Professor Rebecca Melen
(she/her)
- Available for postgraduate supervision
Teams and roles for Rebecca Melen
Professor of Inorganic Chemistry
Overview
Research in the Melen group focuses on exploiting the reactivity of main group (p-block) elements to design new reagents and catalysts for sustainable chemical synthesis. Traditionally associated with transition metals, catalytic activity is now being uncovered across the p-block, offering cheaper, less toxic, and complementary alternatives.
A major focus has been the development of borane catalysts as main group replacements for precious metals in carbene transfer reactions, providing new pathways in diazo chemistry (Angew. Chem. Int. Ed. 2020; Chem 2020). The group has also pioneered the use of "frustrated radical pairs", demonstrating that single-electron pathways can drive bond formation in contrast to classical two-electron processes (Chem. Rev. 2023; J. Am. Chem. Soc. 2021). These advances have enabled the understanding of p-block reactivity, and highly selective C–H and C–C bond-forming reactions (Chem 2024), broadening the scope of p-block catalysis. Alongside this, we are developing the use of new methodologies in p-block chemistry including flow electrochemistry (Green Chem., 2024) and microwave chemistry (J. Am. Chem. Soc. 2024).This work has been recognised through numerous awards, including the RSC Sir Geoffrey Wilkinson Prize (2025), the Philip Leverhulme Prize (2022), the RSC Harrison Meldola Memorial Prize (2019), and the Clara Immerwahr Award (2016).
Research projects in the Melen group draw together multiple areas of chemistry including organic and inorganic synthesis, main group chemistry, and catalysis, and employ a wide range of physical characterisation methods (multinuclear NMR spectroscopy, EPR spectroscopy, and X-ray diffraction) supported by computational studies. Alongside fundamental discovery, the group collaborates with pharmaceutical, defence, semiconductor and petrochemical industries to develop new p-block materials and methodologies for industrial applications.
Links:
Group website: http://www.melengroup.com
Publication
2025
- Alkahtani, R. et al., 2025. Oxidative rearrangement of alkynes to chiral α-arylalkanoic esters. Chemical Science (10.1039/d5sc07882b)
- Alotaibi, N. et al. 2025. B(C6F5)3 Catalyzed regiodivergent thioetherifications of alkenes via thiiranium intermediates: experimental and computational insights. Chemistry - A European Journal 31 (10) e202404236. (10.1002/chem.202404236)
- Chadwick, H. et al. 2025. Electric-field-assisted organic synthesis: A new frontier in reactivity control. SynOpen (10.1055/a-2744-2506)
- Melen, R. L. and Stephan, D. W. 2025. A reflection on frustrated Lewis pairs 20 years on: the gift that keeps on giving. Chemical Science 16 , pp.17987-17990. (10.1039/d5sc90195b)
- Richardson, S. et al., 2025. Raman study of intermediates formed during the electrochemical N-nitrosation of secondary amines. Chemistry ‐ Methods 5 (3) e202400067. (10.1002/cmtd.202400067)
2024
- Alotaibi, N. et al. 2024. B(C6F5)3-catalysed alkylation of imidazo[1,2-a]pyridines using α,β-unsaturated ketones. European Journal of Organic Chemistry 27 (12) e202400022. (10.1002/ejoc.202400022)
- Boruah, T. et al. 2024. Flow electrosynthesis of phosphinamides and phosphoramidates through P–N coupling †. Green Chemistry 26 (23), pp.11722-11727. (10.1039/d4gc04450a)
- Elsherbeni, S. A. et al. 2024. Accessing highly substituted indoles via B(C6F5)3-catalyzed secondary Alkyl Group Transfer. The Journal of Organic Chemistry 89 (6), pp.4244-4248. (10.1021/acs.joc.4c00025)
- Guerzoni, M. G. et al. 2024. An un-forgotten classic: the nitro-Mannich reaction between nitrones and silyl nitronates catalysed by B(C6F5)3 †. Chemical Science 15 (7)(10.1039/d3sc05672d)
- Pahar, S. et al. 2024. Diverse reactivity of amidinate-supported boron centers with the hypersilyl anion and access to a monomeric secondary boron hydride. Inorganic Chemistry 63 (18), pp.8302–8311. (10.1021/acs.inorgchem.4c00612)
- Pramanik, M. et al. 2024. B(C6F5)3-catalyzed selective C-H chalcogenation of arenes and heteroarenes. Chem 10 (9), pp.2901-2915. (10.1016/j.chempr.2024.05.025)
- Yu, C. et al., 2024. Use of microwave dielectric spectroscopy for the In Actu assessment of frustrated Lewis Pair encounter complexes. Journal of the American Chemical Society 146 (29), pp.19809–19817. (10.1021/jacs.4c02736)
2023
- Alharbi, M. et al. 2023. Synthesis and Lewis acidity of fluorinated triaryl borates. Dalton Transactions 52 (6), pp.1820-1825. (10.1039/D2DT04095F)
- Ali, R. et al. 2023. Flow electrochemistry for the N‐Nitrosation of secondary amines. Chemistry - A European Journal 29 (32) e202300957. (10.1002/chem.202300957)
- Alotaibi, N. et al. 2023. B(3,4,5-F3H2C6)3 Lewis acid-catalysed C3-allylation of indoles. Dalton Transactions 52 (16)(10.1039/d3dt00745f)
- Boruah, T. , Melen, R. L. and Wirth, T. 2023. Isodesmic metathesis chemistry: A novel way to recycle P(V). Chem Catalysis 3 (8) 100731. (10.1016/j.checat.2023.100731)
- Khan, M. N. et al. 2023. Advances in CO2 activation by frustrated Lewis pairs: from stoichiometric to catalytic reactions. Chemical Science 14 (47), pp.13661-13695. (10.1039/d3sc03907b)
- Melen, R. L. and Pramanik, M. 2023. Activation of Diazo Compounds by Fluorinated Triarylborane Catalysts. Synthesis: Journal of Synthetic Organic Chemistry (10.1055/a-2118-3046)
- Pahar, S. et al. 2023. Flourishing reactivities of isocyanates and isothiocyanates using group 13 elements. Cell Reports Physical Science 4 (12) 101745. (10.1016/j.xcrp.2023.101745)
- Pramanik, M. et al. 2023. Recent advances in asymmetric catalysis using p‐block elements. Angewandte Chemie International Edition e202316461. (10.1002/anie.202316461)
- Pramanik, M. and Melen, R. L. 2023. Frustrated radical pairs in selective functionalization of inert aliphatic C-H bonds. Chem 9 (8), pp.2060-2062. (10.1016/j.chempr.2023.07.012)
- Pramanik, M. and Melen, R. L. 2023. Metal-free routes from carbon monoxide to ketenes. Chem 9 (2)(10.1016/j.chempr.2023.01.014)
- Pulis, A. P. et al., 2023. Recent advances in catalysis using organoborane-mediated hydride abstraction. Accounts and Rapid Communications in Chemical Synthesis 34 (10.1055/a-2111-9629)
- Richards, E. and Melen, R. L. 2023. Carbenium catalysis toward β-carbolines. Chem Catalysis 3 (2) 100511. (10.1016/j.checat.2023.100511)
- Sokolnicki, T. et al. 2023. Reactivity of a series of triaryl borates, B(OAr x) 3, in hydroboration catalysis. Dalton Transactions 52 (44), pp.16118-16122. (10.1039/d3dt03333c)
- Stefkova, K. , Carden, J. L. and Melen, R. L. 2023. Frustrated Lewis pairs in catalysis. In: Comprehensive Inorganic Chemistry III. Elsevier Reference Collection Elsevier. , pp.315-377. (10.1016/B978-0-12-823144-9.00011-X)
- Stefkova, K. et al. 2023. B(c6f5)3-catalyzed diastereoselective and divergent reactions of vinyldiazo esters with nitrones: synthesis of highly functionalized diazo compounds. Organic Letters 25 (3), pp.500-505. (10.1021/acs.orglett.2c04198)
- van der Zee, L. J. C. et al., 2023. Insights into single-electron-transfer processes in frustrated lewis pair chemistry and related donor-acceptor systems in main group chemistry. Chemical Reviews 123 (15), pp.9653-9675. (10.1021/acs.chemrev.3c00217)
2022
- Babaahmadi, R. et al., 2022. Understanding the influence of donor-acceptor diazo compounds on the catalyst efficiency of B(C6F5)3 towards carbene formation. Chemistry - A European Journal 28 (11) e202104376. (10.1002/chem.202104376)
- Dasgupta, A. et al. 2022. Chemo- and regio-selective amidation of indoles with isocyanates using borane Lewis acids. Catalysis Science & Technology 12 (19), pp.5982-5990. (10.1039/D2CY01441F)
- Dasgupta, A. et al. 2022. Borane catalyzed selective diazo cross-coupling towards pyrazoles. Advanced Synthesis & Catalysis 364 (4), pp.773-780. (10.1002/adsc.202101312)
