Dr Valerie Meniel
Teams and roles for Valerie Meniel
Technical Specialist
Overview
I always had a strong interest in understanding the mechanisms that drives all the different stages of cancer. I have studied the role of the gene APC (adenomatous polyposis Coli) in various mice model of cancer (mammary, liver and colorectal). I am interested in pathway interactions and synergy with the focus of the Wnt pathway and Pik3pathway interactions. I also have used 3D organoid culture to dissect mechanisms and identify potential therapeutic intervention.
Teaching and engagement
I have supervised Nuffield A-level, CUROP and 3rd undergraduates and taken part in various Institute lab tours and cancer public engagement.
Publication
2024
- Badder, L. et al. 2024. The αvβ6 integrin specific virotherapy, Ad5NULL-A20.FCU1, selectively delivers 2 potent “in-tumour” chemotherapy to Pancreatic Ductal Adenocarcinoma. British Journal of Cancer 131 , pp.1694-1706. (10.1038/s41416-024-02869-3)
- Turnham, D. J. et al. 2024. Development and characterisation of a new patient-derived Xenograft model of AR-negative metastatic asctration-resistant prostate cancer. Cells 13 (8) 673. (10.3390/cells13080673)
2022
- Bates, E. A. et al. 2022. Development of a low seroprevalence, αvβ6 integrin selective virotherapy based on human adenovirus type 10. Molecular Therapy - Oncolytics 25 , pp.43-56. (10.1016/j.omto.2022.03.007)
- Koushyar, S. et al. 2022. Exploring the Wnt pathway as a therapeutic target for prostate cancer. Biomolecules 12 (2) 309. (10.3390/biom12020309)
2019
- Flanagan, D. J. et al., 2019. Frizzled-7 is required for Wnt signaling in gastric tumours with and without Apc mutations. Cancer Research 79 (5), pp.970-981. (10.1158/0008-5472.CAN-18-2095)
2018
- Burke, Z. D. et al., 2018. Spatiotemporal regulation of liver development by the Wnt/β- catenin pathway. Scientific Reports 8 2735. (10.1038/s41598-018-20888-y)
- Pearson, H. B. et al. 2018. Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with Pten loss to accelerate progression and castration-resistant growth. Cancer Discovery 8 (6), pp.764-779. (10.1158/2159-8290.CD-17-0867)
2017
- Berenjeno, I. M. et al., 2017. Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nature Communications 8 (1) 1773. (10.1038/s41467-017-02002-4)
- Jefferies, M. T. et al., 2017. PTEN loss and activation of K-RAS and β-catenin cooperate to accelerate prostate tumourigenesis. Journal of Pathology 243 (4), pp.442-456. (10.1002/path.4977)
- Soady, K. J. et al., 2017. Receptor protein tyrosine phosphatase PTPRB negatively regulates FGF2-dependent branching morphogenesis. Development 144 (20), pp.3777-3788. (10.1242/dev.149120)
2016
- Naschberger, E. et al., 2016. Matricellular protein SPARCL1 regulates tumor microenvironment-dependent endothelial cell heterogeneity in colorectal carcinoma. The Journal of Clinical Investigation 126 (11), pp.4187-4204. (10.1172/JCI78260)
2015
- Huels, D. J. et al., 2015. E-cadherin can limit the transforming properties of activating β‐catenin mutations. EMBO Journal 34 (18), pp.2321-2333. (10.15252/embj.201591739)
- Meniel, V. et al. 2015. Apc and p53 interaction in DNA damage and genomic instability in hepatocytes. Oncogene 34 , pp.4118-4129. (10.1038/onc.2014.342)
- Reed, K. R. et al. 2015. Correction for Reed et al., B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America 112 (10), pp.E1168. (10.1073/pnas.1502294112)
2014
- Davies, E. J. et al. 2014. PTEN loss and KRAS activation leads to the formation of serrated adenomas and metastatic carcinoma in the mouse intestine. The Journal of Pathology 233 (1), pp.27-38. (10.1002/path.4312)
2013
- Hammoudi, A. et al., 2013. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC). Biochemical and Biophysical Research Communications 440 (3), pp.364-370. (10.1016/j.bbrc.2013.08.076)
- Meniel, V. et al. 2013. Cited1 deficiency suppresses intestinal tumorigenesis. PLoS Genetics 9 (8) e1003638. (10.1371/journal.pgen.1003638)
2012
