary seismic investigation plus near-bottom mapping and sampling of oceanic core complexes to investigate detachment fault processes; also hydrothermal circulation and ultramafic-hosted mineralisation at slower-spreading mid-ocean ridges
- Hess Deep, eastern equatorial Pacific: ROV sampling of the Hess Deep rift valley to decipher magma chamber processes beneath the fast-spreading East Pacific Rise, by means of a petrological, geochemical and microstructural study of a reconstructed lower crustal section
- Oman ophiolite: (1) quantitative investigations of the limits and limitations of the Oman ophiolite–East Pacific Rise analogy; (2) geodynamics of the Oman ophiolite and implications for intraoceanic subduction initiation; (3) magma chamber models and lower crustal accretion mechanisms at fast-spreading ridges
- Troodos ophiolite: (1) structure of the upper ocean crust and relationship between tectonism and magmatism during spreading in the presence of active detachment faulting; (2) transform fault processes, including palaeoseismicity and fluid flow
- borehole core–image log integration for core reorientation, and applications for structural and palaeomagnetic studies with IODP
Some of my fundamental research on seafloor spreading and nature of the ocean lithosphere formed at mid-ocean ridges has been incorporated into the UK National Curriculum in geology for ages 14-18. It is now being taught in geology and geography classes in schools across the UK and worldwide: case studies "a new view of searfloor spreading" and "what is the Moho?", as examples of science in action and hypothesis testing of theories as fundamental as that of plate tectonics itself. I have established a web site "www.seafloorspreading.com" as a resource for teachers to assist them both in delivering the learning materials and in helping convey the practicalities and realities of modern scientific research.
Teaching
I teach classroom modules in general geology, plate tectonics and geodynamics, to undergraduates at all levels, and supervise Masters-level student research projects. I lead geoscience field courses in Cyprus and Great Britain, and supervise geological mapping projects worldwide.
Biography
- Professor, Cardiff University (2009-present)
- Chair ESSAC (Science Support & Advisory Committee of the European Consortium for Ocean Research Drilling, in the Integrated Ocean Drilling Program) (2005-07)
- Lecturer/Senior Lecturer, Cardiff University (1995-2009)
- NERC Post-doctoral Research Fellow, Institute of Oceanographic Sciences Deacon Laboratory/University of Leicester/Cardiff University: “Application of borehole imaging techniques to structural geological studies with the Ocean Drilling Program (ODP): structure of the lower oceanic crust in Hess Deep” (1993-95)
- NERC Post-doctoral Research Associate, Institute of Oceanographic Sciences Deacon Laboratory: “Tectonic evolution of the Lau Basin, SW Pacific, from structural studies of ODP core and geophysical well logs” (1991-93)
- Open University Research Fellow: “Geological evolution of the Southern Troodos Transform Fault Zone, Cyprus” (1990-91)
- Royal Society European Science Exchange Fellow, Université de Montpellier 2, France: “Oceanic spreading axis segmentation in the Oman ophiolite” (1989-90)
- PhD, Open University: “Tectonic Evolution of the Eastern Limassol Forest Complex, Troodos Ophiolite, Cyprus” (1988)
- BSc Geology, Durham (1984)
Supervisions
I am interested in supervising PhD students in the areas of:
- mid-ocean ridge processes from the study of modern ocean floor samples and data
- mid-ocean ridge processes from study of ophiolites
- marginal basin processes, 'infant arc' and subduction initiation processes