- Dasgupta, A. , Richards, E. and Melen, R. L. 2022. Triarylborane catalyzed carbene transfer reactions using diazo precursors. ACS Catalysis 12 , pp.442-452. (10.1021/acscatal.1c04746)
- Dasgupta, A. et al. 2022. Lewis acid assisted Brønsted acid catalysed decarbonylation of Isocyanates: a combined DFT and experimental study. Chemistry - A European Journal 28 (45) e202201422. (10.1002/chem.202201422)
- Guerzoni, M. G. et al. 2022. Enantioselective applications of frustrated Lewis pairs in organic synthesis. Chem Catalysis 2 (11), pp.2865-2875. (10.1016/j.checat.2022.09.007)
- Guerzoni, M. G. , van Ingen, Y. and Melen, R. L. 2022. Recent applications of fluorinated arylborane derivatives. In: Perez, P. J. ed. Advances in Organometallic Chemistry. Vol. 78, Academic Press. , pp.133-187. (10.1016/bs.adomc.2022.03.004)
- Heard, M. J. et al. 2022. Frustrated Lewis pairs in organic synthesis. In: Parkin, G. , Meyer, K. and O'Hare, D. eds. Comprehensive Organometallic Chemistry IV. Vol. 11, Elsevier. , pp.563-605. (10.1016/B978-0-12-820206-7.00041-X)
- Inoue, S. , Melen, R. L. and Harder, S. 2022. Main Group Catalysis. European Journal of Inorganic Chemistry 2022 (26), pp.e202200414. (10.1002/ejic.202200414)
- Kaehler, T. et al. 2022. Borane promoted aryl transfer reaction for the synthesis of α-aryl functionalised β-hydroxy and β-keto esters. Organic and Biomolecular Chemistry 20 (21), pp.4298-4302. (10.1039/D2OB00643J)
- Kustiana, B. A. et al. 2022. B(C 6 F 5 ) 3 ‐Catalyzed E ‐selective isomerization of alkenes. Chemistry - A European Journal e202202454. (10.1002/chem.202202454)
- Kustiana, B. A. , Melen, R. L. and Morrill, L. C. 2022. One-pot synthesis of styrene derivatives from allyl silanes via b(c6f5)3-catalyzed isomerization-Hiyama coupling. Organic Letters 24 (47), pp.8694-8697. (10.1021/acs.orglett.2c03584)
- Kuveke, R. E. H. et al., 2022. An international study evaluating elemental analysis. ACS Central Science 8 (7), pp.855-863. (10.1021/acscentsci.2c00325)
- Walkowiak, J. et al., 2022. Hydroelementation of diynes. Chemical Society Reviews 51 (3), pp.869-994. (10.1039/d1cs00485a)
2021
- Ayan, D. , Richards, E. and Melen, R. 2021. Frustrated radical pairs: insights from EPR spectroscopy. Angewandte Chemie International Edition 60 (1), pp.53-65. (10.1002/anie.202010633)
- Basak, S. et al. 2021. Electron deficient borane-mediated hydride abstraction in amines: stoichiometric and catalytic processes. Chemical Society Reviews 50 (6), pp.3721-3737. (10.1039/D0CS00531B)
- Dasgupta, A. et al. 2021. Tris(pentafluorophenyl)borane-catalyzed carbenium ion generation and autocatalytic pyrazole synthesis-a computational and experimental study. Angewandte Chemie International Edition 60 (46), pp.24395-24399. (10.1002/anie.202109744)
- Dasgupta, A. et al. 2021. Tris(pentafluorphenyl)boran-katalysierte Erzeugung von Carbenium-Ionen und autokatalytische Pyrazol-Synthese – eine theoretische und experimentelle Studie. Angewandte Chemie 133 (46), pp.24599-24604. (10.1002/ange.202109744)
- Dasgupta, A. and Melen, R. L. 2021. Shared success - s-block cooperativity toward triazoles. Chem Catalysis 1 (6), pp.1158-1160. (10.1016/j.checat.2021.10.020)
- Dasgupta, A. et al. 2021. Site-selective Csp3–Csp/Csp3–Csp2 cross-coupling reactions using frustrated Lewis pairs. Journal of the American Chemical Society 143 (11), pp.4451-4464. (10.1021/jacs.1c01622)
- Dasgupta, A. et al. 2021. Reactions promoted by hypervalent iodine reagents and boron Lewis acids. Organic and Biomolecular Chemistry 19 (22), pp.4852-4865. (10.1039/D1OB00740H)
- Gazis, T. A. et al. 2021. Triarylboranes in the activation of azo-containing compounds. In: Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley(10.1002/9781119951438.eibc2780)
- Kaehler, T. and Melen, R. L. 2021. Comparative study of fluorinated triarylalanes and their borane counterparts. Cell Reports Physical Science 2 (10) 100595. (10.1016/j.xcrp.2021.100595)
- Stefkova, K. et al. 2021. Borane catalysed cyclopropenation of arylacetylenes. Chemical Communications 57 (55), pp.6736-6739. (10.1039/D1CC01856F)
2020
- Basak, S. et al. 2020. B(C6F5)3-catalyzed direct C3 alkylation of indoles and oxindoles. ACS Catalysis 10 (8), pp.4835-4840. (10.1021/acscatal.0c01141)
- Carden, J. L. , Dasgupta, A. and Melen, R. L. 2020. Halogenated triarylboranes: synthesis, properties and applications in catalysis. Chemical Society Reviews 49 (6), pp.1706-1725. (10.1039/C9CS00769E)
- Dasgupta, A. et al. 2020. Borane-ctalyzed stereoselective C–H insertion, cyclopropanation, and ring-opening reactions. Chem 6 (9), pp.2364-2381. VOLUME 6, ISSUE 9, P2364-2381, SEPTEMBER 10, 2020. (10.1016/j.chempr.2020.06.035)
- Dasgupta, A. et al. 2020. Triarylborane-catalysed alkenylation reaction of aryl esters with diazo compounds. Angewandte Chemie International Edition 59 (36), pp.15492-15496. (10.1002/anie.202007176)
- Dasgupta, A. et al. 2020. Triarylboran‐katalysierte Alkenylierungen von Arylestern mit Diazoverbindungen. Angewandte Chemie 132 (36), pp.15621-15626. (10.1002/ange.202007176)
- Gazis, T. et al. 2020. 1,3-Carboboration of iodonium ylides. Chemical Communications 56 , pp.3345-3348. (10.1039/C9CC08749D)
- Gazis, T. A. , Willcox, D. and Melen, R. L. 2020. Lewis acidic boranes in frustrated Lewis pair chemistry. In: Frustrated Lewis Pairs. Vol. 2, Molecular Catalysis , pp.209-235. (10.1007/978-3-030-58888-5_6)
- Nori, V. et al. 2020. Triarylborane catalysed n-alkylation of amines with aryl esters. Catalysis Science and Technology 10 , pp.7523-7530. (10.1039/D0CY01339K)
- Ould, D. and Melen, R. 2020. Diazaphospholene and diazaarsolene derived homogeneous catalysis. Chemistry - A European Journal 26 (44), pp.9835-9845. (10.1002/chem.202001734)
- Ould, D. M. C. et al. 2020. Synthesis and reactivity of fluorinated triaryl aluminum complexes. Inorganic Chemistry 59 (20), pp.14891-14898. (10.1021/acs.inorgchem.0c01076)
- Sharma, G. et al. 2020. Computational design of an intramolecular frustrated Lewis pair catalyst for enantioselective hydrogenation. Journal of Theoretical and Computational Chemistry 19 2. (10.1142/S0219633620500091)
- Soltani, Y. et al. 2020. Radical reactivity of frustrated Lewis pairs with diaryl esters. Cell Reports Physical Science 1 (2)(10.1016/j.xcrp.2020.100016)
- Stefkova, K. et al. 2020. Borocations in catalysis. In: Scott, R. A. ed. Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons Ltd.(10.1002/9781119951438.eibc2641)
- Willcox, D. et al. 2020. Asymmetric ketone hydroboration catalyzed by alkali metal complexes derived from BINOL ligands. Dalton Transactions 49 (8), pp.2417-2420. (10.1039/D0DT00232A)
2019
- Carden, J. et al. 2019. Unlocking the catalytic potential of tris(3,4,5-trifluorophenyl)borane with microwave irradiation. Chemical Communications 55 (3), pp.318-321. (10.1039/C8CC09459D)
- Gazis, T. A. et al. 2019. Reactions of hydrazones and hydrazides with Lewis acidic boranes. Dalton Transactions (33), pp.12391-12395. (10.1039/C9DT01359H)
- Melen, R. L. 2019. Frontiers in molecular p-block chemistry: From structure to reactivity. Science 363 (6426), pp.479-484. (10.1126/science.aau5105)
- Ould, D. M. C. et al. 2019. Structure-property-reactivity studies on dithiaphospholes. Dalton Transactions 48 (45), pp.16922-16935. (10.1039/C9DT03577J)
- Santi, M. et al. 2019. Metal-free tandem rearrangement/lactonization: Access to 3,3-disubstituted benzofuran-2-(3H)-ones. Angewandte Chemie International Edition 58 (23), pp.7861-7865. (10.1002/anie.201902985)
- Willcox, D. and Melen, R. L. 2019. Borane-catalyzed heterocycle synthesis. Trends in Chemistry 1 (6), pp.625-626. (10.1016/j.trechm.2019.06.011)
- Willcox, D. and Melen, R. L. 2019. Illuminating Lewis acidity strength. Chem 5 (6), pp.1362-1363. (10.1016/j.chempr.2019.04.001)
- Zhu, D. et al., 2019. Electrophilic boron carboxylate and phosphinate complexes. Dalton Transactions 48 (6), pp.2038-2045. (10.1039/C8DT04818E)
2018
