Professor Andrew Quantock
Teams and roles for Andrew Quantock
Professor, Director of Research
Overview
The aim of my research is to better understand corneal ultrastructure, especially in relation to factors that may influence corneal transparency. I have spent over 20 years studying the organisation of collagen fibrils and proteoglycan macromolecules in various corneal diseases and dystrophies, and am now trying to better appreciate the molecular changes that accompany the development of corneal transparency. I have also worked and retain and interest in tissue engineering of the corneal epithelial, stromal and endothelial layers. I have strong international collaborations with leading investigators in the USA and Japan, am a Silver Fellow of ARVO (The Association for Research in Vision and Ophthalmology), and served on the Cornea section of the ARVO Annual Meeting Programme Committee from 2005 to 2008 (co-chair in 2007/08). I am Visiting Professor at Kyoto Prefectural University of Medicine and Doshisha University, also in Kyoto, and in collaboration with scientists there was fortunate enough to be recognised in 2004 by the award of the Daiwa Adrian Prize for excellence in Anglo-Japanese research. I am and have been principal or co-investigator on a programme and project grants from the BBSRC, EPSRC, MRC, and Wellcome trust totalling over £6 million, with current work focusing on new minimally invasive surgeries for corneal endothelial dysfunction, as well as understanding corneal cell and matrix development at high resolution and in three dimensions
Publication
2025
- Bhat, M. A. et al., 2025. Transient ocular hypertension remodels astrocytes through S100B. PLoS ONE 20 (2) e0313556. (10.1371/journal.pone.0313556)
- Hashida, N. et al., 2025. Rapid diagnosis of ocular viral infections via single virus detection using solid-state nanopore: A diagnostic evaluation study. PNAS Nexus 4 (6) pgaf161. (10.1093/pnasnexus/pgaf161)
- Kamuro, R. et al., 2025. PAX6-dependent differentiation landscape of ocular surface epithelium via single-cell RNA sequencing in hiPSC-derived ocular developmental organoid. Communications Biology 8 (1) 1220. (10.1038/s42003-025-08643-2)
- Liao, Y. et al., 2025. A bioequivalent cornea cross-linking method using photo-initiators LAP and visible light. Materials Today Bio 34 102110. (10.1016/j.mtbio.2025.102110)
- Liu, Y. et al., 2025. Microbial influx during early postnatal life fortifies the ocular surface and guards against allergic eye disease in mice. Communications Biology 8 (1) 1694. (10.1038/s42003-025-09095-4)
- Matusmoto, S. et al., 2025. Enhanced mitochondria-associated membrane formation in Fuchs endothelial corneal dystrophy: a novel link between endoplasmic reticulum stress and mitochondrial dysfunction. Japanese Journal of Ophthalmology (10.1007/s10384-025-01288-y)
- Wang, X. et al. 2025. Early diagnosis of keratoconus using corneal biomechanics and OCT derived technologies. Eye and Vision 12 (1) 18. (10.1186/s40662-025-00435-3)
2024
- Bu, J. et al., 2024. Models for Meibomian gland dysfunction: In vivo and in vitro. The Ocular Surface 32 , pp.154-165. (10.1016/j.jtos.2024.03.003)
- Howard, L. et al., 2024. Single-cell transcriptomics reveals the molecular basis of human iPS cell differentiation into ectodermal ocular lineages. Communications Biology 7 (1) 1495. (10.1038/s42003-024-07130-4)
- Maeno, S. et al., 2024. Imaging pathology in archived cornea with Fuchs' endothelial corneal dystrophy including tissue reprocessing for volume electron microscopy.. Scientific Reports 14 (1) 31786. (10.1038/s41598-024-82888-5)
- Regini, J. W. et al. 2024. Membrane structures and functional correlates in the bi-segmented eye lens of the cephalopod. Biology Open 13 (9) bio060445. (10.1242/bio.060445)
- Soma, T. et al., 2024. Induced pluripotent stem-cell-derived corneal epithelium for transplant surgery: a single-arm, open-label, first-in-human interventional study in Japan. The Lancet 404 (10466), pp.1929-1939. (10.1016/S0140-6736(24)01764-1)
2023
