Dr Matthew Mort
Teams and roles for Matthew Mort
Senior AI & Data Science Specialist
Overview
Senior AI & Data Science Specialist for the Human Gene Mutation Database (HGMD).
I am passionate about life-long learning, productivity, teamworking and helping people.
Overview & Expertise Helping lead the Human Gene Mutation Database (HGMD) with expertise in medical genetics, machine learning including generative AI and clinical data science.
Despite having a strong technical background, I have come to focus on putting people first in everything I do. For example, through coaching, listening, and demonstrating a learn-by-doing approach. I am trying to support and develop a growth mindset culture within Cardiff University. While working differently and trying something new can be scary, it's important to switch your mindset, experiment, and embrace small changes. Be curious and give it a go!
AI Champion for the School of Medicine, specialising in process automation with a Lean focus and advanced business analytics. I have developed 'AI in the Workplace' training which is a practical and responsible aproach to working with AI as an assistant (AI in the Workplace).
Qualifications
Doctor of Philosophy (PhD) | Cardiff University / Prifysgol Caerdydd Bioinformatics & Machine Learning
CSSC Lean Six Sigma Black Belt | Process improvement and change management methodology
ILM 7 - Certificate in Executive Coaching and Mentoring | University of South Wales
Technical Specialties: Software development, databases, data analysis, data mining, machine learning, information management, natural language processing (NLP).
Focus Areas:
-
Generative AI & LLM Applications
-
Process Automation, Business Analytics & Digital Productivity
-
Machine Learning in Clinical Medicine & Software Development
Impact & Recognition:
-
100+ peer-reviewed publications in Nature, Science, and other high-impact journals
-
International collaborations with NHS, commercial organisations and leading universities
-
Digital transformation training and executive coaching
Connect with me about:
-
HGMD collaboration opportunities
-
GenAI training & consulting
-
Executive coaching
Publication
2025
- Duffy, Á. et al., 2025. Development of a genetic priority score to predict drug side effects using human genetic evidence. Nature Communications 16 (1) 8713. (10.1038/s41467-025-63762-y)
- Rastogi, R. et al., 2025. Critical assessment of missense variant effect predictors on disease-relevant variant data. Human Genetics (10.1007/s00439-025-02732-2)
- Stein, D. et al., 2025. Expanding the utility of variant effect predictions with phenotype-specific models. Nature Communications (10.1038/s41467-025-66607-w)
2024
- Chen, R. et al., 2024. Expanding drug targets for 112 chronic diseases using a machine learning-assisted genetic priority score. Nature Communications 15 (1) 8891. (10.1038/s41467-024-53333-y)
- Duffy, Á. et al., 2024. Development of a human genetics-guided priority score for 19,365 genes and 399 drug indications. Nature Genetics 56 (1), pp.51-59. (10.1038/s41588-023-01609-2)
- He, D. et al., 2024. Accurate identification of genes associated with brain disorders by integrating heterogeneous genomic data into a Bayesian framework. EBioMedicine 107 105286. (10.1016/j.ebiom.2024.105286)
- Lopes-Marques, M. et al., 2024. Meta-analysis of 46,000 germline de novo mutations linked to human inherited disease. Human Genomics 18 (1) 20. (10.1186/s40246-024-00587-8)
- Meuser, E. et al. 2024. PIGA mutations and glycosylphosphatidylinositol anchor dysregulation in polyposis-associated duodenal tumorigenesis. Molecular Cancer Research 22 (6), pp.515–523. (10.1158/1541-7786.MCR-23-0810)
2023
- Fan, C. et al., 2023. Profiling human pathogenic repeat expansion regions by synergistic and multi-level impacts on molecular connections. Human Genetics 142 , pp.245-274. (10.1007/s00439-022-02500-6)
2021
- Bacolla, A. et al., 2021. Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. Nucleic Acids Research 49 (1), pp.221-243. (10.1093/nar/gkaa1120)
- Neville, M. D. et al., 2021. A platform for curated products from novel Open Reading Frames (nORFs) prompts reinterpretation of disease variants. Genome Research 31 (2), pp.327-336. (10.1101/gr.263202.120)