- Hokamp, T. et al. 2018. Alternative strategies with iodine: fast access to previously inaccessible iodine(III) compounds. Angewandte Chemie International Edition 57 (27), pp.8306-8309. (10.1002/anie.201804642)
- Khan, I. et al. 2018. FLP-catalyzed transfer hydrogenation of silyl enol ethers. Angewandte Chemie International Edition 57 (38), pp.12356-12359. (10.1002/anie.201808800)
- Melen, R. and Ould, D. 2018. Arsenic catalysis: Hydroboration of aldehydes using a benzo-fused diaza-benzyloxy-arsole. Chemistry - A European Journal (10.1002/chem.201803508)
- Melen, R. L. 2018. A step closer to metal-free dinitrogen activation: a new chapter in the chemistry of frustrated Lewis pairs. Angewandte Chemie International Edition 57 (4), pp.880-882. (10.1002/anie.201711945)
- Melen, R. L. 2018. Metallfreie Stickstoffaktivierung: Ein neues Kapitel in der Chemie frustrierter Lewis-Paare. Angewandte Chemie 130 (4), pp.890-892. (10.1002/ange.201711945)
- Ruddy, A. J. et al. 2018. Push and pull: the potential role of boron in N2 activation. Dalton Transactions 47 (31), pp.10377-10381. (10.1039/C8DT01168K)
- Schneider, C. et al., 2018. Lewis and Brønsted basicity of phosphine-diazomethane derivatives. Dalton Transactions 47 (36), pp.12742-12749. (10.1039/C8DT02420K)
- Soltani, Y. et al. 2018. Synthesis and photophysical properties of imine borane adducts towards vapochromic materials. Dalton Transactions 47 (36), pp.12656-12660. (10.1039/C8DT03019G)
- Wilkins, L. C. et al. 2018. Divergent elementoboration: 1,3-haloboration versus 1,1-carboboration of propargyl esters. Chemistry - A European Journal 24 (29), pp.7364-7368. (10.1002/chem.201801493)
2017
- Khan, I. et al. 2017. Frustrated Lewis pair (FLP)-catalyzed hydrogenation of aza-Morita–Baylis–Hillman adducts and sequential organo-FLP catalysis. ACS Catalysis 7 (11), pp.7748-7752. (10.1021/acscatal.7b03077)
- Lawson, J. , Wilkins, L. and Melen, R. 2017. Tris(2,4,6-trifluorophenyl)borane: an efficient hydroboration catalyst. Chemistry - a European Journal 23 (46), pp.10997-11000. (10.1002/chem.201703109)
- Lawson, J. R. and Melen, R. 2017. Tris(pentafluorophenyl)borane and beyond: modern advances in borylation chemistry. Inorganic Chemistry 56 (15), pp.8627-8643. (10.1021/acs.inorgchem.6b02911)
- Lawson, J. R. and Melen, R. L. 2017. Recent developments and applications of Lewis acidic boron reagents. In: Fairlamb, I. et al., Organometallic Chemistry. Vol. 41, Royal Society of Chemistry. , pp.1-27. (10.1039/9781782626923-00001)
- Melen, R. , Soltani, Y. and Wilkins, L. 2017. A comparative assessment of modern cyclization methods of substituted alkynyl esters, ethers, and acids. Synlett 29 (01), pp.01-07. (10.1055/s-0036-1591862)
- Ould, D. M. C. et al. 2017. Investigations into the photophysical and electronic properties of pnictoles and Their pnictenium counterparts. Organometallics 37 (5), pp.712-719. (10.1021/acs.organomet.7b00564)
- Soltani, Y. , Wilkins, L. C. and Melen, R. L. 2017. Stöchiometrische und katalytische C-C- und C-H-Bindungsbildung mit B(C6 F5 )3 über kationische Zwischenstufen. Angewandte Chemie 129 (39), pp.12157-12161. (10.1002/ange.201704789)
- Soltani, Y. , Wilkins, L. C. and Melen, R. L. 2017. Stoichiometric and catalytic C-C and C-H bond formation with B(C6F5)3 via cationic intermediates. Angewandte Chemie International Edition 56 (39), pp.11995-11999. (10.1002/anie.201704789)
- Tran, T. T. P. et al., 2017. Supramolecular aggregation in dithia-arsoles: chlorides, cations and N-centred paddlewheels. Crystengcomm 19 (32), pp.4696-4699. (10.1039/C7CE01117B)
- Wilkins, L. C. et al. 2017. Exploring multistep continuous-flow hydrosilylation reactions catalyzed by tris(pentafluorophenyl)borane. Advanced Synthesis and Catalysis 359 (15), pp.2580-2584. (10.1002/adsc.201700349)
- Wilkins, L. C. and Melen, R. L. 2017. Small molecule activation with frustrated Lewis pairs. In: Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley. , pp.1-24. (10.1002/9781119951438.eibc2520)
- Wilkins, L. C. et al. 2017. Amidine functionalized phosphines: tuneable ligands for transition metals. Dalton Transactions 46 (41), pp.14234-14243. (10.1039/C7DT03343E)
- Wilkins, L. C. et al. 2017. Reactions of biologically inspired hydride sources with B(C6F5)3. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2101) 20170009. (10.1098/rsta.2017.0009)
- Yin, Q. et al., 2017. BArF3-catalyzed imine hydroboration with pinacolborane not requiring the assistance of an additional Lewis base. Organometallics 36 (13), pp.2381-2384. (10.1021/acs.organomet.7b00381)
2016
- Lam, J. et al., 2016. Chiral carbene–borane adducts: precursors for borenium catalysts for asymmetric FLP hydrogenations. Dalton Transactions 45 (39), pp.15303-15316. (10.1039/C6DT02202B)
- Lawson, J. et al. 2016. Synthesis and reactivity of N,N’-1,4-diazabutadiene derived borocations. Dalton Transactions 45 (41), pp.16177-16181. (10.1039/C6DT03360A)
- Melen, R. et al. 2016. Structural studies of Perfluoroaryldiselenadiazolyl Radicals: Insights into Dithiadiazolyl Chemistry. Inorganic Chemistry 55 (22), pp.11747-11759. (10.1021/acs.inorgchem.6b01771)
- Melen, R. L. and Gade, L. H. 2016. New chemistry with anionic NNN pincer ligands. In: Topics in Organometallic Chemistry. Vol. 54, Springer. , pp.179-208. (10.1007/3418_2015_114)
- Melen, R. L. and Stephan, D. W. 2016. Main group transformations. Dalton Transactions 45 (14), pp.5879-5879. (10.1039/C6DT90027E)
- Wilkins, L. et al. 2016. Gegensätzliche Reaktivität frustrierter Lewis-Paare mit Selen- und Bor-basierten Lewis-Säuren. Angewandte Chemie 128 (37), pp.11462-11465. (10.1002/ange.201605239)
- Wilkins, L. C. et al. 2016. Contrasting frustrated Lewis pair reactivity with selenium- and boron-based Lewis acids. Angewandte Chemie International Edition 55 (37), pp.11292-11295. (10.1002/anie.201605239)
- Wilkins, L. C. et al. 2016. The propargyl rearrangement to functionalised allyl-boron and borocation compounds. Chemistry - a European Journal 22 (41), pp.14618-14624. (10.1002/chem.201602719)
- Wilkins, L. C. and Melen, R. L. 2016. Enantioselective main group catalysis: modern catalysts for organic transformations. Coordination Chemistry Reviews 324 , pp.123-139. (10.1016/j.ccr.2016.07.011)
2015
- Bähr, A. et al., 2015. σ- versus π-activation of alkynyl benzoates using B(C6F5)3. Molecules 20 (3), pp.4530-4547. (10.3390/molecules20034530)
- Hansmann, M. M. et al., 2015. Cyclopropanation/carboboration reactions of enynes with B(C6F5)3. Journal of the American Chemical Society 137 (49), pp.15469-15477. (10.1021/jacs.5b09311)
- Melen, R. L. 2015. Dehydrocoupling routes to element-element bonds catalysed by main group compounds. Chemical Society Reviews 45 , pp.775-788. (10.1039/c5cs00521c)
- Melen, R. L. and Stephan, D. W. 2015. Cycloaddition reactions of (C6F5)2BN3 with dialkyl acetylenedicarboxylates. Dalton Transactions 44 (11), pp.5045-5048. (10.1039/C5DT00316D)
- Melen, R. L. et al. 2015. Diverging pathways in the activation of allenes with Lewis acids and bases: addition, 1,2-Carboboration, and cyclization. Organometallics 34 (16), pp.4127-4137. (10.1021/acs.organomet.5b00546)
- Wilkins, L. et al. 2015. Lewis acid-base 1,2-addition reactions: synthesis of pyrylium borates from en-ynoate precursors.. Dalton Transactions 45 , pp.5929-5932. (10.1039/C5DT03340C)
- Wilkins, L. et al. 2015. Pathways to functionalized heterocycles: propargyl rearrangement using B(C6F5)3. Organometallics 34 (21), pp.5298-5309. (10.1021/acs.organomet.5b00753)
2014
- Deng, Q. , Melen, R. L. and Gade, L. H. 2014. Anionic chiral tridentate N-donor pincer ligands in asymmetric catalysis. Accounts of Chemical Research 140828133938004. (10.1021/ar5002457)
- Hansmann, M. M. et al., 2014. Activation of alkynes with B(C6F5)3 – boron allylation reagents derived from propargyl esters. Journal of the American Chemical Society 136 (2), pp.777-782. (10.1021/ja4110842)