- Bains, K. K. et al. 2023. Chondroitin sulphate/dermatan sulphate proteoglycans: potential regulators of corneal stem/progenitor cell phenotype in vitro. International Journal of Molecular Sciences 24 (3) 2095. (10.3390/ijms24032095)
- Bains, K. K. et al. 2023. Cell–cell and cell–matrix interactions at the presumptive stem cell niche of the chick corneal limbus. Cells 12 (19) 2334. (10.3390/cells12192334)
- Koudouna, E. et al. 2023. Developmental changes in patterns of distribution of fibronectin and tenascin-C in the chicken cornea: evidence for distinct and independent functions during corneal development and morphogenesis. International Journal of Molecular Sciences 24 (4) 3555. (10.3390/ijms24043555)
- Matsushita, K. et al., 2023. Barium-induced toxic anterior segment syndrome. European Journal of Ophthalmology 33 (3), pp.NP31-NP35. (10.1177/11206721211069223)
- Oie, Y. et al., 2023. Clinical trial of autologous cultivated limbal epithelial cell sheet transplantation for patients with limbal stem cell deficiency. Ophthalmology 130 (6), pp.608-614. (10.1016/j.ophtha.2023.01.016)
2022
- Hashida, N. et al., 2022. Mitochondrial DNA as a biomarker for acute central serous chorioretinopathy: A case-control study. Frontiers in Medicine 9 938600. (10.3389/fmed.2022.938600)
- Hayashi, R. et al., 2022. Generation of 3D lacrimal gland organoids from human pluripotent stem cells. Nature 605 (7908), pp.126-131. (10.1038/s41586-022-04613-4)
- Maruyama, K. et al., 2022. Diagnosis of choroidal disease with deep learning-based image enhancement and volumetric quantification of optical coherence tomography. Translational Vision Science & Technology 11 (1) 22. (10.1167/tvst.11.1.22)
- Shiraki, N. et al., 2022. PAX6-positive microglia evolve locally in hiPSC-derived ocular organoids. Stem Cell Reports 17 (2), pp.221-230. (10.1016/j.stemcr.2021.12.009)
- Wang, S. et al., 2022. Obstructive sleep apnea affects lacrimal gland function. Investigative Ophthalmology & Visual Science 63 (3) 3. (10.1167/iovs.63.3.3)
- Wong, A. et al., 2022. A composite system based upon hydroxypropyl cyclodextrins and soft hydrogel contact lenses for the delivery of therapeutic doses of econazole to the cornea, in vitro. Pharmaceutics 14 (8) e1631. (10.3390/pharmaceutics14081631)
2021
- Ashworth, S. et al. 2021. Chondroitin sulfate as a potential modulator of the stem cell niche in cornea. Frontiers in Cell and Developmental Biology 8 567358. (10.3389/fcell.2020.567358)
- Baba, K. et al., 2021. The generation of fluorometholone nanocrystal eye drops, their metabolization to dihydrofluorometholone and penetration into rabbit eyes. International Journal of Pharmaceutics 592 120067. (10.1016/j.ijpharm.2020.120067)
- Koudouna, E. et al. 2021. Response to letter to Editor “comments on ‘cell regulation of collagen fibril macrostructure during corneal morphogenesis’ by Koudouna et al.”. Acta Biomaterialia 136 , pp.594-595. (10.1016/j.actbio.2021.09.061)
- Lewis, P. N. et al. 2021. Contrast-enhanced tissue processing of fibrillin-rich elastic fibres for 3D visualization by volume scanning electron microscopy. Methods and Protocols 4 (3) 56. (10.3390/mps4030056)
- Nomi, K. et al., 2021. Generation of functional conjunctival epithelium, including goblet cells, from human iPSCs. Cell Reports 34 (5) 108715. (10.1016/j.celrep.2021.108715)
- Watanabe, S. et al., 2021. Human iPS cells engender corneal epithelial stem cells with holoclone-forming capabilities. iScience 24 (6) 102688. (10.1016/j.isci.2021.102688)
2020
- Baba, K. et al., 2020. Cell jamming, stratification and p63 expression in cultivated human corneal epithelial cell sheets. Scientific Reports 10 (1) 9282. (10.1038/s41598-020-64394-6)
- Bu, J. et al., 2020. Hyperlipidemia affects tight junctions and pump function in the corneal endothelium. The American Journal of Pathology 190 (3), pp.563-576. (10.1016/j.ajpath.2019.11.008)
- Hammond, G. M. et al. 2020. The microanatomy of Bowman’s layer in the cornea of the pig: changes in collagen fibril architecture at the corneoscleral limbus. European Journal of Anatomy 24 (5), pp.399-406.