- Feng, G. J. et al. 2012. Conditional disruption of Axin1 leads to development of liver tumors in mice. Gastroenterology 143 (6), pp.1650-1659. (10.1053/j.gastro.2012.08.047)
2010
- Buchert, M. et al., 2010. Genetic dissection of differential signaling threshold requirements for the Wnt/beta-Catenin pathway in vivo. PLOS Genetics 6 (1) e1000816. (10.1371/journal.pgen.1000816)
2008
- Reed, K. R. et al. 2008. B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America 105 (48), pp.18919-18923. (10.1073/pnas.0805778105)
- Reed, K. R. et al. 2008. A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine. BMC Cancer 8 162. (10.1186/1471-2407-8-162)
2007
- Clarke, A. R. and Meniel, V. 2007. The intestinal stem cell niche studied through conditional transgenesis. Presented at: The Cancer Stem Cell Workshop Berlin, Germany November 15- 17 2006. Published in: Wiestler, O. D. , Haendler, B. and Mumberg, D. eds. Cancer Stem Cells: Novel Concepts and Prospects for Tumor Therapy. Vol. 2006/5.Ernst Schering Foundation Symposium Proceedings Berlin: Springer. , pp.99-108. (10.1007/2789_2007_046)
- Dikovskaya, D. et al., 2007. Correction 176, p. 183. Journal of cell biology 176 (3), pp.369-369. (10.1083/jcb.20061009920070116c)
- Dikovskaya, D. et al., 2007. Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. Journal of cell biology 176 (2), pp.183-195. (10.1083/jcb.200610099)
- Sansom, O. J. et al. 2007. Myc deletion rescues Apc deficiency in the small intestine. Nature 446 (7136), pp.676-679. (10.1038/nature05674)
2006
- Sansom, O. J. et al. 2006. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proceedings of the National Academy of Sciences 103 (38), pp.14122-14127. (10.1073/pnas.0604130103)
2005
- Meniel, V. et al. 2005. Mutations in Apc and p53 synergize to promote mammary neoplasia. Cancer Research 65 (24), pp.410-6.
2003
- Meniel, V. and Clarke, A. R. 2003. Wnt-Cadherin connections in normal and neoplastic mammary epithelium. Journal of Mammary Gland Biology and Neoplasia 8 (4), pp.435-447. (10.1023/B:JOMG.0000017430.12210.37)
2002
- Gallagher, R. C. J. et al., 2002. Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 21 (42), pp.6446-6457. (10.1038/sj.onc.1205892)
- Morse, N. R. , Meniel, V. and Waters, R. 2002. Photoreactivation of UV-induced cyclobutane primidine dimers in the MFA2 gene of S. cerevisiae.. Nucleic Acids Research 30 (8), pp.1799-1807. (10.1093/nar/30.8.1799)
Articles
- Badder, L. et al. 2024. The αvβ6 integrin specific virotherapy, Ad5NULL-A20.FCU1, selectively delivers 2 potent “in-tumour” chemotherapy to Pancreatic Ductal Adenocarcinoma. British Journal of Cancer 131 , pp.1694-1706. (10.1038/s41416-024-02869-3)
- Bates, E. A. et al. 2022. Development of a low seroprevalence, αvβ6 integrin selective virotherapy based on human adenovirus type 10. Molecular Therapy - Oncolytics 25 , pp.43-56. (10.1016/j.omto.2022.03.007)
- Berenjeno, I. M. et al., 2017. Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nature Communications 8 (1) 1773. (10.1038/s41467-017-02002-4)
- Buchert, M. et al., 2010. Genetic dissection of differential signaling threshold requirements for the Wnt/beta-Catenin pathway in vivo. PLOS Genetics 6 (1) e1000816. (10.1371/journal.pgen.1000816)
- Burke, Z. D. et al., 2018. Spatiotemporal regulation of liver development by the Wnt/β- catenin pathway. Scientific Reports 8 2735. (10.1038/s41598-018-20888-y)
- Davies, E. J. et al. 2014. PTEN loss and KRAS activation leads to the formation of serrated adenomas and metastatic carcinoma in the mouse intestine. The Journal of Pathology 233 (1), pp.27-38. (10.1002/path.4312)
- Dikovskaya, D. et al., 2007. Correction 176, p. 183. Journal of cell biology 176 (3), pp.369-369. (10.1083/jcb.20061009920070116c)
- Dikovskaya, D. et al., 2007. Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. Journal of cell biology 176 (2), pp.183-195. (10.1083/jcb.200610099)
- Feng, G. J. et al. 2012. Conditional disruption of Axin1 leads to development of liver tumors in mice. Gastroenterology 143 (6), pp.1650-1659. (10.1053/j.gastro.2012.08.047)