- Thomas, L. E. et al., 2021. Duodenal adenomas and cancer in MUTYH-associated polyposis: an international cohort study. Gastroenterology 160 (3), pp.952-954. (10.1053/j.gastro.2020.10.038)
2020
- Cardoso-Moreira, M. et al., 2020. Developmental gene expression differences between humans and mammalian models. Cell Reports 33 (4) 108308. (10.1016/j.celrep.2020.108308)
- Pejaver, V. et al., 2020. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications 11 (1) 5918. (10.1038/s41467-020-19669-x)
- Short, E. et al. 2020. APC transcription studies and molecular diagnosis of familial adenomatous polyposis. European Journal of Human Genetics 28 (1), pp.118-121. (10.1038/s41431-019-0486-2)
- Stenson, P. D. et al. 2020. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Human Genetics 139 , pp.1197-1207. (10.1007/s00439-020-02199-3)
2019
- Cardoso-Moreira, M. et al., 2019. Gene expression across mammalian organ development. Nature 571 , pp.505 - 509. (10.1038/s41586-019-1338-5)
- Fragoza, R. et al., 2019. Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations. Nature Communications 10 (1) 4141. (10.1038/s41467-019-11959-3)
- Lin, H. et al., 2019. RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants. Genome Biology 20 (1) 254. (10.1186/s13059-019-1847-4)
- Lin, J. et al., 2019. First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts. Human Mutation 40 (10), pp.1856-1873. (10.1002/humu.23821)
- Pagel, K. A. et al., 2019. Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome. PLoS Computational Biology 15 (6) e1007112. (10.1371/journal.pcbi.1007112)
2018
- Caciotti, A. et al., 2018. Mis-splicing of the GALNS gene resulting from deep intronic mutations as a cause of Morquio a disease. BMC Medical Genetics 19 (1) 183. (10.1186/s12881-018-0694-6)
- Hurley, J. J. et al. 2018. The impact of chromoendoscopy for surveillance of the duodenum in patients with MUTYH-associated polyposis and familial adenomatous polyposis. Gastrointestinal Endoscopy 88 (4), pp.665-673. (10.1016/j.gie.2018.04.2347)
- Robinson-Rechavi, M. et al., 2018. The sequencing and interpretation of the genome obtained from a Serbian individual. PLoS ONE 13 (12) e0208901. (10.1371/journal.pone.0208901)
- Rogers, M. F. et al. 2018. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics 34 (3), pp.511-513. (10.1093/bioinformatics/btx536)
- Zhao, H. et al., 2018. Quantitative mapping of genetic similarity in human heritable diseases by shared mutations. Human Mutation 39 (2), pp.292-301. (10.1002/humu.23358)
2017
- Andreoletti, G. et al., 2017. Exome analysis of rare and common variants within the NOD signaling pathway. Scientific Reports 7 46454. (10.1038/srep46454)
- Ferlaino, M. et al., 2017. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome. BMC bioinformatics 18 (1) 442. (10.1186/s12859-017-1862-y)
- Knecht, C. et al., 2017. IMHOTEP A composite score integrating popular tools for predicting the functional consequences of non-synonymous sequence variants. Nucleic Acids Research 45 (3), pp.e13. (10.1093/nar/gkw886)
- Li, M. et al., 2017. ExonImpact: prioritizing pathogenic alternative splicing events. Human Mutation 38 (1), pp.16-24. (10.1002/humu.23111)
- Liang, S. et al., 2017. iRegNet3D: three-dimensional integrated regulatory network for the genomic analysis of coding and non-coding disease mutations. Genome Biology 18 (1) 10. (10.1186/s13059-016-1138-2)
- Livingstone, M. et al., 2017. Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants. Human Mutation 38 (10), pp.1336-1347. (10.1002/humu.23283)
- Lu, T. et al., 2017. Biological and functional relevance of CASP predictions.. Proteins (10.1002/prot.25396)
- Pagel, K. A. et al., 2017. When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics 33 (14), pp.i389-i398. (10.1093/bioinformatics/btx272)
- Stenson, P. D. et al. 2017. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Human Genetics 136 (6), pp.665-677. (10.1007/s00439-017-1779-6)
- Thomas, L. E. et al. 2017. Burden and profile of somatic mutation in duodenal adenomas from patients with familial adenomatous- and MUTYH-associated polyposis. Clinical Cancer Research 23 (21), pp.6721-6732. (10.1158/1078-0432.CCR-17-1269)
- Zhang, X. et al., 2017. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution. Human Genetics 136 (9), pp.1279-1289. (10.1007/s00439-017-1783-x)