- He, X. et al., 2020. High-fat diet-induced functional and pathologic changes in lacrimal gland. The American Journal of Pathology 190 (12), pp.P2387-P2402. 2387. (10.1016/j.ajpath.2020.09.002)
- Hewitt, M. G. et al., 2020. In vitro topical delivery of chlorhexidine to the cornea: Enhancement using drug-loaded contact lenses and β-Cyclodextrin complexation, and the importance of simulating tear irrigation. Molecular Pharmaceutics 17 (4), pp.1428-1441. (10.1021/acs.molpharmaceut.0c00140)
- Kobayashi, Y. et al., 2020. Ocular surface ectoderm instigated by WNT inhibition and BMP4. Stem Cell Research 46 101868. (10.1016/j.scr.2020.101868)
- Koudouna, E. et al. 2020. Recapitulation of normal collagen architecture in embryonic wounded corneas. Scientific Reports 10 (1) 13815. (10.1038/s41598-020-70658-y)
- Matsushita, K. et al., 2020. Assessment of a self-assembling peptide gel, SPG-178, in providing a clear operative field for trabeculectomy surgery for glaucoma in an animal model. Scientific Reports 10 (1) 11326. (10.1038/s41598-020-68171-3)
- Meek, K. M. et al. 2020. X-ray diffraction imaging of corneal ultrastructure. In: Ahearne, M. ed. Corneal Regeneration: Methods and Protocols. Vol. 2145, Methods in Molecular Biology New York, NY, USA: Humana. , pp.231-247. (10.1007/978-1-0716-0599-8_16)
- Morgan, S. R. et al. 2020. Controlled in vitro delivery of voriconazole and diclofenac to the cornea using contact lenses for the treatment of Acanthamoeba keratitis. International Journal of Pharmaceutics 579 119102. (10.1016/j.ijpharm.2020.119102)
- Wang, K. et al., 2020. Cell compaction is not required for the development of gradient refractive index profiles in the embryonic chick lens. Experimental Eye Research 197 108112. (10.1016/j.exer.2020.108112)
- Wu, Y. et al., 2020. High-fat diet induces dry eye-like ocular surface damages in murine. The Ocular Surface 18 (2), pp.267-276. (10.1016/j.jtos.2020.02.009)
- Young, R. D. et al. 2020. Observations on nascent matrix structures in embryonic cornea: Important in cell interactions, or merely vestiges of the lens surface?. Archives of Clinical and Experimental Ophthalmology 2 (2), pp.67-72. (10.46439/ophthalmology.2.014)
2019
- Bains, K. K. et al. 2019. Recovering vision in corneal epithelial stem cell deficient eyes. Contact Lens and Anterior Eye 42 (4), pp.350-358. (10.1016/j.clae.2019.04.006)
- Bu, J. et al., 2019. Hyperlipidemia induces meibomian gland dysfunction. The Ocular Surface 17 (4), pp.777-786. (10.1016/j.jtos.2019.06.002)
- Young, R. D. et al. 2019. Cell-independent matrix configuration in early corneal development. Experimental Eye Research 187 107772. (10.1016/j.exer.2019.107772)
2018
- Hayashi, R. et al., 2018. CD200 facilitates the isolation of corneal epithelial cells derived from human pluripotent stem cells. Scientific Reports 8 (1) 16550. (10.1038/s41598-018-34845-2)