- Flanagan, D. J. et al., 2019. Frizzled-7 is required for Wnt signaling in gastric tumours with and without Apc mutations. Cancer Research 79 (5), pp.970-981. (10.1158/0008-5472.CAN-18-2095)
- Gallagher, R. C. J. et al., 2002. Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 21 (42), pp.6446-6457. (10.1038/sj.onc.1205892)
- Hammoudi, A. et al., 2013. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC). Biochemical and Biophysical Research Communications 440 (3), pp.364-370. (10.1016/j.bbrc.2013.08.076)
- Huels, D. J. et al., 2015. E-cadherin can limit the transforming properties of activating β‐catenin mutations. EMBO Journal 34 (18), pp.2321-2333. (10.15252/embj.201591739)
- Jefferies, M. T. et al., 2017. PTEN loss and activation of K-RAS and β-catenin cooperate to accelerate prostate tumourigenesis. Journal of Pathology 243 (4), pp.442-456. (10.1002/path.4977)
- Koushyar, S. et al. 2022. Exploring the Wnt pathway as a therapeutic target for prostate cancer. Biomolecules 12 (2) 309. (10.3390/biom12020309)
- Meniel, V. and Clarke, A. R. 2003. Wnt-Cadherin connections in normal and neoplastic mammary epithelium. Journal of Mammary Gland Biology and Neoplasia 8 (4), pp.435-447. (10.1023/B:JOMG.0000017430.12210.37)
- Meniel, V. et al. 2005. Mutations in Apc and p53 synergize to promote mammary neoplasia. Cancer Research 65 (24), pp.410-6.
- Meniel, V. et al. 2015. Apc and p53 interaction in DNA damage and genomic instability in hepatocytes. Oncogene 34 , pp.4118-4129. (10.1038/onc.2014.342)
- Meniel, V. et al. 2013. Cited1 deficiency suppresses intestinal tumorigenesis. PLoS Genetics 9 (8) e1003638. (10.1371/journal.pgen.1003638)
- Morse, N. R. , Meniel, V. and Waters, R. 2002. Photoreactivation of UV-induced cyclobutane primidine dimers in the MFA2 gene of S. cerevisiae.. Nucleic Acids Research 30 (8), pp.1799-1807. (10.1093/nar/30.8.1799)
- Naschberger, E. et al., 2016. Matricellular protein SPARCL1 regulates tumor microenvironment-dependent endothelial cell heterogeneity in colorectal carcinoma. The Journal of Clinical Investigation 126 (11), pp.4187-4204. (10.1172/JCI78260)
- Pearson, H. B. et al. 2018. Identification of Pik3ca mutation as a genetic driver of prostate cancer that cooperates with Pten loss to accelerate progression and castration-resistant growth. Cancer Discovery 8 (6), pp.764-779. (10.1158/2159-8290.CD-17-0867)
- Reed, K. R. et al. 2008. B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America 105 (48), pp.18919-18923. (10.1073/pnas.0805778105)
- Reed, K. R. et al. 2015. Correction for Reed et al., B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America 112 (10), pp.E1168. (10.1073/pnas.1502294112)
- Reed, K. R. et al. 2008. A limited role for p53 in modulating the immediate phenotype of Apc loss in the intestine. BMC Cancer 8 162. (10.1186/1471-2407-8-162)
- Sansom, O. J. et al. 2007. Myc deletion rescues Apc deficiency in the small intestine. Nature 446 (7136), pp.676-679. (10.1038/nature05674)
- Sansom, O. J. et al. 2006. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proceedings of the National Academy of Sciences 103 (38), pp.14122-14127. (10.1073/pnas.0604130103)
- Soady, K. J. et al., 2017. Receptor protein tyrosine phosphatase PTPRB negatively regulates FGF2-dependent branching morphogenesis. Development 144 (20), pp.3777-3788. (10.1242/dev.149120)
- Turnham, D. J. et al. 2024. Development and characterisation of a new patient-derived Xenograft model of AR-negative metastatic asctration-resistant prostate cancer. Cells 13 (8) 673. (10.3390/cells13080673)
Conferences
- Clarke, A. R. and Meniel, V. 2007. The intestinal stem cell niche studied through conditional transgenesis. Presented at: The Cancer Stem Cell Workshop Berlin, Germany November 15- 17 2006. Published in: Wiestler, O. D. , Haendler, B. and Mumberg, D. eds. Cancer Stem Cells: Novel Concepts and Prospects for Tumor Therapy. Vol. 2006/5.Ernst Schering Foundation Symposium Proceedings Berlin: Springer. , pp.99-108. (10.1007/2789_2007_046)