2016
- Azevedo, L. et al., 2016. Improving the in silico assessment of pathogenicity for compensated variants. European Journal of Human Genetics 25 (1), pp.2-7. (10.1038/ejhg.2016.129)
- Lugo-Martinez, J. et al., 2016. The loss and gain of functional amino acid residues is a common mechanism causing human inherited disease. PLoS Computational Biology 12 (8) e1005091. (10.1371/journal.pcbi.1005091)
- Matos, S. et al., 2016. Mining clinical attributes of genomic variants through assisted literature curation in Egas. Database 2016 baw096. (10.1093/database/baw096)
- Meyer, M. J. et al., 2016. mutation3D: cancer gene prediction through atomic clustering of coding variants in the structural proteome. Human Mutation 37 (5), pp.447-456. (10.1002/humu.22963)
- Peterson, T. A. et al., 2016. Regulatory single-nucleotide variant predictor increases predictive performance of functional regulatory variants. Human Mutation 37 (11), pp.1137-1143. (10.1002/humu.23049)
- Wang, Q. et al., 2016. Overview of the interactive task in BioCreative V. Database 2016 (baw119)(10.1093/database/baw119)
2015
- Folkman, L. et al., 2015. DDIG-in: detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels. Bioinformatics 31 (10), pp.1599-1606. (10.1093/bioinformatics/btu862)
- Mort, M. E. et al. 2015. Huntingtin exists as multiple splice forms in human brain. Journal of Huntington's Disease 4 (2), pp.161-171. (10.3233/JHD-150151)
- Rogers, M. F. et al., 2015. Sequential data selection for predicting the pathogenic effects of sequence variation. Presented at: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Washington DC, USA 9-12 November 2015. Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on. IEEE. , pp.639-644. (10.1109/BIBM.2015.7359759)
- Shihab, H. A. et al., 2015. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 31 (10), pp.1536-1543. (10.1093/bioinformatics/btv009)
- Thomas, L. E. et al. 2015. Evaluation of copy number variation and gene expression in neurofibromatosis type-1-associated malignant peripheral nerve sheath tumours. Human Genomics 9 (1) 3. (10.1186/s40246-015-0025-3)
- Upadhyaya, M. et al. 2015. Correlation of copy number changes and gene expression in neurofibromatosis1-associated malignant peripheral nerve sheath tumours [Abstract]. Pediatric Blood and Cancer 62 (S4), pp.S152-S152. (10.1002/pbc.25715)
- Winston, J. et al., 2015. Identification of two novel SMCHD1 sequence variants in families with FSHD-like muscular dystrophy. European Journal of Human Genetics 23 (1), pp.67-71. (10.1038/ejhg.2014.58)
2014
- Das, J. et al., 2014. Elucidating common structural features of human pathogenic variations using large-scale atomic-resolution protein networks. Human Mutation 35 (5), pp.585-593. (10.1002/humu.22534)
- Hughes, A. et al. 2014. Identification of novel alternative splicing events in the Huntingtin gene and assessment of the functional consequences using structural protein homology modelling. Journal of Molecular Biology 426 (7), pp.1428-1438. (10.1016/j.jmb.2013.12.028)
- Mort, M. et al. 2014. MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing. Genome Biology 15 (1) R19. (10.1186/gb-2014-15-1-r19)
- Shihab, H. A. et al., 2014. Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. Human Genomics 8 11. (10.1186/1479-7364-8-11)
- Stenson, P. et al. 2014. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Human Genetics 133 (1), pp.1-9. (10.1007/s00439-013-1358-4)
- Wei, X. et al., 2014. A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations. PLoS Genetics 10 (12) e1004819. (10.1371/journal.pgen.1004819)
- Zhang, X. et al., 2014. Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. Human Molecular Genetics 23 (11), pp.3024-3034. (10.1093/hmg/ddu019)
2013
- Bagchi, A. et al., 2013. Analysis of features from protein-protein hetero-complex structures to predict protein interaction interfaces using machine learning. Procedia Technology 10 , pp.62-66. (10.1016/j.protcy.2013.12.337)
- Ku, C. S. et al., 2013. A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Molecular Psychiatry 18 (2), pp.141-153. (10.1038/mp.2012.58)
- Zhao, H. et al., 2013. DDIG-in: discriminating between disease-associated and neutral non-frameshifting micro-indels. Genome Biology 14 (3), pp.R23. (10.1186/gb-2013-14-3-r23.)
