Dr Soumen Mandal
PhD
Teams and roles for Soumen Mandal
Research Associate
Condensed Matter and Photonics Group
Overview
I am a Post-Doctoral Research Associate working in School of Physics and Astronomy at Cardiff University, U.K. in the group of Prof. Oliver Williams. My current research interest is the study of diamond as a material for device applications. I am mostly interested in using nanocrystalline diamond grown on silicon and other wafers for these applications. Nanocrystalline diamond, even though slightly inferior to single crystal diamond, offers large area, easy scalability of the devices and cost effectiveness. One of the major drawback of the artificially grown nanodiamond film is its surface roughness. We have overcome this problem by developing a polishing technique capable of producing sub-nanometer surface roughness. Over the years Cardiff Diamond Foundry has published a few papers on polishing of thin film diamond. At Cardiff Diamond Foundry we have also designed a NIRIM type low cost CVD reactor for diamond growth. The full design of this reactor can be found on this wikiversity page.
Below I list some of the major acievements and industrial enegagements
Achievements
Boron doped diamond SQUID, First SQUID made from boron doped diamond. This was also the first SQUID that could operate at very high magnetic field (~4T).
Superconducting diamond cantilever, Developed first cantilever from superconducting diamond. With an fQ factor 1011, the BDD micro mechanical system demonstrated a state-of-the-art performance for such devices. It was also the first monolithic superconducting MEMS
Chemical mechanical polishing (CMP) of diamond thin films, A process for polishing thin diamond films which cannot be polished by traditional techniques like mechanical polishing. With this technique surface roughnesses below 2nm RMS have been achieved.
Chemical nucleation of diamond, A cleanroom compatible seeding technique for diamond growth using chemical precursors.
Growth of thick diamond layer on AlN, The growth of thick diamond layer on AlN paves the way for integration of diamond heat sink layer on GaN high power devices.
Diamond based filters, Co-inventor of diamond based electropositive filter element for liquid filtration
Industrial Engagements
Evince Technology Limited, UK – 2014 – 2021, Development of low cost diamond reactor and process for growing semiconducting boron doped diamond on single crystal substrates. Chemical Mechanical polishing of diamonds for electronic device applications.
Qioptiq, UK – 2016 – 2018, Development for high growth rate thick diamond films for optical applications.
Precision Ceramics, UK – 2017 – 2018, Growth of diamond layer on Boron Nitride composite.
W & L Coating Systems GmbH, Germany – 2020, Characterisation of diamond solutions for diamond growth.
Applied Microengineering Ltd, UK – 2022 – till date, Development of direct bond between diamond and other materials.
Publication
2025
- Astley, S. et al., 2025. Real time observation of glass-like carbon formation from SU-8 using X-ray and ultraviolet photoelectron spectroscopy. Carbon 245 120728. (10.1016/j.carbon.2025.120728)
- Cuenca, J. A. et al. 2025. Microwave plasma modelling for thick diamond deposition on III-nitrides. Carbon 241 120349. (10.1016/j.carbon.2025.120349)
- Lindner, S. et al., 2025. Coupling of single nanodiamonds hosting SiV color centers to plasmonic double bowtie microantennas. Nanotechnology 36 (13) 135001. (10.1088/1361-6528/ada9a4)
- Sedov, V. et al., 2025. Diamond deposition on non-diamond microparticles: toward the development of core-shell optical materials. Surfaces and Interfaces 64 106479. (10.1016/j.surfin.2025.106479)
- Sow, M. et al., 2025. Millikelvin intracellular nanothermometry with nanodiamonds. Advanced Science 12 (45) e11670. (10.1002/advs.202511670)
- Ye, S. et al., 2025. Rapid planarization of polycrystalline diamond by laser with response surface methodology. Optics and Laser Technology 180 111509. (10.1016/j.optlastec.2024.111509)
2024
- Bennett, J. et al. 2024. Inhomogeneities across boron-doped nanocrystalline diamond films. Carbon Trends 15 100353. (10.1016/j.cartre.2024.100353)
- Cuenca, J. A. et al. 2024. Dielectric properties of diamond using an X-band microwave split dielectric resonator. Carbon 221 118860. (10.1016/j.carbon.2024.118860)
- Hao, Z. et al., 2024. Synthesis of nano-diamond film on GaN surface with low thermal boundary resistance and high thermal conductivity. Carbon 229 119491. (10.1016/j.carbon.2024.119491)
- Liao, S. et al., 2024. Boron-doped diamond decorated with metal-organic framework-derived compounds for high-voltage aqueous asymmetric supercapacitors. Carbon 230 119651. (10.1016/j.carbon.2024.119651)
- Mandal, S. 2024. Growth of diamond on high-power electronic material. In: Novel Aspects of Diamond II. Vol. 149, Topics in Applied Physics SPRINGER-VERLAG BERLIN. , pp.145-174. (10.1007/978-3-031-47556-6_6)
- Martyanov, A. et al., 2024. Diamond seed dependent luminescence properties of CVD diamond composite. Carbon 222 118975. (10.1016/j.carbon.2024.118975)
- Sedov, V. et al., 2024. Narrowband photoluminescence of Tin-Vacancy colour centres in Sn-doped chemical vapour deposition diamond microcrystals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382 (2265) 20230167. (10.1098/rsta.2023.0167)
- Sedov, V. et al., 2024. Annealing process and temperature effects on silicon-vacancy and germanium-vacancy centers in CVD grown polycrystalline diamond. Diamond and Related Materials 146 111169. (10.1016/j.diamond.2024.111169)