- Koudouna, E. et al. 2018. Cell regulation of collagen fibril macrostructure during corneal morphogenesis. Acta Biomaterialia 79 , pp.96-112. (10.1016/j.actbio.2018.08.017)
- Littlechild, S. et al. 2018. Keratan sulfate phenotype in the β-1,3-N-acetylglucosaminyltransferase-7-null mouse cornea. Investigative Ophthalmology and Visual Science 59 , pp.1641-1651. (10.1167/iovs.17-22716)
- Morgan, S. et al. 2018. Microwave treatment of the cornea leads to localised disruption of the extracellular matrix. Scientific Reports 8 13742. (10.1038/s41598-018-32110-0)
- Shibata, S. et al., 2018. Selective laminin-directed differentiation of human induced pluripotent stem cells into distinct ocular lineages. Cell Reports 25 (6), pp.1668-1679. (10.1016/j.celrep.2018.10.032)
2017
- Akhbanbetova, A. et al. 2017. A surgical cryoprobe for targeted transcorneal freezing and endothelial cell removal. Journal of Ophthalmology 2017 5614089. (10.1155/2017/5614089)
- Hayashi, R. et al., 2017. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature Protocols 12 (4), pp.683-696. (10.1038/nprot.2017.007)
- Kobayashi, Y. et al., 2017. Generation of a TALEN-mediated, p63 knock-in in human induced pluripotent stem cells. Stem Cell Research 25 , pp.256-265. (10.1016/j.scr.2017.10.015)
- Okumura, N. et al., 2017. Sustained activation of the unfolded protein response induces cell death in Fuchs' endothelial corneal dystrophy. Investigative Ophthalmology & Visual Science 58 (9), pp.3697-3707. (10.1167/iovs.16-21023)
- Soma, T. et al., 2017. A new graft insertion device for descemet stripping automated endothelial keratoplasty. Cornea 36 (11), pp.1432-1436. (10.1097/ICO.0000000000001302)
2016
- Chan, W. et al. 2016. Topical delivery of a Rho-kinase inhibitor to the cornea via mucoadhesive film. European Journal of Pharmaceutical Sciences 91 , pp.256-264. (10.1016/j.ejps.2016.05.016)
- Hayashi, R. et al., 2016. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531 , pp.376-380. (10.1038/nature17000)
- Sasamoto, Y. et al., 2016. PAX6 isoforms, along with reprogramming factors, differentially regulate the induction of cornea-specific genes. Scientific Reports 6 20807. (10.1038/srep20807)
2015
- Okumura, N. et al., 2015. Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. Laboratory Investigation 95 , pp.1291-1304. (10.1038/labinvest.2015.111)
- Quantock, A. J. et al. 2015. From nano to macro: Studying the hierarchical structure of the corneal extracellular matrix. Experimental Eye Research 133 , pp.81-99. (10.1016/j.exer.2014.07.018)
- Yamada, K. et al., 2015. Mesenchymal-epithelial cell interactions and proteoglycan matrix composition in the presumptive stem cell niche of the rabbit corneal limbus. Molecular Vision 21 , pp.1328-1329.