2012
- Scally, A. et al., 2012. Insights into hominid evolution from the gorilla genome sequence. Nature 483 (7388), pp.169-175. (10.1038/nature10842)
- Stenson, P. D. et al. 2012. The human gene mutation database (HGMD) and its exploitation in the fields of personalized genomics and molecular evolution. Current Protocols in Bioinformatics 39 , pp.1.13.1-1.13.20. (10.1002/0471250953.bi0113s39)
- Teng, M. et al., 2012. regSNPs: a strategy for prioritizing regulatory single nucleotide substitutions. Bioinformatics 28 (14), pp.1879-1886. (10.1093/bioinformatics/bts275)
- Thomas, L. et al. 2012. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene. Human Mutation 33 (12), pp.1687-1696. (10.1002/humu.22162)
- Thomas, L. et al. 2012. Exploring the somatic NF1 mutational spectrum associated with NF1 cutaneous neurofibromas. European Journal of Human Genetics 20 (4), pp.411-419. (10.1038/ejhg.2011.207)
- Xue, Y. et al., 2012. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. American Journal of Human Genetics 91 (6), pp.1022-1032. (10.1016/j.ajhg.2012.10.015)
2011
- Bertola, F. et al., 2011. IDUA mutational profiling of a cohort of 102 European patients with mucopolysaccharidosis type I: identification and characterization of 35 novel α-L-iduronidase (IDUA) alleles. Human Mutation 32 (6), pp.E2189-E2210. (10.1002/humu.21479)
- Grossi, S. et al., 2011. Molecular genetic analysis of the PLP1 gene in 38 families with PLP1-related disorders: identification and functional characterization of 11 novel PLP1 mutations. Orphanet Journal of Rare Diseases 6 40. (10.1186/1750-1172-6-40)
- Sterne-Weiler, T. et al., 2011. Loss of exon identity is a common mechanism of human inherited disease. Genome Research 21 (10), pp.1563-1571. (10.1101/gr.118638.110)
- Wolf, A. et al., 2011. Single base-pair substitutions at the translation initiation sites of human genes as a cause of inherited disease. Human Mutation 32 (10), pp.1137-1143. (10.1002/humu.21547)
- Zhang, G. et al., 2011. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations. Human Genomics 5 (5), pp.453-484.
- Zhao, Y. et al., 2011. Prediction of functional regulatory SNPs in monogenic and complex disease. Human Mutation 32 (10), pp.1183-1190. (10.1002/humu.21559)
2010
- Cooper, D. N. , Ball, E. V. and Mort, M. E. 2010. Chromosomal distribution of disease genes in the human genome. Genetic Testing and Molecular Biomarkers 14 (4), pp.441-446. (10.1089/gtmb.2010.0081)
- Cooper, D. N. et al. 2010. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Human Mutation 31 (6), pp.631-655. (10.1002/humu.21260)
- Cooper, D. N. and Mort, M. 2010. Do inherited disease genes have distinguishing functional characteristics?. Genetic Testing and Molecular Biomarkers 14 (3), pp.289-291. (10.1089/gtmb.2010.0033)
- Cooper, D. N. et al. 2010. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Human Genomics 4 (6), pp.406-410.
- Durbin, R. M. et al., 2010. A map of human genome variation from population-scale sequencing. Nature 467 (7319), pp.1061-1073. (10.1038/nature09534)
- Mort, M. E. et al. 2010. In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Human Mutation 31 (3), pp.335-346. (10.1002/humu.21192)
- Tappino, B. et al., 2010. Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. Human Mutation 31 (12), pp.E1894-E1914. (10.1002/humu.21367)
- Zhang, G. et al., 2010. Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations. Human Mutation 31 (12), pp.1286-1293. (10.1002/humu.21389)
2009
- Li, B. et al., 2009. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25 (21), pp.2744-2750. (10.1093/bioinformatics/btp528)
- Sanford, J. R. et al., 2009. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Research 19 (3), pp.381-394. (10.1101/gr.082503.108)
- Stenson, P. D. et al. 2009. The Human Gene Mutation Database: providing a comprehensive central mutation database for molecular diagnostics and personalized genomics [Editorial]. Human Genomics 4 (2), pp.69-72.
- Stenson, P. D. et al. 2009. The Human Gene Mutation Database: 2008 update. Genome Medicine 1 (1) 13. (10.1186/gm13)
2008
- Mort, M. E. et al. 2008. A meta-analysis of nonsense mutations causing human genetic disease. Human Mutation 29 (8), pp.1037-1047. (10.1002/humu.20763)
- Radivojac, P. et al., 2008. Gain and loss of phosphorylation sites in human cancer. Bioinformatics 24 (16), pp.i241-i247. (10.1093/bioinformatics/btn267)
2007
- Krawczak, M. et al., 2007. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Human Mutation 28 (2), pp.150-158. (10.1002/humu.20400)
- Stenson, P. D. et al. 2007. Human Gene Mutation Database: towards a comprehensive central mutation database [Letter]. Journal of Medical Genetics 45 (2), pp.124-126. (10.1136/jmg.2007.055210)
2006
- Khan, I. A. et al. 2006. In silico discrimination of single nucleotide polymorphisms and pathological mutations in human gene promoter regions by means of local DNA sequence context and regularity.. In silico Biology 6 (1-2), pp.23-34.