- Williams, O. A. , Mandal, S. and Cuenca, J. A. 2024. Heterogeneous integration of diamond. Accounts of Materials Research (10.1021/accountsmr.4c00126)
- Yuan, M. et al., 2024. Generation of GHz surface acoustic waves in (Sc,Al)N thin films grown on free-standing polycrystalline diamond wafers by plasma-assisted molecular beam epitaxy. Journal of Physics D: Applied Physics 57 (49) 495103. (10.1088/1361-6463/ad76ba)
2023
- Cuenca, J. A. et al. 2023. Superconducting boron doped nanocrystalline diamond microwave coplanar resonator. Carbon 201 , pp.251-259. (10.1016/j.carbon.2022.08.084)
- Cuenca, J. A. et al. 2023. Modelling deposition uniformity in microwave plasma cvd diamond over 2" Si wafers. Presented at: 2022 Asia-Pacific Microwave Conference (APMC) Yokohama, Japan 29 November - 02 December 2022. 2022 Asia-Pacific Microwave Conference (APMC). IEEE. (10.23919/APMC55665.2022.9999754)
- Cuenca, J. A. et al. 2023. Microwave conductivity of boron-doped nanodiamond particles. Presented at: 2022 Asia-Pacific Microwave Conference (APMC) Yokohama, Japan 29 November - 02 December 2022. 2022 Asia-Pacific Microwave Conference (APMC). IEEE. (10.23919/APMC55665.2022.9999762)
- Hrabovsky, J. et al., 2023. Laser-patterned boron-doped diamond electrodes with precise control of sp2/sp3 carbon lateral distribution. Applied Surface Science 639 158268. (10.1016/j.apsusc.2023.158268)
- Leigh, W. et al. 2023. Monitoring of the initial stages of diamond growth on aluminum nitride using in situ spectroscopic ellipsometry. ACS Omega 8 (33), pp.30442-30449. (10.1021/acsomega.3c03609)
- Leigh, W. G. et al. 2023. Mapping the effect of substrate temperature inhomogeneity during microwave plasma-enhanced chemical vapour deposition nanocrystalline diamond growth. Carbon 201 , pp.228-337. (10.1016/j.carbon.2022.09.036)
- Mandal, S. et al. 2023. Zeta potential and nanodiamond self assembly assisted diamond growth on lithium niobate and lithium tantalate single crystal. Carbon 212 118160. (10.1016/j.carbon.2023.118160)
- March, J. E. et al., 2023. Long spin coherence and relaxation times in nanodiamonds milled from polycrystalline 12C diamond. Physical Review Applied 20 (4) 044045. (10.1103/PhysRevApplied.20.044045)
- Rafique, T. et al., 2023. Fabrication of hollow Ni1-xZnxFe2O4 spheres (x = 0.0, 0.5, 1.0) as high-performance electromagnetic absorber material. Journal of Magnetism and Magnetic Materials 572 170647. (10.1016/j.jmmm.2023.170647)
- Sedov, V. et al., 2023. Effect of diamond seeds size on the adhesion of CVD diamond coatings on WC-Co instrument. Surfaces and Interfaces 38 102861. (10.1016/j.surfin.2023.102861)
- Sedov, V. S. et al., 2023. Microporous poly- and monocrystalline diamond films produced from chemical vapor deposited diamond-germanium composites. Nanoscale Advances 5 , pp.1307-1315. (10.1039/D2NA00688J)
- Thomas, E. L. H. et al. 2023. Polycrystalline diamond micro‐hotplates. Small 19 (48) 2303976. (10.1002/smll.202303976)
- Zelenský, M. et al., 2023. Chem-mechanical polishing influenced morphology, spectral and electrochemical characteristics of boron doped diamond. Carbon 203 , pp.363-376. (10.1016/j.carbon.2022.11.069)
2022
- Bose, M. et al., 2022. Low-noise diamond-based D.C. nano-SQUIDs. ACS Applied Electronic Materials 4 (5), pp.2246-2252. (10.1021/acsaelm.2c00048)
- Cuenca, J. A. et al. 2022. Microwave plasma modelling in clamshell chemical vapour deposition diamond reactors. Diamond and Related Materials 124 108917. (10.1016/j.diamond.2022.108917)
- Kuznetsov, S. et al., 2022. Cerium-doped gadolinium-scandium-aluminum garnet powders: synthesis and use in X-ray luminescent diamond composites. Ceramics International 48 (9), pp.12962-12970. (10.1016/j.ceramint.2022.01.169)
- Leigh, W. G. et al. 2022. In-situ monitoring of microwave plasma-enhanced chemical vapour deposition diamond growth on silicon using spectroscopic ellipsometry. Carbon 202 , pp.204-212. (10.1016/j.carbon.2022.10.049)
- Mandal, S. , Shaw, G. and Williams, O. A. 2022. Comparison of nanodiamond coated quartz filter with commercial electropositive filters: Zeta potential and dye retention study. Carbon 199 , pp.439-443. (10.1016/j.carbon.2022.08.021)
- Pascoe, M. J. et al. 2022. Impact of material properties in determining quaternary ammonium compound adsorption and wipe product efficacy against biofilms. Journal of Hospital Infection 126 , pp.37-43. (10.1016/j.jhin.2022.03.013)
- Wood, B. D. et al., 2022. Long spin coherence times of nitrogen vacancy centers in milled nanodiamonds. Physical Review B 105 (20) 205401. (10.1103/PhysRevB.105.205401)
2021
- Bland, H. A. et al. 2021. Electropositive nanodiamond-coated quartz microfiber membranes for virus and dye filtration. ACS Applied Nano Materials 4 (3), pp.3252-3261. (10.1021/acsanm.1c00439)
- Cuenca, J. A. et al. 2021. Thermal stress modelling of diamond on GaN/III-Nitride membranes. Carbon 174 , pp.647-661. (10.1016/j.carbon.2020.11.067)
- Guo, T. et al., 2021. Electrochemistry of nitrogen and boron bi-element incorporated diamond films. Carbon 178 , pp.19-25. (10.1016/j.carbon.2021.02.062)
- Klemencic, G. et al. 2021. Phase slips and metastability in granular boron-doped nanocrystalline diamond microbridges. Carbon 175 , pp.43-49. (10.1016/j.carbon.2020.12.042)
- Lynch, S. A. et al. 2021. Rydberg excitons in synthetic cuprous oxide (Cu2O). Physical Review Materials 5 (8) 086402. (10.1103/PhysRevMaterials.5.084602)
- Mandal, S. 2021. Nucleation of diamond films on heterogeneous substrates: a review. RSC Advances 11 (17), pp.10159-10182. (10.1039/D1RA00397F)