2014
- Forrest, M. et al., 2014. The emerging roles of TCF4 in disease and development. Trends in Molecular Medicine 20 (6), pp.322-331. (10.1016/j.molmed.2014.01.010)
- Ho, L. T. Y. et al. 2014. A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea. Matrix Biology 38 , pp.59-68. (10.1016/j.matbio.2014.06.004)
- Young, R. D. et al. 2014. Three-dimensional aspects of matrix assembly by cells in the developing cornea. Proceedings of the National Academy of Sciences 111 (2), pp.687-692. (10.1073/pnas.1313561110)
2013
- Hayes, S. et al. 2013. The effect of Riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS ONE 8 (1) e52860. (10.1371/journal.pone.0052860)
2012
- Doutch, J. J. et al., 2012. Ultraviolet transmission through the human corneal stroma. Biophysical Journal 102 (6), pp.1258-1264. (10.1016/j.bpj.2012.02.023)
2011
- Bushby, A. J. et al., 2011. Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nature Protocols 6 (6), pp.845-858. (10.1038/nprot.2011.332)
- Hayes, S. et al. 2011. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma. PLoS ONE 6 (8) e22405. (10.1371/journal.pone.0022405)
- Jones, F. E. et al. 2011. Investigation into endothelial cell morphology following new methods of posterior corneal surgery [Abstract]. International Journal of Experimental Pathology 92 (3), pp.A24. (10.1111/j.1365-2613.2010.00759.x)
- Khan, I. M. et al. 2011. Fibroblast growth factor 2 and transforming growth factor β1 induce precocious maturation of articular cartilage. Arthritis & Rheumatism 63 (11), pp.3417-3427. (10.1002/art.30543)
- Koudouna, E. et al. 2011. Preliminary electron microscopical studies of connective tissue in the human lamina cribrosa [Abstract]. International Journal of Experimental Pathology 92 (6), pp.A26. (10.1111/j.1365-2613.2011.00780.x)
- Parfitt, G. et al. 2011. Electron tomography reveals multiple self-association of chondroitin sulphate/dermatan sulphate proteoglycans in Chst5-null mouse corneas. Journal of Structural Biology 174 (3), pp.536-541. (10.1016/j.jsb.2011.03.015)
- Tanaka, Y. et al., 2011. Transparent, tough collagen laminates prepared by oriented flow casting, multi-cyclic vitrification and chemical cross-linking. Biomaterials 32 (13), pp.3358-3366. (10.1016/j.biomaterials.2010.11.011)
- Tanaka, Y. et al., 2011. Anisotropic mechanical properties of collagen hydrogels induced by uniaxial-flow for ocular applications. Journal of Biomaterials Science. Polymer Edition 22 (11), pp.1427-1442. (10.1163/092050610X510542)
- Veronesi, G. et al., 2011. X-ray spectro-microscopy at ID21: mapping of elements and chemical states at subcellular level [Abstract]. European Biophysics Journal 40 (S1), pp.S130-S131. (10.1007/s00249-011-0734-z)
- Young, R. D. et al. 2011. Large Proteoglycan Complexes and Disturbed Collagen Architecture in the Corneal Extracellular Matrix of Mucopolysaccharidosis Type VII (Sly Syndrome). Investigative Ophthalmology & Visual Science 52 (9), pp.6720-6728. (10.1167/iovs.11-7377)
2010
- Duncan, T. et al. 2010. Flow-manipulated, crosslinked collagen gels for use as corneal equivalents. Biomaterials 31 (34), pp.8996-9005. (10.1016/j.biomaterials.2010.08.042)
- Kamma-Lorger, C. S. et al. 2010. Collagen and mature elastic fibre organisation as a function of depth in the human cornea and limbus. Journal of Structural Biology 169 (3), pp.424-430. (10.1016/j.jsb.2009.11.004)
- Lewis, P. et al. 2010. Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Structure 18 (2), pp.239-245. (10.1016/j.str.2009.11.013)
- Liles, M. et al., 2010. Differential relative sulfation of keratan sulfate glycosaminoglycan in the chick cornea during embryonic development. Investigative Ophthalmology and Visual Science 51 (3), pp.1365-1372. (10.1167/iovs.09-4004)
- Palka, B. P. et al. 2010. Structural Collagen Alterations in Macular Corneal Dystrophy Occur Mainly in the Posterior Stroma. Current Eye Research 35 (7), pp.580-586. (10.3109/02713681003760150)