- Hansmann, M. M. et al., 2014. B(C6F5)3 promoted cyclisation of internal propargyl esters: structural characterisation of 1,3-dioxolium compounds. Chemical Communications 50 (55), pp.7243-7245. (10.1039/c4cc01370k)
- Melen, R. L. et al. 2014. Formation of an unusual bis(diguanidinate) ligand via nucleophilic attack of a guanidinate onto a carbodiimide. Australian Journal of Chemistry 67 (7), pp.1030-1036. (10.1071/CH14170)
- Sauer, D. C. et al., 2014. Chromophores, fluorophores and robust ancillary ligands for molecular catalysts: 1,3-Bis(2-pyridylimino)isoindolines. European Journal of Inorganic Chemistry (28), pp.4715-N4725. (10.1002/ejic.201402595)
2013
- Melen, R. L. 2013. Applications and reactivity trends of homoleptic p-block metal amido reagents. Dalton Transactions 42 (47), pp.16449-16465. (10.1039/c3dt52472h)
- Melen, R. L. 2013. Applications of pentafluorophenyl boron reagents in the synthesis of heterocyclic and aromatic compounds. Chemical Communications 50 (10), pp.1161-1174. (10.1039/c3cc48036d)
- Melen, R. L. 2013. Q&A: The bond shifter [interview]. Nature 502 (7471), pp.S56-S57. (10.1038/502S56a)
- Melen, R. L. et al. 2013. Synthesis and structural studies on thioimides, R2CNSR and sulfur diimides, R2CNSNCR2. Dalton Transactions 42 (11), pp.3888-3895. (10.1039/c2dt32878j)
- Melen, R. L. et al. 2013. Cyclisation versus 1,1-carboboration: reactions of B(C6F5)3 with propargyl amides. Chemistry - a European Journal 19 (36), pp.11928-11938. (10.1002/chem.201301899)
- Melen, R. L. , Lough, A. J. and Stephan, D. W. 2013. Boron azides in Staudinger oxidations and cycloadditions. Dalton Transactions 42 (24), pp.8674-8683. (10.1039/c3dt50791b)
- Melen, R. L. and Rawson, J. M. 2013. Structural variations on an electron precise theme: Rationalising the structures of main group cages. Coordination Chemistry Reviews 257 (7-8), pp.1232-1243. (10.1016/j.ccr.2012.11.016)
- Melen, R. L. and Stephan, D. W. 2013. Cycloaddition reactions between dicyclohexylboron azide and alkynes. Dalton Transactions 42 (14), pp.4795-4798. (10.1039/c3dt00068k)
2012
- Less, R. J. , Melen, R. L. and Wright, D. S. 2012. Catalytic versus stoichiometric dehydrocoupling using main group metals. RSC Advances 2 (6), pp.2191-2199. (10.1039/c2ra00882c)
- Melen, R. L. , Rawson, J. M. and Eisler, D. J. 2012. Structural studies of copper(II) complexes derived from di-2-pyridyl-ketone, (py)2CO. Polyhedron 47 (1), pp.16-23. (10.1016/j.poly.2012.08.009)
- Stokes, F. A. et al., 2012. Structure and Bonding of the Manganese(II) Phosphide Complex (t-BuPH2)(η5-Cp)Mn{μ-(t-BuPH)}2Mn(Cp)(t-BuPH2). Organometallics 31 (1), pp.23-26. (10.1021/om200381p)
2011
- Cowley, H. J. et al., 2011. Catalytic dehydrocoupling of Me2NHBH3 with Al(NMe2)3. Chemical Communications 47 (9), pp.2682-2684. (10.1039/c0cc05294a)
- Hansmann, M. M. , Melen, R. L. and Wright, D. S. 2011. Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Chemical Science 2 (8), pp.1554-1559. (10.1039/c1sc00154j)
- Less, R. J. , Melen, R. L. and Wright, D. S. 2011. Group 2 (Be-Ba) and Group 12 (Zn-Hg). Organometallic Chemistry : Volume 37 37 , pp.100-114. (10.1039/9781849732802-00100)
- Melen, R. L. , McPartlin, M. and Wright, D. S. 2011. An unexpected dependence on the SnII base; reactions of Sn(NR2)2 with aromatic dithiols. Dalton Transactions 40 (8), pp.1649-1651. (10.1039/c0dt01690j)
2010
- Bullock, T. H. , Melen, R. L. and Wright, D. S. 2010. Group 2 (Be-Ba) and Group 12 (Zn-Hg). Organometallic Chemistry : Volume 36 36 , pp.168-181. (10.1039/9781847559616-00168)
- Chan, W. T. et al., 2010. Syntheses and structures of [Me2Si{As(PtBu)3}2] and [(CyP)3SiMe2] (Cy=cyclohexyl, C6H11). Journal of Organometallic Chemistry 695 (7), pp.1069-1073. (10.1016/j.jorganchem.2009.12.011)
- Clark, E. R. , Melen, R. L. and Rawson, J. M. 2010. Oxygen, sulfur, selenium, tellurium and polonium. Annual Reports on the Progress of Chemistry - Section A 106 , pp.119-135. (10.1039/b918371j)
- McPartlin, M. et al., 2010. Formation and rearrangement of SnII phosphanediide cages. Chemistry - a European Journal 16 (29), pp.8854-8860. (10.1002/chem.201000656)
2009
- Haynes, D. A. , Melen, R. L. and Rawson, J. M. 2009. Oxygen, sulfur, selenium, tellurium and polonium. Annual Reports on the Progress of Chemistry - Section A 105 , pp.155-164. (10.1039/b818151a)
- Less, R. J. et al., 2009. Recent perspectives on main group-mediated dehydrocoupling of P–P bonds. Chemical Communications (33), pp.4929-4937. (10.1039/b907823a)
2008
- Bacon, C. E. et al., 2008. Formation of N-bridgehead 1,2,5-thiadiazolium and selenadiazolium rings through an intramolecular cyclisation reaction. Chemical Communications 40 , pp.4924-4926. (10.1039/b809987a)
Articles
- Alharbi, M. et al. 2023. Synthesis and Lewis acidity of fluorinated triaryl borates. Dalton Transactions 52 (6), pp.1820-1825. (10.1039/D2DT04095F)
- Ali, R. et al. 2023. Flow electrochemistry for the N‐Nitrosation of secondary amines. Chemistry - A European Journal 29 (32) e202300957. (10.1002/chem.202300957)
- Alkahtani, R. et al., 2025. Oxidative rearrangement of alkynes to chiral α-arylalkanoic esters. Chemical Science (10.1039/d5sc07882b)
- Alotaibi, N. et al. 2025. B(C6F5)3 Catalyzed regiodivergent thioetherifications of alkenes via thiiranium intermediates: experimental and computational insights. Chemistry - A European Journal 31 (10) e202404236. (10.1002/chem.202404236)
- Alotaibi, N. et al. 2023. B(3,4,5-F3H2C6)3 Lewis acid-catalysed C3-allylation of indoles. Dalton Transactions 52 (16)(10.1039/d3dt00745f)
- Alotaibi, N. et al. 2024. B(C6F5)3-catalysed alkylation of imidazo[1,2-a]pyridines using α,β-unsaturated ketones. European Journal of Organic Chemistry 27 (12) e202400022. (10.1002/ejoc.202400022)
- Ayan, D. , Richards, E. and Melen, R. 2021. Frustrated radical pairs: insights from EPR spectroscopy. Angewandte Chemie International Edition 60 (1), pp.53-65. (10.1002/anie.202010633)
- Babaahmadi, R. et al., 2022. Understanding the influence of donor-acceptor diazo compounds on the catalyst efficiency of B(C6F5)3 towards carbene formation. Chemistry - A European Journal 28 (11) e202104376. (10.1002/chem.202104376)
- Bacon, C. E. et al., 2008. Formation of N-bridgehead 1,2,5-thiadiazolium and selenadiazolium rings through an intramolecular cyclisation reaction. Chemical Communications 40 , pp.4924-4926. (10.1039/b809987a)
- Bähr, A. et al., 2015. σ- versus π-activation of alkynyl benzoates using B(C6F5)3. Molecules 20 (3), pp.4530-4547. (10.3390/molecules20034530)
- Basak, S. et al. 2020. B(C6F5)3-catalyzed direct C3 alkylation of indoles and oxindoles. ACS Catalysis 10 (8), pp.4835-4840. (10.1021/acscatal.0c01141)
- Basak, S. et al. 2021. Electron deficient borane-mediated hydride abstraction in amines: stoichiometric and catalytic processes. Chemical Society Reviews 50 (6), pp.3721-3737. (10.1039/D0CS00531B)
- Boruah, T. et al. 2024. Flow electrosynthesis of phosphinamides and phosphoramidates through P–N coupling †. Green Chemistry 26 (23), pp.11722-11727. (10.1039/d4gc04450a)
- Boruah, T. , Melen, R. L. and Wirth, T. 2023. Isodesmic metathesis chemistry: A novel way to recycle P(V). Chem Catalysis 3 (8) 100731. (10.1016/j.checat.2023.100731)
- Bullock, T. H. , Melen, R. L. and Wright, D. S. 2010. Group 2 (Be-Ba) and Group 12 (Zn-Hg). Organometallic Chemistry : Volume 36 36 , pp.168-181. (10.1039/9781847559616-00168)
- Carden, J. et al. 2019. Unlocking the catalytic potential of tris(3,4,5-trifluorophenyl)borane with microwave irradiation. Chemical Communications 55 (3), pp.318-321. (10.1039/C8CC09459D)
- Carden, J. L. , Dasgupta, A. and Melen, R. L. 2020. Halogenated triarylboranes: synthesis, properties and applications in catalysis. Chemical Society Reviews 49 (6), pp.1706-1725. (10.1039/C9CS00769E)
- Chadwick, H. et al. 2025. Electric-field-assisted organic synthesis: A new frontier in reactivity control. SynOpen (10.1055/a-2744-2506)