- Mandal, S. et al. 2021. Surface zeta potential and diamond growth on gallium oxide single crystal. Carbon 181 , pp.79-86. (10.1016/j.carbon.2021.04.100)
- Manifold, S. A. et al. 2021. Contact resistance of various metallisation schemes to superconducting boron doped diamond between 1.9 and 300 K. Carbon 179 , pp.13-19. (10.1016/j.carbon.2021.02.079)
- Sedov, V. et al., 2021. CVD synthesis of multi-layered polycrystalline diamond films with reduced roughness using time-limited injections of N2 gas. Diamond and Related Materials 114 108333. (10.1016/j.diamond.2021.108333)
2020
- Cuenca, J. A. et al. 2020. Dielectric spectroscopy of hydrogen treated hexagonal boron nitride ceramics. ACS Applied Electronic Materials 2 (5), pp.1193-1202. (10.1021/acsaelm.9b00767)
- Smith, M. D. et al., 2020. GaN-on-diamond technology platform: bonding-free membrane manufacturing process. AIP Advances 10 (3) 035306. (10.1063/1.5129229)
- Sow, M. et al., 2020. High-throughput nitrogen-vacancy center imaging for nanodiamond photophysical characterization and pH nanosensing. Nanoscale 12 (42), pp.21821-21821. (10.1039/D0NR05931E)
2019
- Ahmed, A. et al., 2019. Facile amine termination of nanodiamond particles and their surface reaction dynamics. ACS Omega 4 (16), pp.16715-16723. (10.1021/acsomega.9b00776)
- Bland, H. A. et al. 2019. Superconducting diamond on silicon nitride for device applications. Scientific Reports 9 2911. (10.1038/s41598-019-39707-z)
- Klemencic, G. M. et al. 2019. Observation of a superconducting glass state in granular superconducting diamond. Scientific Reports 9 4578. (10.1038/s41598-019-40306-1)
- Mandal, S. et al. 2019. Superconducting boron doped nanocrystalline diamond on boron nitride ceramics. Nanoscale 11 (21), pp.10266-10272. (10.1039/C9NR02729G)
- Mandal, S. et al. 2019. Chemical mechanical polishing of nanocrystalline diamond. In: Yang, N. ed. Novel Aspects of Diamond: From Growth to Applications. Vol. 121, Topics in Applied Physics Chem: Springer. , pp.53-89. (10.1007/978-3-030-12469-4_3)
- Mandal, S. et al. 2019. Thick, adherent diamond films on AlN with low thermal barrier resistance. ACS Applied Materials and Interfaces 11 (43), pp.40826-40834. (10.1021/acsami.9b13869)
- Panduranga, P. et al., 2019. Hybrid diamond/silicon suspended integrated photonic platform using SF6 isotropic etching. Presented at: 2nd IEEE British and Irish Conference on Optics and Photonics (BICOP 2019) London, England 11-13 December 2019. 2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP). IEEE. , pp.1-4. (10.1109/BICOP48819.2019.9059586)
- Salman, M. et al. 2019. Quantitative analysis of the interaction between a dc SQUID and an integrated micromechanical doubly clamped cantilever. Journal of Applied Physics 125 (22) 224503. (10.1063/1.5090958)
2018
- Abdou, A. et al., 2018. Air-clad suspended nanocrystalline diamond ridge waveguides. Optics Express 26 (11) 13883. (10.1364/OE.26.013883)
- Braunbeck, G. et al., 2018. Effect of ultraprecision polishing techniques on coherence times of shallow nitrogen-vacancy centers in diamond. Diamond and Related Materials 85 , pp.18-22. (10.1016/j.diamond.2018.03.026)
- Cuenca, J. A. et al. 2018. Microwave permittivity of trace sp2 carbon impurities in sub-micron diamond powders. ACS Omega 3 (2), pp.2183-2192. (10.1021/acsomega.7b02000)
- Frangeskou, A. C. et al., 2018. Pure nanodiamonds for levitated optomechanics in vacuum. New Journal of Physics 20 043016. (10.1088/1367-2630/aab700)
- Gines, L. et al. 2018. Production of metal-free diamond nanoparticles. ACS Omega 3 (11), pp.16099-16104. (10.1021/acsomega.8b02067)
- Lindner, S. et al., 2018. Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds. New Journal of Physics 20 (11) 115002. (10.1088/1367-2630/aae93f)
- Mandal, S. et al. 2018. Redox agent enhanced chemical mechanical polishing of thin film diamond. Carbon 130 , pp.25-30. (10.1016/j.carbon.2017.12.077)
- Thomas, E. et al. 2018. A simple, space constrained NIRIM type reactor for chemical vapour deposition of diamond. AIP Advances 8 035325. (10.1063/1.5009182)
- Yu, S. et al., 2018. Battery-like supercapacitors from vertically aligned carbon nanofiber coated diamond: design and demonstrator. Advanced Energy Materials 8 (12) 1702947. (10.1002/aenm.201702947)
2017
- Ayres, Z. J. et al., 2017. Impact of chemical vapour deposition plasma inhomogeneity on the spatial variation of sp 2 carbon in boron doped diamond electrodes. Carbon 121 , pp.434-442. (10.1016/j.carbon.2017.06.008)
- Gines, L. et al. 2017. Positive zeta potential of nanodiamonds. Nanoscale 9 (34), pp.12549-12555. (10.1039/C7NR03200E)
- Klemencic, G. M. et al. 2017. Fluctuation spectroscopy as a probe of granular superconducting diamond films. Physical Review Materials 1 (4) 044801. (10.1103/PhysRevMaterials.1.044801)
- Klemencic, G. M. et al. 2017. Superconductivity in planarised nanocrystalline diamond films. Science and Technology of Advanced Materials 18 (1)(10.1080/14686996.2017.1286223)
- Mandal, S. et al. 2017. Surface zeta potential and diamond seeding on gallium nitride films. ACS Omega 2 (10), pp.7275-7280. (10.1021/acsomega.7b01069)
- Thomas, E. et al. 2017. Spectroscopic ellipsometry of nanocrystalline diamond film growth. ACS Omega 2 (10), pp.6715-6727. (10.1021/acsomega.7b00866)
- Titova, N. et al., 2017. Slow electron-phonon cooling in superconducting diamond films. IEEE Transactions on Applied Superconductivity 27 (4) 7501104. (10.1109/TASC.2016.2638199)
- Werrell, J. et al. 2017. Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Science and Technology of Advanced Materials 18 (1), pp.654-663. (10.1080/14686996.2017.1366815.)