2003
- Stenson, P. D. et al. 2003. Human Gene Mutation Database (HGMD): 2003 update. Human Mutation 21 (6), pp.577-581. (10.1002/humu.10212)
Articles
- Andreoletti, G. et al., 2017. Exome analysis of rare and common variants within the NOD signaling pathway. Scientific Reports 7 46454. (10.1038/srep46454)
- Azevedo, L. et al., 2016. Improving the in silico assessment of pathogenicity for compensated variants. European Journal of Human Genetics 25 (1), pp.2-7. (10.1038/ejhg.2016.129)
- Bacolla, A. et al., 2021. Heritable pattern of oxidized DNA base repair coincides with pre-targeting of repair complexes to open chromatin. Nucleic Acids Research 49 (1), pp.221-243. (10.1093/nar/gkaa1120)
- Bagchi, A. et al., 2013. Analysis of features from protein-protein hetero-complex structures to predict protein interaction interfaces using machine learning. Procedia Technology 10 , pp.62-66. (10.1016/j.protcy.2013.12.337)
- Bertola, F. et al., 2011. IDUA mutational profiling of a cohort of 102 European patients with mucopolysaccharidosis type I: identification and characterization of 35 novel α-L-iduronidase (IDUA) alleles. Human Mutation 32 (6), pp.E2189-E2210. (10.1002/humu.21479)
- Caciotti, A. et al., 2018. Mis-splicing of the GALNS gene resulting from deep intronic mutations as a cause of Morquio a disease. BMC Medical Genetics 19 (1) 183. (10.1186/s12881-018-0694-6)
- Cardoso-Moreira, M. et al., 2019. Gene expression across mammalian organ development. Nature 571 , pp.505 - 509. (10.1038/s41586-019-1338-5)
- Cardoso-Moreira, M. et al., 2020. Developmental gene expression differences between humans and mammalian models. Cell Reports 33 (4) 108308. (10.1016/j.celrep.2020.108308)
- Chen, R. et al., 2024. Expanding drug targets for 112 chronic diseases using a machine learning-assisted genetic priority score. Nature Communications 15 (1) 8891. (10.1038/s41467-024-53333-y)
- Cooper, D. N. , Ball, E. V. and Mort, M. E. 2010. Chromosomal distribution of disease genes in the human genome. Genetic Testing and Molecular Biomarkers 14 (4), pp.441-446. (10.1089/gtmb.2010.0081)
- Cooper, D. N. et al. 2010. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Human Mutation 31 (6), pp.631-655. (10.1002/humu.21260)
- Cooper, D. N. and Mort, M. 2010. Do inherited disease genes have distinguishing functional characteristics?. Genetic Testing and Molecular Biomarkers 14 (3), pp.289-291. (10.1089/gtmb.2010.0033)
- Cooper, D. N. et al. 2010. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides. Human Genomics 4 (6), pp.406-410.
- Das, J. et al., 2014. Elucidating common structural features of human pathogenic variations using large-scale atomic-resolution protein networks. Human Mutation 35 (5), pp.585-593. (10.1002/humu.22534)
- Duffy, Á. et al., 2025. Development of a genetic priority score to predict drug side effects using human genetic evidence. Nature Communications 16 (1) 8713. (10.1038/s41467-025-63762-y)
- Duffy, Á. et al., 2024. Development of a human genetics-guided priority score for 19,365 genes and 399 drug indications. Nature Genetics 56 (1), pp.51-59. (10.1038/s41588-023-01609-2)
- Durbin, R. M. et al., 2010. A map of human genome variation from population-scale sequencing. Nature 467 (7319), pp.1061-1073. (10.1038/nature09534)
- Fan, C. et al., 2023. Profiling human pathogenic repeat expansion regions by synergistic and multi-level impacts on molecular connections. Human Genetics 142 , pp.245-274. (10.1007/s00439-022-02500-6)
- Ferlaino, M. et al., 2017. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome. BMC bioinformatics 18 (1) 442. (10.1186/s12859-017-1862-y)
- Folkman, L. et al., 2015. DDIG-in: detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels. Bioinformatics 31 (10), pp.1599-1606. (10.1093/bioinformatics/btu862)
- Fragoza, R. et al., 2019. Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations. Nature Communications 10 (1) 4141. (10.1038/s41467-019-11959-3)
- Grossi, S. et al., 2011. Molecular genetic analysis of the PLP1 gene in 38 families with PLP1-related disorders: identification and functional characterization of 11 novel PLP1 mutations. Orphanet Journal of Rare Diseases 6 40. (10.1186/1750-1172-6-40)
- He, D. et al., 2024. Accurate identification of genes associated with brain disorders by integrating heterogeneous genomic data into a Bayesian framework. EBioMedicine 107 105286. (10.1016/j.ebiom.2024.105286)
- Hughes, A. et al. 2014. Identification of novel alternative splicing events in the Huntingtin gene and assessment of the functional consequences using structural protein homology modelling. Journal of Molecular Biology 426 (7), pp.1428-1438. (10.1016/j.jmb.2013.12.028)
- Hurley, J. J. et al. 2018. The impact of chromoendoscopy for surveillance of the duodenum in patients with MUTYH-associated polyposis and familial adenomatous polyposis. Gastrointestinal Endoscopy 88 (4), pp.665-673. (10.1016/j.gie.2018.04.2347)
- Khan, I. A. et al. 2006. In silico discrimination of single nucleotide polymorphisms and pathological mutations in human gene promoter regions by means of local DNA sequence context and regularity.. In silico Biology 6 (1-2), pp.23-34.