- Chan, W. T. et al., 2010. Syntheses and structures of [Me2Si{As(PtBu)3}2] and [(CyP)3SiMe2] (Cy=cyclohexyl, C6H11). Journal of Organometallic Chemistry 695 (7), pp.1069-1073. (10.1016/j.jorganchem.2009.12.011)
- Clark, E. R. , Melen, R. L. and Rawson, J. M. 2010. Oxygen, sulfur, selenium, tellurium and polonium. Annual Reports on the Progress of Chemistry - Section A 106 , pp.119-135. (10.1039/b918371j)
- Cowley, H. J. et al., 2011. Catalytic dehydrocoupling of Me2NHBH3 with Al(NMe2)3. Chemical Communications 47 (9), pp.2682-2684. (10.1039/c0cc05294a)
- Dasgupta, A. et al. 2021. Tris(pentafluorophenyl)borane-catalyzed carbenium ion generation and autocatalytic pyrazole synthesis-a computational and experimental study. Angewandte Chemie International Edition 60 (46), pp.24395-24399. (10.1002/anie.202109744)
- Dasgupta, A. et al. 2021. Tris(pentafluorphenyl)boran-katalysierte Erzeugung von Carbenium-Ionen und autokatalytische Pyrazol-Synthese – eine theoretische und experimentelle Studie. Angewandte Chemie 133 (46), pp.24599-24604. (10.1002/ange.202109744)
- Dasgupta, A. et al. 2020. Borane-ctalyzed stereoselective C–H insertion, cyclopropanation, and ring-opening reactions. Chem 6 (9), pp.2364-2381. VOLUME 6, ISSUE 9, P2364-2381, SEPTEMBER 10, 2020. (10.1016/j.chempr.2020.06.035)
- Dasgupta, A. et al. 2022. Chemo- and regio-selective amidation of indoles with isocyanates using borane Lewis acids. Catalysis Science & Technology 12 (19), pp.5982-5990. (10.1039/D2CY01441F)
- Dasgupta, A. and Melen, R. L. 2021. Shared success - s-block cooperativity toward triazoles. Chem Catalysis 1 (6), pp.1158-1160. (10.1016/j.checat.2021.10.020)
- Dasgupta, A. et al. 2022. Borane catalyzed selective diazo cross-coupling towards pyrazoles. Advanced Synthesis & Catalysis 364 (4), pp.773-780. (10.1002/adsc.202101312)
- Dasgupta, A. , Richards, E. and Melen, R. L. 2022. Triarylborane catalyzed carbene transfer reactions using diazo precursors. ACS Catalysis 12 , pp.442-452. (10.1021/acscatal.1c04746)
- Dasgupta, A. et al. 2021. Site-selective Csp3–Csp/Csp3–Csp2 cross-coupling reactions using frustrated Lewis pairs. Journal of the American Chemical Society 143 (11), pp.4451-4464. (10.1021/jacs.1c01622)
- Dasgupta, A. et al. 2020. Triarylborane-catalysed alkenylation reaction of aryl esters with diazo compounds. Angewandte Chemie International Edition 59 (36), pp.15492-15496. (10.1002/anie.202007176)
- Dasgupta, A. et al. 2020. Triarylboran‐katalysierte Alkenylierungen von Arylestern mit Diazoverbindungen. Angewandte Chemie 132 (36), pp.15621-15626. (10.1002/ange.202007176)
- Dasgupta, A. et al. 2021. Reactions promoted by hypervalent iodine reagents and boron Lewis acids. Organic and Biomolecular Chemistry 19 (22), pp.4852-4865. (10.1039/D1OB00740H)
- Dasgupta, A. et al. 2022. Lewis acid assisted Brønsted acid catalysed decarbonylation of Isocyanates: a combined DFT and experimental study. Chemistry - A European Journal 28 (45) e202201422. (10.1002/chem.202201422)
- Deng, Q. , Melen, R. L. and Gade, L. H. 2014. Anionic chiral tridentate N-donor pincer ligands in asymmetric catalysis. Accounts of Chemical Research 140828133938004. (10.1021/ar5002457)
- Elsherbeni, S. A. et al. 2024. Accessing highly substituted indoles via B(C6F5)3-catalyzed secondary Alkyl Group Transfer. The Journal of Organic Chemistry 89 (6), pp.4244-4248. (10.1021/acs.joc.4c00025)
- Gazis, T. et al. 2020. 1,3-Carboboration of iodonium ylides. Chemical Communications 56 , pp.3345-3348. (10.1039/C9CC08749D)
- Gazis, T. A. et al. 2019. Reactions of hydrazones and hydrazides with Lewis acidic boranes. Dalton Transactions (33), pp.12391-12395. (10.1039/C9DT01359H)
- Guerzoni, M. G. et al. 2022. Enantioselective applications of frustrated Lewis pairs in organic synthesis. Chem Catalysis 2 (11), pp.2865-2875. (10.1016/j.checat.2022.09.007)
- Guerzoni, M. G. et al. 2024. An un-forgotten classic: the nitro-Mannich reaction between nitrones and silyl nitronates catalysed by B(C6F5)3 †. Chemical Science 15 (7)(10.1039/d3sc05672d)
- Hansmann, M. M. et al., 2014. Activation of alkynes with B(C6F5)3 – boron allylation reagents derived from propargyl esters. Journal of the American Chemical Society 136 (2), pp.777-782. (10.1021/ja4110842)
- Hansmann, M. M. et al., 2014. B(C6F5)3 promoted cyclisation of internal propargyl esters: structural characterisation of 1,3-dioxolium compounds. Chemical Communications 50 (55), pp.7243-7245. (10.1039/c4cc01370k)
- Hansmann, M. M. et al., 2015. Cyclopropanation/carboboration reactions of enynes with B(C6F5)3. Journal of the American Chemical Society 137 (49), pp.15469-15477. (10.1021/jacs.5b09311)
- Hansmann, M. M. , Melen, R. L. and Wright, D. S. 2011. Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Chemical Science 2 (8), pp.1554-1559. (10.1039/c1sc00154j)
- Haynes, D. A. , Melen, R. L. and Rawson, J. M. 2009. Oxygen, sulfur, selenium, tellurium and polonium. Annual Reports on the Progress of Chemistry - Section A 105 , pp.155-164. (10.1039/b818151a)
- Hokamp, T. et al. 2018. Alternative strategies with iodine: fast access to previously inaccessible iodine(III) compounds. Angewandte Chemie International Edition 57 (27), pp.8306-8309. (10.1002/anie.201804642)
- Inoue, S. , Melen, R. L. and Harder, S. 2022. Main Group Catalysis. European Journal of Inorganic Chemistry 2022 (26), pp.e202200414. (10.1002/ejic.202200414)
- Kaehler, T. et al. 2022. Borane promoted aryl transfer reaction for the synthesis of α-aryl functionalised β-hydroxy and β-keto esters. Organic and Biomolecular Chemistry 20 (21), pp.4298-4302. (10.1039/D2OB00643J)
- Kaehler, T. and Melen, R. L. 2021. Comparative study of fluorinated triarylalanes and their borane counterparts. Cell Reports Physical Science 2 (10) 100595. (10.1016/j.xcrp.2021.100595)
- Khan, I. et al. 2017. Frustrated Lewis pair (FLP)-catalyzed hydrogenation of aza-Morita–Baylis–Hillman adducts and sequential organo-FLP catalysis. ACS Catalysis 7 (11), pp.7748-7752. (10.1021/acscatal.7b03077)
- Khan, I. et al. 2018. FLP-catalyzed transfer hydrogenation of silyl enol ethers. Angewandte Chemie International Edition 57 (38), pp.12356-12359. (10.1002/anie.201808800)
- Khan, M. N. et al. 2023. Advances in CO2 activation by frustrated Lewis pairs: from stoichiometric to catalytic reactions. Chemical Science 14 (47), pp.13661-13695. (10.1039/d3sc03907b)
- Kustiana, B. A. et al. 2022. B(C 6 F 5 ) 3 ‐Catalyzed E ‐selective isomerization of alkenes. Chemistry - A European Journal e202202454. (10.1002/chem.202202454)
- Kustiana, B. A. , Melen, R. L. and Morrill, L. C. 2022. One-pot synthesis of styrene derivatives from allyl silanes via b(c6f5)3-catalyzed isomerization-Hiyama coupling. Organic Letters 24 (47), pp.8694-8697. (10.1021/acs.orglett.2c03584)
- Kuveke, R. E. H. et al., 2022. An international study evaluating elemental analysis. ACS Central Science 8 (7), pp.855-863. (10.1021/acscentsci.2c00325)
- Lam, J. et al., 2016. Chiral carbene–borane adducts: precursors for borenium catalysts for asymmetric FLP hydrogenations. Dalton Transactions 45 (39), pp.15303-15316. (10.1039/C6DT02202B)
- Lawson, J. et al. 2016. Synthesis and reactivity of N,N’-1,4-diazabutadiene derived borocations. Dalton Transactions 45 (41), pp.16177-16181. (10.1039/C6DT03360A)
- Lawson, J. , Wilkins, L. and Melen, R. 2017. Tris(2,4,6-trifluorophenyl)borane: an efficient hydroboration catalyst. Chemistry - a European Journal 23 (46), pp.10997-11000. (10.1002/chem.201703109)
- Lawson, J. R. and Melen, R. 2017. Tris(pentafluorophenyl)borane and beyond: modern advances in borylation chemistry. Inorganic Chemistry 56 (15), pp.8627-8643. (10.1021/acs.inorgchem.6b02911)
- Less, R. J. et al., 2009. Recent perspectives on main group-mediated dehydrocoupling of P–P bonds. Chemical Communications (33), pp.4929-4937. (10.1039/b907823a)
- Less, R. J. , Melen, R. L. and Wright, D. S. 2012. Catalytic versus stoichiometric dehydrocoupling using main group metals. RSC Advances 2 (6), pp.2191-2199. (10.1039/c2ra00882c)