- Yu, S. et al., 2017. Battery-like supercapacitors from diamond networks and water-soluble redox electrolytes. Journal of Materials Chemistry A 5 (4), pp.1778-1785. (10.1039/C6TA08607A)
2016
- Ahmed, A. -. et al., 2016. Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon 110 , pp.438-442. (10.1016/j.carbon.2016.09.019)
- Mandal, S. et al. 2016. Chemical nucleation of diamond films. ACS Applied Materials and Interfaces 8 (39), pp.26220-26225. (10.1021/acsami.6b08286)
2015
- Cuenca, J. A. et al. 2015. Investigating the broadband microwave absorption of nanodiamond impurities. IEEE Transactions on Microwave Theory and Techniques 63 (12), pp.4110-4118. (10.1109/TMTT.2015.2495156)
- Cuenca, J. A. et al. 2015. Microwave determination of sp2 carbon fraction in nanodiamond powders. Carbon 81 , pp.174-178. (10.1016/j.carbon.2014.09.046)
- Yu, S. et al., 2015. Electrochemical supercapacitors from diamond. Journal of Physical Chemistry C 119 (33), pp.18918-18926. (10.1021/acs.jpcc.5b04719)
2014
- Bautze, T. et al., 2014. Superconducting nano-mechanical diamond resonators. Carbon 72 , pp.100-105. (10.1016/j.carbon.2014.01.060)
- Cuenca, J. et al. 2014. Broadband microwave measurements of nanodiamond. Presented at: Microwave Conference (APMC), 2014 Asia-Pacific Sendai, Japan 4-7 Nov 2014. Microwave Conference (APMC), 2014 Asia-Pacific. , pp.1-3.
- Mandal, S. , Bautze, T. and Bäuerle, C. 2014. Superconductivity in nanostructured boron-doped diamond and its application to device fabrication. In: Williams, O. A. ed. Nanodiamond. Royal Society of Chemistry. , pp.385-410. (10.1039/9781849737616-00385)
- Thomas, E. L. H. et al. 2014. Silica based polishing of {100} and {111} single crystal diamond. Science and Technology of Advanced Materials 15 (3), pp.1-7. 035013. (10.1088/1468-6996/15/3/035013)
- Thomas, E. L. H. et al. 2014. Chemical mechanical polishing of thin film diamond. Carbon 68 , pp.473-479. (10.1016/j.carbon.2013.11.023)
2013
- Szirmai, P. et al., 2013. Observation of conduction electron spin resonance in boron-doped diamond. Physical Review B 87 (19) 195132. (10.1103/PhysRevB.87.195132)
2012
- Szirmai, P. et al., 2012. A detailed analysis of the Raman spectra in superconducting boron doped nanocrystalline diamond. Physica Status Solidi B Basic Research 249 (12), pp.2656-2659. (10.1002/pssb.201200461)
2011
- Mandal, S. 2011. A comparative study of angle dependent magnetoresistance in [001] and [110] La2/3Sr1/3MnO3. Journal of Superconductivity and Novel Magnetism 24 (5), pp.1501-1504. (10.1007/s10948-010-0882-x)
- Mandal, S. et al. 2011. Efficient radio frequency filters for space constrained cryogenic setups. Review of Scientific Instruments 82 (2) 024704. (10.1063/1.3543736)
- Mandal, S. et al. 2011. The Diamond Superconducting Quantum Interference Device. ACS Nano 5 (9), pp.7144-7148. (10.1021/nn2018396)
2010
- Mandal, S. 2010. Magnetoresistance studies of La2/3Sr1/3MnO3-YBa2Cu3O7-La2/3Sr1/3MnO3 trilayers with ferromagnetic coupling along the nodal direction of YBa2Cu3O7. Physical Review B: Condensed Matter and Materials Physics 81 (1) 014515. (10.1103/PhysRevB.81.014515)
- Mandal, S. et al. 2010. Detailed study of superconductivity in nanostructured nanocrystalline boron doped diamond thin films. Physica Status Solidi a Applications and Materials Science 207 (9), pp.2017-2022. (10.1002/pssa.201000008)
- Mandal, S. et al. 2010. Nanostructures made from superconducting boron-doped diamond. Nanotechnology 21 (19) 195303. (10.1088/0957-4484/21/19/195303)
2008
- Mandal, S. et al. 2008. Diverging giant magnetoresistance in ferromagnet-superconductor-ferromagnet trilayers. Physical Review B: Condensed Matter and Materials Physics 78 (9) 094502. (10.1103/PhysRevB.78.094502)
- Mandal, S. and Budhani, R. C. 2008. Magnetization depinning transition, anisotropic magnetoresistance and inplane anisotropy in two polytypes of La2/3Sr1/3MnO3 epitaxial films. Journal of Magnetism and Magnetic Materials 320 (23), pp.3323-3333. (10.1016/j.jmmm.2008.07.002)
2007
- Li, P. et al., 2007. Correlation between incoherent phase fluctuations and disorder in Y1−xPrxBa2Cu3O7−δ epitaxial films from Nernst effect measurements. Physical Review B: Condensed Matter and Materials Physics 75 (18) 184509. (10.1103/PhysRevB.75.184509)
2006
- Mandal, S. et al. 2006. Growth of [110] La2/3Sr1/3MnO3–YBa2Cu3O7 heterostructures. Applied Physics Letters 89 (18) 182508. (10.1063/1.2374692)
2005
- Budhani, R. C. et al., 2005. Magnetotransport in epitaxial films of the degenerate semiconductor Zn1−xCoxO. Journal of Physics: Condensed Matter 17 (1) 75. (10.1088/0953-8984/17/1/008)
Articles
- Abdou, A. et al., 2018. Air-clad suspended nanocrystalline diamond ridge waveguides. Optics Express 26 (11) 13883. (10.1364/OE.26.013883)
- Ahmed, A. -. et al., 2016. Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon 110 , pp.438-442. (10.1016/j.carbon.2016.09.019)