- Knecht, C. et al., 2017. IMHOTEP A composite score integrating popular tools for predicting the functional consequences of non-synonymous sequence variants. Nucleic Acids Research 45 (3), pp.e13. (10.1093/nar/gkw886)
- Krawczak, M. et al., 2007. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Human Mutation 28 (2), pp.150-158. (10.1002/humu.20400)
- Ku, C. S. et al., 2013. A new paradigm emerges from the study of de novo mutations in the context of neurodevelopmental disease. Molecular Psychiatry 18 (2), pp.141-153. (10.1038/mp.2012.58)
- Li, B. et al., 2009. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25 (21), pp.2744-2750. (10.1093/bioinformatics/btp528)
- Li, M. et al., 2017. ExonImpact: prioritizing pathogenic alternative splicing events. Human Mutation 38 (1), pp.16-24. (10.1002/humu.23111)
- Liang, S. et al., 2017. iRegNet3D: three-dimensional integrated regulatory network for the genomic analysis of coding and non-coding disease mutations. Genome Biology 18 (1) 10. (10.1186/s13059-016-1138-2)
- Lin, H. et al., 2019. RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants. Genome Biology 20 (1) 254. (10.1186/s13059-019-1847-4)
- Lin, J. et al., 2019. First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts. Human Mutation 40 (10), pp.1856-1873. (10.1002/humu.23821)
- Livingstone, M. et al., 2017. Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants. Human Mutation 38 (10), pp.1336-1347. (10.1002/humu.23283)
- Lopes-Marques, M. et al., 2024. Meta-analysis of 46,000 germline de novo mutations linked to human inherited disease. Human Genomics 18 (1) 20. (10.1186/s40246-024-00587-8)
- Lu, T. et al., 2017. Biological and functional relevance of CASP predictions.. Proteins (10.1002/prot.25396)
- Lugo-Martinez, J. et al., 2016. The loss and gain of functional amino acid residues is a common mechanism causing human inherited disease. PLoS Computational Biology 12 (8) e1005091. (10.1371/journal.pcbi.1005091)
- Matos, S. et al., 2016. Mining clinical attributes of genomic variants through assisted literature curation in Egas. Database 2016 baw096. (10.1093/database/baw096)
- Meuser, E. et al. 2024. PIGA mutations and glycosylphosphatidylinositol anchor dysregulation in polyposis-associated duodenal tumorigenesis. Molecular Cancer Research 22 (6), pp.515–523. (10.1158/1541-7786.MCR-23-0810)
- Meyer, M. J. et al., 2016. mutation3D: cancer gene prediction through atomic clustering of coding variants in the structural proteome. Human Mutation 37 (5), pp.447-456. (10.1002/humu.22963)
- Mort, M. et al. 2014. MutPred Splice: machine learning-based prediction of exonic variants that disrupt splicing. Genome Biology 15 (1) R19. (10.1186/gb-2014-15-1-r19)
- Mort, M. E. et al. 2015. Huntingtin exists as multiple splice forms in human brain. Journal of Huntington's Disease 4 (2), pp.161-171. (10.3233/JHD-150151)
- Mort, M. E. et al. 2010. In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Human Mutation 31 (3), pp.335-346. (10.1002/humu.21192)
- Mort, M. E. et al. 2008. A meta-analysis of nonsense mutations causing human genetic disease. Human Mutation 29 (8), pp.1037-1047. (10.1002/humu.20763)
- Neville, M. D. et al., 2021. A platform for curated products from novel Open Reading Frames (nORFs) prompts reinterpretation of disease variants. Genome Research 31 (2), pp.327-336. (10.1101/gr.263202.120)