- Less, R. J. , Melen, R. L. and Wright, D. S. 2011. Group 2 (Be-Ba) and Group 12 (Zn-Hg). Organometallic Chemistry : Volume 37 37 , pp.100-114. (10.1039/9781849732802-00100)
- McPartlin, M. et al., 2010. Formation and rearrangement of SnII phosphanediide cages. Chemistry - a European Journal 16 (29), pp.8854-8860. (10.1002/chem.201000656)
- Melen, R. et al. 2016. Structural studies of Perfluoroaryldiselenadiazolyl Radicals: Insights into Dithiadiazolyl Chemistry. Inorganic Chemistry 55 (22), pp.11747-11759. (10.1021/acs.inorgchem.6b01771)
- Melen, R. and Ould, D. 2018. Arsenic catalysis: Hydroboration of aldehydes using a benzo-fused diaza-benzyloxy-arsole. Chemistry - A European Journal (10.1002/chem.201803508)
- Melen, R. , Soltani, Y. and Wilkins, L. 2017. A comparative assessment of modern cyclization methods of substituted alkynyl esters, ethers, and acids. Synlett 29 (01), pp.01-07. (10.1055/s-0036-1591862)
- Melen, R. L. 2018. A step closer to metal-free dinitrogen activation: a new chapter in the chemistry of frustrated Lewis pairs. Angewandte Chemie International Edition 57 (4), pp.880-882. (10.1002/anie.201711945)
- Melen, R. L. 2013. Applications and reactivity trends of homoleptic p-block metal amido reagents. Dalton Transactions 42 (47), pp.16449-16465. (10.1039/c3dt52472h)
- Melen, R. L. 2013. Applications of pentafluorophenyl boron reagents in the synthesis of heterocyclic and aromatic compounds. Chemical Communications 50 (10), pp.1161-1174. (10.1039/c3cc48036d)
- Melen, R. L. 2015. Dehydrocoupling routes to element-element bonds catalysed by main group compounds. Chemical Society Reviews 45 , pp.775-788. (10.1039/c5cs00521c)
- Melen, R. L. 2019. Frontiers in molecular p-block chemistry: From structure to reactivity. Science 363 (6426), pp.479-484. (10.1126/science.aau5105)
- Melen, R. L. 2018. Metallfreie Stickstoffaktivierung: Ein neues Kapitel in der Chemie frustrierter Lewis-Paare. Angewandte Chemie 130 (4), pp.890-892. (10.1002/ange.201711945)
- Melen, R. L. 2013. Q&A: The bond shifter [interview]. Nature 502 (7471), pp.S56-S57. (10.1038/502S56a)
- Melen, R. L. et al. 2013. Synthesis and structural studies on thioimides, R2CNSR and sulfur diimides, R2CNSNCR2. Dalton Transactions 42 (11), pp.3888-3895. (10.1039/c2dt32878j)
- Melen, R. L. et al. 2013. Cyclisation versus 1,1-carboboration: reactions of B(C6F5)3 with propargyl amides. Chemistry - a European Journal 19 (36), pp.11928-11938. (10.1002/chem.201301899)
- Melen, R. L. , Lough, A. J. and Stephan, D. W. 2013. Boron azides in Staudinger oxidations and cycloadditions. Dalton Transactions 42 (24), pp.8674-8683. (10.1039/c3dt50791b)
- Melen, R. L. , McPartlin, M. and Wright, D. S. 2011. An unexpected dependence on the SnII base; reactions of Sn(NR2)2 with aromatic dithiols. Dalton Transactions 40 (8), pp.1649-1651. (10.1039/c0dt01690j)
- Melen, R. L. and Pramanik, M. 2023. Activation of Diazo Compounds by Fluorinated Triarylborane Catalysts. Synthesis: Journal of Synthetic Organic Chemistry (10.1055/a-2118-3046)
- Melen, R. L. and Rawson, J. M. 2013. Structural variations on an electron precise theme: Rationalising the structures of main group cages. Coordination Chemistry Reviews 257 (7-8), pp.1232-1243. (10.1016/j.ccr.2012.11.016)
- Melen, R. L. , Rawson, J. M. and Eisler, D. J. 2012. Structural studies of copper(II) complexes derived from di-2-pyridyl-ketone, (py)2CO. Polyhedron 47 (1), pp.16-23. (10.1016/j.poly.2012.08.009)
- Melen, R. L. et al. 2014. Formation of an unusual bis(diguanidinate) ligand via nucleophilic attack of a guanidinate onto a carbodiimide. Australian Journal of Chemistry 67 (7), pp.1030-1036. (10.1071/CH14170)
- Melen, R. L. and Stephan, D. W. 2025. A reflection on frustrated Lewis pairs 20 years on: the gift that keeps on giving. Chemical Science 16 , pp.17987-17990. (10.1039/d5sc90195b)
- Melen, R. L. and Stephan, D. W. 2013. Cycloaddition reactions between dicyclohexylboron azide and alkynes. Dalton Transactions 42 (14), pp.4795-4798. (10.1039/c3dt00068k)
- Melen, R. L. and Stephan, D. W. 2015. Cycloaddition reactions of (C6F5)2BN3 with dialkyl acetylenedicarboxylates. Dalton Transactions 44 (11), pp.5045-5048. (10.1039/C5DT00316D)
- Melen, R. L. and Stephan, D. W. 2016. Main group transformations. Dalton Transactions 45 (14), pp.5879-5879. (10.1039/C6DT90027E)
- Melen, R. L. et al. 2015. Diverging pathways in the activation of allenes with Lewis acids and bases: addition, 1,2-Carboboration, and cyclization. Organometallics 34 (16), pp.4127-4137. (10.1021/acs.organomet.5b00546)
- Nori, V. et al. 2020. Triarylborane catalysed n-alkylation of amines with aryl esters. Catalysis Science and Technology 10 , pp.7523-7530. (10.1039/D0CY01339K)
- Ould, D. and Melen, R. 2020. Diazaphospholene and diazaarsolene derived homogeneous catalysis. Chemistry - A European Journal 26 (44), pp.9835-9845. (10.1002/chem.202001734)
- Ould, D. M. C. et al. 2020. Synthesis and reactivity of fluorinated triaryl aluminum complexes. Inorganic Chemistry 59 (20), pp.14891-14898. (10.1021/acs.inorgchem.0c01076)
- Ould, D. M. C. et al. 2017. Investigations into the photophysical and electronic properties of pnictoles and Their pnictenium counterparts. Organometallics 37 (5), pp.712-719. (10.1021/acs.organomet.7b00564)
- Ould, D. M. C. et al. 2019. Structure-property-reactivity studies on dithiaphospholes. Dalton Transactions 48 (45), pp.16922-16935. (10.1039/C9DT03577J)
- Pahar, S. et al. 2023. Flourishing reactivities of isocyanates and isothiocyanates using group 13 elements. Cell Reports Physical Science 4 (12) 101745. (10.1016/j.xcrp.2023.101745)
- Pahar, S. et al. 2024. Diverse reactivity of amidinate-supported boron centers with the hypersilyl anion and access to a monomeric secondary boron hydride. Inorganic Chemistry 63 (18), pp.8302–8311. (10.1021/acs.inorgchem.4c00612)
- Pramanik, M. et al. 2024. B(C6F5)3-catalyzed selective C-H chalcogenation of arenes and heteroarenes. Chem 10 (9), pp.2901-2915. (10.1016/j.chempr.2024.05.025)
- Pramanik, M. et al. 2023. Recent advances in asymmetric catalysis using p‐block elements. Angewandte Chemie International Edition e202316461. (10.1002/anie.202316461)
- Pramanik, M. and Melen, R. L. 2023. Frustrated radical pairs in selective functionalization of inert aliphatic C-H bonds. Chem 9 (8), pp.2060-2062. (10.1016/j.chempr.2023.07.012)
- Pramanik, M. and Melen, R. L. 2023. Metal-free routes from carbon monoxide to ketenes. Chem 9 (2)(10.1016/j.chempr.2023.01.014)
- Pulis, A. P. et al., 2023. Recent advances in catalysis using organoborane-mediated hydride abstraction. Accounts and Rapid Communications in Chemical Synthesis 34 (10.1055/a-2111-9629)
- Richards, E. and Melen, R. L. 2023. Carbenium catalysis toward β-carbolines. Chem Catalysis 3 (2) 100511. (10.1016/j.checat.2023.100511)
- Richardson, S. et al., 2025. Raman study of intermediates formed during the electrochemical N-nitrosation of secondary amines. Chemistry ‐ Methods 5 (3) e202400067. (10.1002/cmtd.202400067)
- Ruddy, A. J. et al. 2018. Push and pull: the potential role of boron in N2 activation. Dalton Transactions 47 (31), pp.10377-10381. (10.1039/C8DT01168K)
- Santi, M. et al. 2019. Metal-free tandem rearrangement/lactonization: Access to 3,3-disubstituted benzofuran-2-(3H)-ones. Angewandte Chemie International Edition 58 (23), pp.7861-7865. (10.1002/anie.201902985)
- Sauer, D. C. et al., 2014. Chromophores, fluorophores and robust ancillary ligands for molecular catalysts: 1,3-Bis(2-pyridylimino)isoindolines. European Journal of Inorganic Chemistry (28), pp.4715-N4725. (10.1002/ejic.201402595)
- Schneider, C. et al., 2018. Lewis and Brønsted basicity of phosphine-diazomethane derivatives. Dalton Transactions 47 (36), pp.12742-12749. (10.1039/C8DT02420K)
- Sharma, G. et al. 2020. Computational design of an intramolecular frustrated Lewis pair catalyst for enantioselective hydrogenation. Journal of Theoretical and Computational Chemistry 19 2. (10.1142/S0219633620500091)