- Ahmed, A. et al., 2019. Facile amine termination of nanodiamond particles and their surface reaction dynamics. ACS Omega 4 (16), pp.16715-16723. (10.1021/acsomega.9b00776)
- Astley, S. et al., 2025. Real time observation of glass-like carbon formation from SU-8 using X-ray and ultraviolet photoelectron spectroscopy. Carbon 245 120728. (10.1016/j.carbon.2025.120728)
- Ayres, Z. J. et al., 2017. Impact of chemical vapour deposition plasma inhomogeneity on the spatial variation of sp 2 carbon in boron doped diamond electrodes. Carbon 121 , pp.434-442. (10.1016/j.carbon.2017.06.008)
- Bautze, T. et al., 2014. Superconducting nano-mechanical diamond resonators. Carbon 72 , pp.100-105. (10.1016/j.carbon.2014.01.060)
- Bennett, J. et al. 2024. Inhomogeneities across boron-doped nanocrystalline diamond films. Carbon Trends 15 100353. (10.1016/j.cartre.2024.100353)
- Bland, H. A. et al. 2021. Electropositive nanodiamond-coated quartz microfiber membranes for virus and dye filtration. ACS Applied Nano Materials 4 (3), pp.3252-3261. (10.1021/acsanm.1c00439)
- Bland, H. A. et al. 2019. Superconducting diamond on silicon nitride for device applications. Scientific Reports 9 2911. (10.1038/s41598-019-39707-z)
- Bose, M. et al., 2022. Low-noise diamond-based D.C. nano-SQUIDs. ACS Applied Electronic Materials 4 (5), pp.2246-2252. (10.1021/acsaelm.2c00048)
- Braunbeck, G. et al., 2018. Effect of ultraprecision polishing techniques on coherence times of shallow nitrogen-vacancy centers in diamond. Diamond and Related Materials 85 , pp.18-22. (10.1016/j.diamond.2018.03.026)
- Budhani, R. C. et al., 2005. Magnetotransport in epitaxial films of the degenerate semiconductor Zn1−xCoxO. Journal of Physics: Condensed Matter 17 (1) 75. (10.1088/0953-8984/17/1/008)
- Cuenca, J. A. et al. 2025. Microwave plasma modelling for thick diamond deposition on III-nitrides. Carbon 241 120349. (10.1016/j.carbon.2025.120349)
- Cuenca, J. A. et al. 2023. Superconducting boron doped nanocrystalline diamond microwave coplanar resonator. Carbon 201 , pp.251-259. (10.1016/j.carbon.2022.08.084)
- Cuenca, J. A. et al. 2020. Dielectric spectroscopy of hydrogen treated hexagonal boron nitride ceramics. ACS Applied Electronic Materials 2 (5), pp.1193-1202. (10.1021/acsaelm.9b00767)
- Cuenca, J. A. et al. 2024. Dielectric properties of diamond using an X-band microwave split dielectric resonator. Carbon 221 118860. (10.1016/j.carbon.2024.118860)
- Cuenca, J. A. et al. 2022. Microwave plasma modelling in clamshell chemical vapour deposition diamond reactors. Diamond and Related Materials 124 108917. (10.1016/j.diamond.2022.108917)
- Cuenca, J. A. et al. 2021. Thermal stress modelling of diamond on GaN/III-Nitride membranes. Carbon 174 , pp.647-661. (10.1016/j.carbon.2020.11.067)
- Cuenca, J. A. et al. 2015. Investigating the broadband microwave absorption of nanodiamond impurities. IEEE Transactions on Microwave Theory and Techniques 63 (12), pp.4110-4118. (10.1109/TMTT.2015.2495156)
- Cuenca, J. A. et al. 2015. Microwave determination of sp2 carbon fraction in nanodiamond powders. Carbon 81 , pp.174-178. (10.1016/j.carbon.2014.09.046)
- Cuenca, J. A. et al. 2018. Microwave permittivity of trace sp2 carbon impurities in sub-micron diamond powders. ACS Omega 3 (2), pp.2183-2192. (10.1021/acsomega.7b02000)
- Frangeskou, A. C. et al., 2018. Pure nanodiamonds for levitated optomechanics in vacuum. New Journal of Physics 20 043016. (10.1088/1367-2630/aab700)
- Gines, L. et al. 2017. Positive zeta potential of nanodiamonds. Nanoscale 9 (34), pp.12549-12555. (10.1039/C7NR03200E)
- Gines, L. et al. 2018. Production of metal-free diamond nanoparticles. ACS Omega 3 (11), pp.16099-16104. (10.1021/acsomega.8b02067)
- Guo, T. et al., 2021. Electrochemistry of nitrogen and boron bi-element incorporated diamond films. Carbon 178 , pp.19-25. (10.1016/j.carbon.2021.02.062)
- Hao, Z. et al., 2024. Synthesis of nano-diamond film on GaN surface with low thermal boundary resistance and high thermal conductivity. Carbon 229 119491. (10.1016/j.carbon.2024.119491)
- Hrabovsky, J. et al., 2023. Laser-patterned boron-doped diamond electrodes with precise control of sp2/sp3 carbon lateral distribution. Applied Surface Science 639 158268. (10.1016/j.apsusc.2023.158268)
- Klemencic, G. M. et al. 2017. Fluctuation spectroscopy as a probe of granular superconducting diamond films. Physical Review Materials 1 (4) 044801. (10.1103/PhysRevMaterials.1.044801)
- Klemencic, G. M. et al. 2019. Observation of a superconducting glass state in granular superconducting diamond. Scientific Reports 9 4578. (10.1038/s41598-019-40306-1)
- Klemencic, G. M. et al. 2017. Superconductivity in planarised nanocrystalline diamond films. Science and Technology of Advanced Materials 18 (1)(10.1080/14686996.2017.1286223)