- Pagel, K. A. et al., 2019. Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome. PLoS Computational Biology 15 (6) e1007112. (10.1371/journal.pcbi.1007112)
- Pagel, K. A. et al., 2017. When loss-of-function is loss of function: assessing mutational signatures and impact of loss-of-function genetic variants. Bioinformatics 33 (14), pp.i389-i398. (10.1093/bioinformatics/btx272)
- Pejaver, V. et al., 2020. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications 11 (1) 5918. (10.1038/s41467-020-19669-x)
- Peterson, T. A. et al., 2016. Regulatory single-nucleotide variant predictor increases predictive performance of functional regulatory variants. Human Mutation 37 (11), pp.1137-1143. (10.1002/humu.23049)
- Radivojac, P. et al., 2008. Gain and loss of phosphorylation sites in human cancer. Bioinformatics 24 (16), pp.i241-i247. (10.1093/bioinformatics/btn267)
- Rastogi, R. et al., 2025. Critical assessment of missense variant effect predictors on disease-relevant variant data. Human Genetics (10.1007/s00439-025-02732-2)
- Robinson-Rechavi, M. et al., 2018. The sequencing and interpretation of the genome obtained from a Serbian individual. PLoS ONE 13 (12) e0208901. (10.1371/journal.pone.0208901)
- Rogers, M. F. et al. 2018. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics 34 (3), pp.511-513. (10.1093/bioinformatics/btx536)
- Sanford, J. R. et al., 2009. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Research 19 (3), pp.381-394. (10.1101/gr.082503.108)
- Scally, A. et al., 2012. Insights into hominid evolution from the gorilla genome sequence. Nature 483 (7388), pp.169-175. (10.1038/nature10842)
- Shihab, H. A. et al., 2015. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 31 (10), pp.1536-1543. (10.1093/bioinformatics/btv009)
- Shihab, H. A. et al., 2014. Ranking non-synonymous single nucleotide polymorphisms based on disease concepts. Human Genomics 8 11. (10.1186/1479-7364-8-11)
- Short, E. et al. 2020. APC transcription studies and molecular diagnosis of familial adenomatous polyposis. European Journal of Human Genetics 28 (1), pp.118-121. (10.1038/s41431-019-0486-2)
- Stein, D. et al., 2025. Expanding the utility of variant effect predictions with phenotype-specific models. Nature Communications (10.1038/s41467-025-66607-w)
- Stenson, P. et al. 2014. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Human Genetics 133 (1), pp.1-9. (10.1007/s00439-013-1358-4)
- Stenson, P. D. et al. 2020. The Human Gene Mutation Database (HGMD®): optimizing its use in a clinical diagnostic or research setting. Human Genetics 139 , pp.1197-1207. (10.1007/s00439-020-02199-3)
- Stenson, P. D. et al. 2017. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Human Genetics 136 (6), pp.665-677. (10.1007/s00439-017-1779-6)
- Stenson, P. D. et al. 2007. Human Gene Mutation Database: towards a comprehensive central mutation database [Letter]. Journal of Medical Genetics 45 (2), pp.124-126. (10.1136/jmg.2007.055210)
- Stenson, P. D. et al. 2009. The Human Gene Mutation Database: providing a comprehensive central mutation database for molecular diagnostics and personalized genomics [Editorial]. Human Genomics 4 (2), pp.69-72.