- Sokolnicki, T. et al. 2023. Reactivity of a series of triaryl borates, B(OAr x) 3, in hydroboration catalysis. Dalton Transactions 52 (44), pp.16118-16122. (10.1039/d3dt03333c)
- Soltani, Y. et al. 2018. Synthesis and photophysical properties of imine borane adducts towards vapochromic materials. Dalton Transactions 47 (36), pp.12656-12660. (10.1039/C8DT03019G)
- Soltani, Y. et al. 2020. Radical reactivity of frustrated Lewis pairs with diaryl esters. Cell Reports Physical Science 1 (2)(10.1016/j.xcrp.2020.100016)
- Soltani, Y. , Wilkins, L. C. and Melen, R. L. 2017. Stöchiometrische und katalytische C-C- und C-H-Bindungsbildung mit B(C6 F5 )3 über kationische Zwischenstufen. Angewandte Chemie 129 (39), pp.12157-12161. (10.1002/ange.201704789)
- Soltani, Y. , Wilkins, L. C. and Melen, R. L. 2017. Stoichiometric and catalytic C-C and C-H bond formation with B(C6F5)3 via cationic intermediates. Angewandte Chemie International Edition 56 (39), pp.11995-11999. (10.1002/anie.201704789)
- Stefkova, K. et al. 2023. B(c6f5)3-catalyzed diastereoselective and divergent reactions of vinyldiazo esters with nitrones: synthesis of highly functionalized diazo compounds. Organic Letters 25 (3), pp.500-505. (10.1021/acs.orglett.2c04198)
- Stefkova, K. et al. 2021. Borane catalysed cyclopropenation of arylacetylenes. Chemical Communications 57 (55), pp.6736-6739. (10.1039/D1CC01856F)
- Stokes, F. A. et al., 2012. Structure and Bonding of the Manganese(II) Phosphide Complex (t-BuPH2)(η5-Cp)Mn{μ-(t-BuPH)}2Mn(Cp)(t-BuPH2). Organometallics 31 (1), pp.23-26. (10.1021/om200381p)
- Tran, T. T. P. et al., 2017. Supramolecular aggregation in dithia-arsoles: chlorides, cations and N-centred paddlewheels. Crystengcomm 19 (32), pp.4696-4699. (10.1039/C7CE01117B)
- van der Zee, L. J. C. et al., 2023. Insights into single-electron-transfer processes in frustrated lewis pair chemistry and related donor-acceptor systems in main group chemistry. Chemical Reviews 123 (15), pp.9653-9675. (10.1021/acs.chemrev.3c00217)
- Walkowiak, J. et al., 2022. Hydroelementation of diynes. Chemical Society Reviews 51 (3), pp.869-994. (10.1039/d1cs00485a)
- Wilkins, L. et al. 2016. Gegensätzliche Reaktivität frustrierter Lewis-Paare mit Selen- und Bor-basierten Lewis-Säuren. Angewandte Chemie 128 (37), pp.11462-11465. (10.1002/ange.201605239)
- Wilkins, L. et al. 2015. Lewis acid-base 1,2-addition reactions: synthesis of pyrylium borates from en-ynoate precursors.. Dalton Transactions 45 , pp.5929-5932. (10.1039/C5DT03340C)
- Wilkins, L. et al. 2015. Pathways to functionalized heterocycles: propargyl rearrangement using B(C6F5)3. Organometallics 34 (21), pp.5298-5309. (10.1021/acs.organomet.5b00753)
- Wilkins, L. C. et al. 2016. Contrasting frustrated Lewis pair reactivity with selenium- and boron-based Lewis acids. Angewandte Chemie International Edition 55 (37), pp.11292-11295. (10.1002/anie.201605239)
- Wilkins, L. C. et al. 2017. Exploring multistep continuous-flow hydrosilylation reactions catalyzed by tris(pentafluorophenyl)borane. Advanced Synthesis and Catalysis 359 (15), pp.2580-2584. (10.1002/adsc.201700349)
- Wilkins, L. C. et al. 2016. The propargyl rearrangement to functionalised allyl-boron and borocation compounds. Chemistry - a European Journal 22 (41), pp.14618-14624. (10.1002/chem.201602719)
- Wilkins, L. C. and Melen, R. L. 2016. Enantioselective main group catalysis: modern catalysts for organic transformations. Coordination Chemistry Reviews 324 , pp.123-139. (10.1016/j.ccr.2016.07.011)
- Wilkins, L. C. et al. 2017. Amidine functionalized phosphines: tuneable ligands for transition metals. Dalton Transactions 46 (41), pp.14234-14243. (10.1039/C7DT03343E)
- Wilkins, L. C. et al. 2017. Reactions of biologically inspired hydride sources with B(C6F5)3. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2101) 20170009. (10.1098/rsta.2017.0009)
- Wilkins, L. C. et al. 2018. Divergent elementoboration: 1,3-haloboration versus 1,1-carboboration of propargyl esters. Chemistry - A European Journal 24 (29), pp.7364-7368. (10.1002/chem.201801493)
- Willcox, D. et al. 2020. Asymmetric ketone hydroboration catalyzed by alkali metal complexes derived from BINOL ligands. Dalton Transactions 49 (8), pp.2417-2420. (10.1039/D0DT00232A)
- Willcox, D. and Melen, R. L. 2019. Borane-catalyzed heterocycle synthesis. Trends in Chemistry 1 (6), pp.625-626. (10.1016/j.trechm.2019.06.011)
- Willcox, D. and Melen, R. L. 2019. Illuminating Lewis acidity strength. Chem 5 (6), pp.1362-1363. (10.1016/j.chempr.2019.04.001)
- Yin, Q. et al., 2017. BArF3-catalyzed imine hydroboration with pinacolborane not requiring the assistance of an additional Lewis base. Organometallics 36 (13), pp.2381-2384. (10.1021/acs.organomet.7b00381)
- Yu, C. et al., 2024. Use of microwave dielectric spectroscopy for the In Actu assessment of frustrated Lewis Pair encounter complexes. Journal of the American Chemical Society 146 (29), pp.19809–19817. (10.1021/jacs.4c02736)
- Zhu, D. et al., 2019. Electrophilic boron carboxylate and phosphinate complexes. Dalton Transactions 48 (6), pp.2038-2045. (10.1039/C8DT04818E)
Book sections
- Gazis, T. A. et al. 2021. Triarylboranes in the activation of azo-containing compounds. In: Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley(10.1002/9781119951438.eibc2780)
- Gazis, T. A. , Willcox, D. and Melen, R. L. 2020. Lewis acidic boranes in frustrated Lewis pair chemistry. In: Frustrated Lewis Pairs. Vol. 2, Molecular Catalysis , pp.209-235. (10.1007/978-3-030-58888-5_6)
- Guerzoni, M. G. , van Ingen, Y. and Melen, R. L. 2022. Recent applications of fluorinated arylborane derivatives. In: Perez, P. J. ed. Advances in Organometallic Chemistry. Vol. 78, Academic Press. , pp.133-187. (10.1016/bs.adomc.2022.03.004)
- Heard, M. J. et al. 2022. Frustrated Lewis pairs in organic synthesis. In: Parkin, G. , Meyer, K. and O'Hare, D. eds. Comprehensive Organometallic Chemistry IV. Vol. 11, Elsevier. , pp.563-605. (10.1016/B978-0-12-820206-7.00041-X)
- Lawson, J. R. and Melen, R. L. 2017. Recent developments and applications of Lewis acidic boron reagents. In: Fairlamb, I. et al., Organometallic Chemistry. Vol. 41, Royal Society of Chemistry. , pp.1-27. (10.1039/9781782626923-00001)
- Melen, R. L. and Gade, L. H. 2016. New chemistry with anionic NNN pincer ligands. In: Topics in Organometallic Chemistry. Vol. 54, Springer. , pp.179-208. (10.1007/3418_2015_114)
- Stefkova, K. , Carden, J. L. and Melen, R. L. 2023. Frustrated Lewis pairs in catalysis. In: Comprehensive Inorganic Chemistry III. Elsevier Reference Collection Elsevier. , pp.315-377. (10.1016/B978-0-12-823144-9.00011-X)
- Stefkova, K. et al. 2020. Borocations in catalysis. In: Scott, R. A. ed. Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons Ltd.(10.1002/9781119951438.eibc2641)
- Wilkins, L. C. and Melen, R. L. 2017. Small molecule activation with frustrated Lewis pairs. In: Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley. , pp.1-24. (10.1002/9781119951438.eibc2520)
Research
Reimagining p-Block Chemistry for Synthesis and Industrial Innovation
Catalyst Design | Metal-Free Catalysis | Reaction Mechanisms | Compound Characterisation | Industrial Applications
Catalysis underpins over 85% of modern chemical manufacturing, from pharmaceuticals and agrochemicals to fuels and materials. However, the dominance of rare and toxic transition metals as catalysts raises major challenges: high costs, environmental damage from mining and refining, and issues of toxicity and waste in end-use applications. My research programme tackles these challenges by pioneering sustainable alternatives based on p-block (main group) elements, an underexplored part of the periodic table. Through careful tuning of reactivity and mechanism, we develop catalysts and reagents that are not only metal-free but also deliver complementary reactivity to traditional transition-metal systems.