- Klemencic, G. et al. 2021. Phase slips and metastability in granular boron-doped nanocrystalline diamond microbridges. Carbon 175 , pp.43-49. (10.1016/j.carbon.2020.12.042)
- Kuznetsov, S. et al., 2022. Cerium-doped gadolinium-scandium-aluminum garnet powders: synthesis and use in X-ray luminescent diamond composites. Ceramics International 48 (9), pp.12962-12970. (10.1016/j.ceramint.2022.01.169)
- Leigh, W. et al. 2023. Monitoring of the initial stages of diamond growth on aluminum nitride using in situ spectroscopic ellipsometry. ACS Omega 8 (33), pp.30442-30449. (10.1021/acsomega.3c03609)
- Leigh, W. G. et al. 2023. Mapping the effect of substrate temperature inhomogeneity during microwave plasma-enhanced chemical vapour deposition nanocrystalline diamond growth. Carbon 201 , pp.228-337. (10.1016/j.carbon.2022.09.036)
- Leigh, W. G. et al. 2022. In-situ monitoring of microwave plasma-enhanced chemical vapour deposition diamond growth on silicon using spectroscopic ellipsometry. Carbon 202 , pp.204-212. (10.1016/j.carbon.2022.10.049)
- Li, P. et al., 2007. Correlation between incoherent phase fluctuations and disorder in Y1−xPrxBa2Cu3O7−δ epitaxial films from Nernst effect measurements. Physical Review B: Condensed Matter and Materials Physics 75 (18) 184509. (10.1103/PhysRevB.75.184509)
- Liao, S. et al., 2024. Boron-doped diamond decorated with metal-organic framework-derived compounds for high-voltage aqueous asymmetric supercapacitors. Carbon 230 119651. (10.1016/j.carbon.2024.119651)
- Lindner, S. et al., 2018. Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds. New Journal of Physics 20 (11) 115002. (10.1088/1367-2630/aae93f)
- Lindner, S. et al., 2025. Coupling of single nanodiamonds hosting SiV color centers to plasmonic double bowtie microantennas. Nanotechnology 36 (13) 135001. (10.1088/1361-6528/ada9a4)
- Lynch, S. A. et al. 2021. Rydberg excitons in synthetic cuprous oxide (Cu2O). Physical Review Materials 5 (8) 086402. (10.1103/PhysRevMaterials.5.084602)
- Mandal, S. 2011. A comparative study of angle dependent magnetoresistance in [001] and [110] La2/3Sr1/3MnO3. Journal of Superconductivity and Novel Magnetism 24 (5), pp.1501-1504. (10.1007/s10948-010-0882-x)
- Mandal, S. 2010. Magnetoresistance studies of La2/3Sr1/3MnO3-YBa2Cu3O7-La2/3Sr1/3MnO3 trilayers with ferromagnetic coupling along the nodal direction of YBa2Cu3O7. Physical Review B: Condensed Matter and Materials Physics 81 (1) 014515. (10.1103/PhysRevB.81.014515)
- Mandal, S. 2021. Nucleation of diamond films on heterogeneous substrates: a review. RSC Advances 11 (17), pp.10159-10182. (10.1039/D1RA00397F)
- Mandal, S. et al. 2021. Surface zeta potential and diamond growth on gallium oxide single crystal. Carbon 181 , pp.79-86. (10.1016/j.carbon.2021.04.100)
- Mandal, S. et al. 2023. Zeta potential and nanodiamond self assembly assisted diamond growth on lithium niobate and lithium tantalate single crystal. Carbon 212 118160. (10.1016/j.carbon.2023.118160)
- Mandal, S. et al. 2011. Efficient radio frequency filters for space constrained cryogenic setups. Review of Scientific Instruments 82 (2) 024704. (10.1063/1.3543736)
- Mandal, S. et al. 2011. The Diamond Superconducting Quantum Interference Device. ACS Nano 5 (9), pp.7144-7148. (10.1021/nn2018396)
- Mandal, S. et al. 2019. Superconducting boron doped nanocrystalline diamond on boron nitride ceramics. Nanoscale 11 (21), pp.10266-10272. (10.1039/C9NR02729G)
- Mandal, S. et al. 2006. Growth of [110] La2/3Sr1/3MnO3–YBa2Cu3O7 heterostructures. Applied Physics Letters 89 (18) 182508. (10.1063/1.2374692)
- Mandal, S. et al. 2008. Diverging giant magnetoresistance in ferromagnet-superconductor-ferromagnet trilayers. Physical Review B: Condensed Matter and Materials Physics 78 (9) 094502. (10.1103/PhysRevB.78.094502)
- Mandal, S. and Budhani, R. C. 2008. Magnetization depinning transition, anisotropic magnetoresistance and inplane anisotropy in two polytypes of La2/3Sr1/3MnO3 epitaxial films. Journal of Magnetism and Magnetic Materials 320 (23), pp.3323-3333. (10.1016/j.jmmm.2008.07.002)
- Mandal, S. et al. 2010. Detailed study of superconductivity in nanostructured nanocrystalline boron doped diamond thin films. Physica Status Solidi a Applications and Materials Science 207 (9), pp.2017-2022. (10.1002/pssa.201000008)
- Mandal, S. et al. 2010. Nanostructures made from superconducting boron-doped diamond. Nanotechnology 21 (19) 195303. (10.1088/0957-4484/21/19/195303)
- Mandal, S. , Shaw, G. and Williams, O. A. 2022. Comparison of nanodiamond coated quartz filter with commercial electropositive filters: Zeta potential and dye retention study. Carbon 199 , pp.439-443. (10.1016/j.carbon.2022.08.021)
- Mandal, S. et al. 2018. Redox agent enhanced chemical mechanical polishing of thin film diamond. Carbon 130 , pp.25-30. (10.1016/j.carbon.2017.12.077)
- Mandal, S. et al. 2016. Chemical nucleation of diamond films. ACS Applied Materials and Interfaces 8 (39), pp.26220-26225. (10.1021/acsami.6b08286)