- Stenson, P. D. et al. 2003. Human Gene Mutation Database (HGMD): 2003 update. Human Mutation 21 (6), pp.577-581. (10.1002/humu.10212)
- Stenson, P. D. et al. 2012. The human gene mutation database (HGMD) and its exploitation in the fields of personalized genomics and molecular evolution. Current Protocols in Bioinformatics 39 , pp.1.13.1-1.13.20. (10.1002/0471250953.bi0113s39)
- Stenson, P. D. et al. 2009. The Human Gene Mutation Database: 2008 update. Genome Medicine 1 (1) 13. (10.1186/gm13)
- Sterne-Weiler, T. et al., 2011. Loss of exon identity is a common mechanism of human inherited disease. Genome Research 21 (10), pp.1563-1571. (10.1101/gr.118638.110)
- Tappino, B. et al., 2010. Identification and characterization of 15 novel GALC gene mutations causing Krabbe disease. Human Mutation 31 (12), pp.E1894-E1914. (10.1002/humu.21367)
- Teng, M. et al., 2012. regSNPs: a strategy for prioritizing regulatory single nucleotide substitutions. Bioinformatics 28 (14), pp.1879-1886. (10.1093/bioinformatics/bts275)
- Thomas, L. E. et al., 2021. Duodenal adenomas and cancer in MUTYH-associated polyposis: an international cohort study. Gastroenterology 160 (3), pp.952-954. (10.1053/j.gastro.2020.10.038)
- Thomas, L. et al. 2012. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene. Human Mutation 33 (12), pp.1687-1696. (10.1002/humu.22162)
- Thomas, L. et al. 2012. Exploring the somatic NF1 mutational spectrum associated with NF1 cutaneous neurofibromas. European Journal of Human Genetics 20 (4), pp.411-419. (10.1038/ejhg.2011.207)
- Thomas, L. E. et al. 2017. Burden and profile of somatic mutation in duodenal adenomas from patients with familial adenomatous- and MUTYH-associated polyposis. Clinical Cancer Research 23 (21), pp.6721-6732. (10.1158/1078-0432.CCR-17-1269)
- Thomas, L. E. et al. 2015. Evaluation of copy number variation and gene expression in neurofibromatosis type-1-associated malignant peripheral nerve sheath tumours. Human Genomics 9 (1) 3. (10.1186/s40246-015-0025-3)
- Upadhyaya, M. et al. 2015. Correlation of copy number changes and gene expression in neurofibromatosis1-associated malignant peripheral nerve sheath tumours [Abstract]. Pediatric Blood and Cancer 62 (S4), pp.S152-S152. (10.1002/pbc.25715)
- Wang, Q. et al., 2016. Overview of the interactive task in BioCreative V. Database 2016 (baw119)(10.1093/database/baw119)
- Wei, X. et al., 2014. A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations. PLoS Genetics 10 (12) e1004819. (10.1371/journal.pgen.1004819)
- Winston, J. et al., 2015. Identification of two novel SMCHD1 sequence variants in families with FSHD-like muscular dystrophy. European Journal of Human Genetics 23 (1), pp.67-71. (10.1038/ejhg.2014.58)
- Wolf, A. et al., 2011. Single base-pair substitutions at the translation initiation sites of human genes as a cause of inherited disease. Human Mutation 32 (10), pp.1137-1143. (10.1002/humu.21547)
- Xue, Y. et al., 2012. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. American Journal of Human Genetics 91 (6), pp.1022-1032. (10.1016/j.ajhg.2012.10.015)
- Zhang, G. et al., 2011. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations. Human Genomics 5 (5), pp.453-484.
- Zhang, G. et al., 2010. Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations. Human Mutation 31 (12), pp.1286-1293. (10.1002/humu.21389)
- Zhang, X. et al., 2017. regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution. Human Genetics 136 (9), pp.1279-1289. (10.1007/s00439-017-1783-x)
- Zhang, X. et al., 2014. Impact of human pathogenic micro-insertions and micro-deletions on post-transcriptional regulation. Human Molecular Genetics 23 (11), pp.3024-3034. (10.1093/hmg/ddu019)
- Zhao, H. et al., 2013. DDIG-in: discriminating between disease-associated and neutral non-frameshifting micro-indels. Genome Biology 14 (3), pp.R23. (10.1186/gb-2013-14-3-r23.)
- Zhao, H. et al., 2018. Quantitative mapping of genetic similarity in human heritable diseases by shared mutations. Human Mutation 39 (2), pp.292-301. (10.1002/humu.23358)
- Zhao, Y. et al., 2011. Prediction of functional regulatory SNPs in monogenic and complex disease. Human Mutation 32 (10), pp.1183-1190. (10.1002/humu.21559)
Conferences
- Rogers, M. F. et al., 2015. Sequential data selection for predicting the pathogenic effects of sequence variation. Presented at: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Washington DC, USA 9-12 November 2015. Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on. IEEE. , pp.639-644. (10.1109/BIBM.2015.7359759)
Contact Details
+44 29207 45116
Institute of Medical Genetics Building, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN
Research themes
Specialisms
- Clinical AI
- Machine learning
- Genome interpretation
- AI in the workplace
- AI Agents, productivity, genAI, smarter working, wellbeing, informatics, bioinformatics, data science, open access, collaboration