Research projects in the Melen group draw together organic and inorganic synthesis, catalysis, main group chemistry, and mechanistic studies, supported by a wide range of characterisation techniques (multinuclear NMR, X-ray diffraction) and computational modelling. This multidisciplinary approach has led to breakthroughs in sustainable catalysis, new mechanistic paradigms, and translation into industrial technologies. Below are several areas of research actively ongoing within our group.
Metal-Free Catalysts That Replace Precious Metals
A central strand of our research is the design of catalysts from p-block elements such as boron, aluminium, and phosphorus. Using ligand design to control steric and electronic properties, we have developed catalysts capable of mediating hydrogenation, hydroboration, C–C bond formation, and carbene transfer.
In a defining contribution, we showed that boron Lewis acids can catalyse carbene transfer from diazo compounds, a role previously dominated by rhodium and other precious metals. These studies led to new, metal-free pathways for generating reactive carbenes and forming complex carbon–carbon frameworks under mild conditions (Chem 2020, 6, 2364; Angew. Chem. Int. Ed. 2020, 59, 15492). More recently, we reported boron-catalysed C–S bond formation, enabling access to sulfur-containing motifs that are central to pharmaceuticals and agrochemicals (Chem 2024, 10, 2901). These advances highlight the power of main group elements to both mimic and transcend traditional transition-metal reactivity.
Challenging Mechanistic Assumptions: Single-Electron Reactivity
Historically, main group reactivity has been dominated by two-electron processes. Our work has challenged this paradigm by demonstrating that single-electron transfer (SET) pathways can provide alternative, lower-energy routes to bond formation.
In particular, we have pioneered the use of frustrated radical pairs (derived from frustrated Lewis pairs) to enable radical reactivity in main group chemistry. Through experimental studies combined with spectroscopy and computation, we uncovered SET pathways in bond-forming reactions that had previously been assumed to proceed via classical two-electron mechanisms (J. Am. Chem. Soc. 2021, 143, 4451; Chem. Rev. 2023, 123, 9653). This has opened new carbon–carbon bond-forming methodologies and provided a blueprint for expanding the radical chemistry of the p-block.
Improving Scientific Standards: Rethinking Elemental Analysis
Rigorous characterisation of new compounds is essential. In one of our most widely discussed studies, we were involved in an international evaluation of elemental analysis standards, demonstrating that the long-standing requirement for ±0.4% agreement with theoretical values was statistically unsound. This work, published in ACS Cent. Sci. (2022, 8, 855), sparked broad debate, was highlighted in Chemistry World, ACS Cent. Sci., and Science, and directly influenced new publisher policies. This project illustrates how improving analytical rigour can enhance data integrity and reproducibility across chemistry.
Industrial Applications and Broader Impact
Alongside fundamental discoveries, our research has significant industrial relevance, with projects spanning pharmaceuticals, energy, and materials science. By collaborating with global companies and research organisations, we translate new concepts in p-block chemistry into practical technologies from sustainable synthesis to advanced materials. These partnerships demonstrate how fundamental research into main group elements can have a tangible impact on green energy, healthcare, and next-generation materials.
Teaching
CH5202 Structure, bonding and reactivity in compounds of the p and d-block elements
CH3404 Asymmetric Synthesis of Pharmaceuticals and Natural Products
Biography
Professional Appointments
2021–Current Professor in Inorganic Chemistry, Cardiff University, UK.
2019–2021 Reader in Inorganic Chemistry, Cardiff University, UK.
2017–2019 Senior Lecturer in Inorganic Chemistry, Cardiff University, UK.
2015–2016 Visiting Professorship with Prof. Dr. Martin Oestreich as part of the Clara Immerwahr Award, Technische Universität Berlin, Germany.
2014–2017 Lecturer in Inorganic Chemistry, Cardiff University, UK.
2013–2014 Alexander von Humboldt Fellowship with Prof. Dr. Lutz H. Gade, Ruprecht-Karls-Universität Heidelberg, Germany.
2012–2013 Postdoctoral Fellowship with Prof. Douglas W. Stephan, University of Toronto, Canada.
Education and Training
2012 PhD “Catalytic Versus Stoichiometric Dehydrocoupling Using Main Group Metals”, Department of Chemistry, University of Cambridge, UK. Prof. Dominic S. Wright
2011 MA, Department of Chemistry, University of Cambridge, UK.
2008 MSc, Department of Chemistry, University of Cambridge, UK.
2008 BA, Department of Chemistry, University of Cambridge, UK.
Honours and awards
2025 RSC Sir Geoffrey Wilkinson Prize
2022 Philip Leverhulme Prize
2022 Elected Fellow of the Learned Society of Wales
2019 Bürgenstock Conference Fellowship
2019 RSC Harrison Meldola Memorial Prize
2019 Learned Society of Wales, Dillwyn Medal
2018 Thieme Journal Award Winner.
2016 Fellow Higher Education Academy.
2016 Clara Immerwahr award
2013 RSC Dalton Young Researcher Award
Professional memberships
Learned Society of Wales
Speaking engagements
Total 168 presentations at Universities and Conferences. This includes invited departmental seminars in the UK, USA, Australia, Germany, Canada, France, India, Japan, Netherlands, Spain, and Switzerland, as well as invited keynote/plenary talks at national and international conferences.
Committees and reviewing
Organisation of Conferences:
2025 Co-chair of the Global Virtual Symposia ACS Fall 2025 Symposium “Hydroelementation Reactions”.
2025 Canada-UK Conference on Inorganic Chemistry, Quebec City, Canada (organising committee).
2025 Cardiff Chemistry Conference, Cardiff, UK (organising committee).
2018 MICRA, Cardiff, UK (organising committee).
2018 Dalton Conference, Coventry, UK (organising committee).
2017 SCI Hot Topics in Organic Synthesis, SCI Headquarters, London, UK (organising committee).
2017 Main Group Interest Group Meeting, Burlington House, London, UK (organising committee).
2017 RSC Sir Geoffrey Wilkinson Dalton Poster Symposium (chair organising committee).
2017 RSC Twitter Poster Conference (inorganic subject chair).
2016 Dalton Conference, Coventry, UK (poster session).
2015–2023 Cardiff Chemistry Conference, Cardiff, UK (organising committee).
Academic Responsibilities:
027–2029 Research Excellence Framework Panel member UOA 8.
2023–Current Royal Society URF Research Appointment Panel A(ii).
2023–Current External Examiner Undergraduate Studies, University of Lincoln.
2023–2024 Dalton Division Awards Subcommittee RSC.
2023–Current Associate Editor of EES Catalysis (RSC).
2021–2023 External Examiner Undergraduate Studies, Trinity College Dublin.
2022–Current ACS Catalysis Editorial Advisory Board (ACS).
2022–Current External reviewer of promotion applications (×4).
2021–Current Co-Guest Editor for EurJIC and ChemCatChem special issue.
2020–Current AsianJOC, ChemEurJ, Chem, Chem Catalysis, and Organometallics Advisory Board.
2021–2025 EPSRC responsive mode/interview Panel Member (×5).
2019–Current Editor of EIBC (Wiley).
2016–2019 SCI Young Chemists’ Panel Member.
2016–Current Member of the EPSRC Associate Peer Review College.
2016–2017 Dalton Division Travel Grants Subcommittee RSC.
2016–2022 Treasurer of the Main Group Interest Group of the RSC.
2016 Guest Editor for a Special Issue of Dalton Transactions.
2016–2019 Associate Editor of EIBC (Wiley).
2015–2017 Dalton Division Awards Subcommittee RSC.
2015–2021 Dalton Division Council member of the RSC.
2015–2019 Treasurer of the South East Wales local section of the RSC.
2014–Current Peer Review of national and international research grants.
2014–Current Peer review of manuscripts for Science, Elsevier, RSC, ACS and Wiley VCH journals/books.
2014–Current Internal/External PhD examiner: UK (×9), Overseas (×6). External MRes examiner: UK (×1).
Institutional responsibilities:
2024–Current Deputy Director of Research.
2024–Current EPSRC Expert Group.
2021–Current Research Committee.
2014–Current Organising committee for the annual Cardiff Chemistry Conference.
Supervisions
Current supervision
Nusaybah Alotaibi
Tribani Boruah
Taylor Wilde
Ho Pang Mak
Contact Details
+44 29208 79667
Translational Research Hub, Room 0.54, Maindy Road, Cathays, Cardiff, CF24 4HQ
Research themes
Specialisms
- Inorganic chemistry
- Organic chemistry
- Homogeneous catalysis