- Mandal, S. et al. 2017. Surface zeta potential and diamond seeding on gallium nitride films. ACS Omega 2 (10), pp.7275-7280. (10.1021/acsomega.7b01069)
- Mandal, S. et al. 2019. Thick, adherent diamond films on AlN with low thermal barrier resistance. ACS Applied Materials and Interfaces 11 (43), pp.40826-40834. (10.1021/acsami.9b13869)
- Manifold, S. A. et al. 2021. Contact resistance of various metallisation schemes to superconducting boron doped diamond between 1.9 and 300 K. Carbon 179 , pp.13-19. (10.1016/j.carbon.2021.02.079)
- March, J. E. et al., 2023. Long spin coherence and relaxation times in nanodiamonds milled from polycrystalline 12C diamond. Physical Review Applied 20 (4) 044045. (10.1103/PhysRevApplied.20.044045)
- Martyanov, A. et al., 2024. Diamond seed dependent luminescence properties of CVD diamond composite. Carbon 222 118975. (10.1016/j.carbon.2024.118975)
- Pascoe, M. J. et al. 2022. Impact of material properties in determining quaternary ammonium compound adsorption and wipe product efficacy against biofilms. Journal of Hospital Infection 126 , pp.37-43. (10.1016/j.jhin.2022.03.013)
- Rafique, T. et al., 2023. Fabrication of hollow Ni1-xZnxFe2O4 spheres (x = 0.0, 0.5, 1.0) as high-performance electromagnetic absorber material. Journal of Magnetism and Magnetic Materials 572 170647. (10.1016/j.jmmm.2023.170647)
- Salman, M. et al. 2019. Quantitative analysis of the interaction between a dc SQUID and an integrated micromechanical doubly clamped cantilever. Journal of Applied Physics 125 (22) 224503. (10.1063/1.5090958)
- Sedov, V. et al., 2025. Diamond deposition on non-diamond microparticles: toward the development of core-shell optical materials. Surfaces and Interfaces 64 106479. (10.1016/j.surfin.2025.106479)
- Sedov, V. et al., 2023. Effect of diamond seeds size on the adhesion of CVD diamond coatings on WC-Co instrument. Surfaces and Interfaces 38 102861. (10.1016/j.surfin.2023.102861)
- Sedov, V. et al., 2024. Narrowband photoluminescence of Tin-Vacancy colour centres in Sn-doped chemical vapour deposition diamond microcrystals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 382 (2265) 20230167. (10.1098/rsta.2023.0167)
- Sedov, V. et al., 2021. CVD synthesis of multi-layered polycrystalline diamond films with reduced roughness using time-limited injections of N2 gas. Diamond and Related Materials 114 108333. (10.1016/j.diamond.2021.108333)
- Sedov, V. et al., 2024. Annealing process and temperature effects on silicon-vacancy and germanium-vacancy centers in CVD grown polycrystalline diamond. Diamond and Related Materials 146 111169. (10.1016/j.diamond.2024.111169)
- Sedov, V. S. et al., 2023. Microporous poly- and monocrystalline diamond films produced from chemical vapor deposited diamond-germanium composites. Nanoscale Advances 5 , pp.1307-1315. (10.1039/D2NA00688J)
- Smith, M. D. et al., 2020. GaN-on-diamond technology platform: bonding-free membrane manufacturing process. AIP Advances 10 (3) 035306. (10.1063/1.5129229)
- Sow, M. et al., 2025. Millikelvin intracellular nanothermometry with nanodiamonds. Advanced Science 12 (45) e11670. (10.1002/advs.202511670)
- Sow, M. et al., 2020. High-throughput nitrogen-vacancy center imaging for nanodiamond photophysical characterization and pH nanosensing. Nanoscale 12 (42), pp.21821-21821. (10.1039/D0NR05931E)
- Szirmai, P. et al., 2013. Observation of conduction electron spin resonance in boron-doped diamond. Physical Review B 87 (19) 195132. (10.1103/PhysRevB.87.195132)
- Szirmai, P. et al., 2012. A detailed analysis of the Raman spectra in superconducting boron doped nanocrystalline diamond. Physica Status Solidi B Basic Research 249 (12), pp.2656-2659. (10.1002/pssb.201200461)
- Thomas, E. et al. 2018. A simple, space constrained NIRIM type reactor for chemical vapour deposition of diamond. AIP Advances 8 035325. (10.1063/1.5009182)
- Thomas, E. et al. 2017. Spectroscopic ellipsometry of nanocrystalline diamond film growth. ACS Omega 2 (10), pp.6715-6727. (10.1021/acsomega.7b00866)
- Thomas, E. L. H. et al. 2014. Silica based polishing of {100} and {111} single crystal diamond. Science and Technology of Advanced Materials 15 (3), pp.1-7. 035013. (10.1088/1468-6996/15/3/035013)
- Thomas, E. L. H. et al. 2014. Chemical mechanical polishing of thin film diamond. Carbon 68 , pp.473-479. (10.1016/j.carbon.2013.11.023)
- Thomas, E. L. H. et al. 2023. Polycrystalline diamond micro‐hotplates. Small 19 (48) 2303976. (10.1002/smll.202303976)
- Titova, N. et al., 2017. Slow electron-phonon cooling in superconducting diamond films. IEEE Transactions on Applied Superconductivity 27 (4) 7501104. (10.1109/TASC.2016.2638199)
- Werrell, J. et al. 2017. Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Science and Technology of Advanced Materials 18 (1), pp.654-663. (10.1080/14686996.2017.1366815.)
- Williams, O. A. , Mandal, S. and Cuenca, J. A. 2024. Heterogeneous integration of diamond. Accounts of Materials Research (10.1021/accountsmr.4c00126)
- Wood, B. D. et al., 2022. Long spin coherence times of nitrogen vacancy centers in milled nanodiamonds. Physical Review B 105 (20) 205401. (10.1103/PhysRevB.105.205401)
- Ye, S. et al., 2025. Rapid planarization of polycrystalline diamond by laser with response surface methodology. Optics and Laser Technology 180 111509. (10.1016/j.optlastec.2024.111509)
- Yu, S. et al., 2018. Battery-like supercapacitors from vertically aligned carbon nanofiber coated diamond: design and demonstrator. Advanced Energy Materials 8 (12) 1702947. (10.1002/aenm.201702947)
- Yu, S. et al., 2017. Battery-like supercapacitors from diamond networks and water-soluble redox electrolytes. Journal of Materials Chemistry A 5 (4), pp.1778-1785. (10.1039/C6TA08607A)
- Yu, S. et al., 2015. Electrochemical supercapacitors from diamond. Journal of Physical Chemistry C 119 (33), pp.18918-18926. (10.1021/acs.jpcc.5b04719)
- Yuan, M. et al., 2024. Generation of GHz surface acoustic waves in (Sc,Al)N thin films grown on free-standing polycrystalline diamond wafers by plasma-assisted molecular beam epitaxy. Journal of Physics D: Applied Physics 57 (49) 495103. (10.1088/1361-6463/ad76ba)
- Zelenský, M. et al., 2023. Chem-mechanical polishing influenced morphology, spectral and electrochemical characteristics of boron doped diamond. Carbon 203 , pp.363-376. (10.1016/j.carbon.2022.11.069)
Book sections
- Mandal, S. 2024. Growth of diamond on high-power electronic material. In: Novel Aspects of Diamond II. Vol. 149, Topics in Applied Physics SPRINGER-VERLAG BERLIN. , pp.145-174. (10.1007/978-3-031-47556-6_6)
- Mandal, S. , Bautze, T. and Bäuerle, C. 2014. Superconductivity in nanostructured boron-doped diamond and its application to device fabrication. In: Williams, O. A. ed. Nanodiamond. Royal Society of Chemistry. , pp.385-410. (10.1039/9781849737616-00385)
- Mandal, S. et al. 2019. Chemical mechanical polishing of nanocrystalline diamond. In: Yang, N. ed. Novel Aspects of Diamond: From Growth to Applications. Vol. 121, Topics in Applied Physics Chem: Springer. , pp.53-89. (10.1007/978-3-030-12469-4_3)
Conferences
- Cuenca, J. et al. 2014. Broadband microwave measurements of nanodiamond. Presented at: Microwave Conference (APMC), 2014 Asia-Pacific Sendai, Japan 4-7 Nov 2014. Microwave Conference (APMC), 2014 Asia-Pacific. , pp.1-3.
- Cuenca, J. A. et al. 2023. Modelling deposition uniformity in microwave plasma cvd diamond over 2" Si wafers. Presented at: 2022 Asia-Pacific Microwave Conference (APMC) Yokohama, Japan 29 November - 02 December 2022. 2022 Asia-Pacific Microwave Conference (APMC). IEEE. (10.23919/APMC55665.2022.9999754)
- Cuenca, J. A. et al. 2023. Microwave conductivity of boron-doped nanodiamond particles. Presented at: 2022 Asia-Pacific Microwave Conference (APMC) Yokohama, Japan 29 November - 02 December 2022. 2022 Asia-Pacific Microwave Conference (APMC). IEEE. (10.23919/APMC55665.2022.9999762)
- Panduranga, P. et al., 2019. Hybrid diamond/silicon suspended integrated photonic platform using SF6 isotropic etching. Presented at: 2nd IEEE British and Irish Conference on Optics and Photonics (BICOP 2019) London, England 11-13 December 2019. 2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP). IEEE. , pp.1-4. (10.1109/BICOP48819.2019.9059586)
Biography
- Research Associate: Cardiff University, Cardiff, UK, Apr' 13 - till date
- Postdoctoral Research Fellow: Institut Neel, Grenoble, France, Nov'08 - Jun'12
- PhD Student: IIT Kanpur, Kanpur, India, Jul'03 - Mar'09 (Submission Sep'08, Defended Mar'09)
Honours and awards
- Diamond and Carbon materials 2018 Early Career Research Award (2018)
Contact Details
Queen's Buildings - North Building, Room N/0.05, 5 The Parade, Newport Road, Cardiff, CF24 3AA