- Parfitt, G. J. et al. 2010. Three-dimensional reconstruction of collagen-proteoglycan interactions in the mouse corneal stroma by electron tomography. Journal of Structural Biology 170 (2), pp.392-397. (10.1016/j.jsb.2010.01.019)
- Quantock, A. J. , Young, R. D. and Akama, T. O. 2010. Structural and biochemical aspects of keratan sulphate in the cornea. Cellular and Molecular Life Sciences 67 (6), pp.891-906. (10.1007/s00018-009-0228-7)
2009
- Gealy, E. C. et al. 2009. Actin and type I collagen propeptide distribution in the developing chick cornea. Investigative Ophthalmology & Visual Science 50 (4), pp.1653 -1658. (10.1167/iovs.08-2554)
- Knupp, C. et al. 2009. The architecture of the cornea and structural basis of its transparency. In: McPherson, A. ed. Advances in Protein Chemistry and Structural Biology. Vol. 78, London: Academic Press. , pp.25-49. (10.1016/S1876-1623(08)78002-7)
- Palka, B. P. et al. 2009. Depth-profiled synchrotron microbeam analysis of collagen fibril ultrastructure in the developing chick cornea [Abstract]. International Journal of Experimental Pathology 90 (2), pp.A126. (10.1111/j.1365-2613.2009.00644.x)
- Young, R. D. et al. 2009. Stromal Edema in Klf4 Conditional Null Mouse Cornea Is Associated with Altered Collagen Fibril Organization and Reduced Proteoglycans. Investigative Ophthalmology & Visual Science 50 (9), pp.4155-4161. (10.1167/iovs.09-3561)
2008
- Boote, C. et al. 2008. Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype - An X-ray diffraction study. Journal of Structural Biology 161 (1), pp.1-8. (10.1016/j.jsb.2007.08.015)
- Doutch, J. J. et al. 2008. Light transmission in the human cornea as a function of position across the ocular surface: theoretical and experimental aspects. Biophysical Journal 95 (11), pp.5092-5099. (10.1529/biophysj.108.132316)
- Quantock, A. J. and Young, R. D. 2008. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Developmental Dynamics 237 (10), pp.2607-2621. (10.1002/dvdy.21579)
- Saito, T. et al., 2008. Sulfation patterns of keratan sulfate in different macular corneal dystrophy immunophenotypes using three different probes [Letter]. British Journal of Ophthalmology 92 (10), pp.1434-1436. (10.1136/bjo.2008.139527)
- Yamasaki, K. et al., 2008. Genomic Aberrations and Cellular Heterogeneity in SV40-Immortalized Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science 50 (2), pp.604-613. (10.1167/iovs.08-2239)
2007
- Connon, C. J. et al. 2007. The biomechanics of amnion rupture: An X-Ray diffraction study. PLoS ONE 2 (11) e1147. (10.1371/journal.pone.0001147)
- Doutch, J. J. , Quantock, A. J. and Meek, K. M. A. 2007. Changes in visible light transmission across the corneal stroma - art. no. 65350Q. Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII 6535 , pp.Q5350-Q5350.
- Gealy, E. C. et al. 2007. Differential expression of the keratan sulphate proteoglycan, keratocan, during chick corneal embryogenesis. Histochemistry and Cell Biology 128 (6), pp.551-555. (10.1007/s00418-007-0332-4)
- Hayes, S. et al. 2007. Comparative Study of Fibrillar Collagen Arrangement in the Corneas of Primates and Other Mammals. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 290 (12), pp.1542-1550. (10.1002/ar.20613)
- Hayes, S. et al. 2007. A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and X-ray scattering techniques. Experimental Eye Research 84 (3), pp.423-434. (10.1016/j.exer.2006.10.014)
- Quantock, A. J. et al. 2007. Small-angle fibre diffraction studies of corneal matrix structure: a depth profiled investigation of the human eye-bank cornea. Journal of Applied Crystallography 40 (S1), pp.S335-S340. (10.1107/S0021889807005523)
- Regini, J. W. et al. 2007. X-Ray- and Neutron-Scattering Studies of α-Crystallin and Evidence That the Target Protein Sits in the Fenestrations of the α-Crystallin Shell. Investigative Ophthalmology & Visual Science 48 (6), pp.2695-2700. (10.1167/iovs.06-0559)
- Young, R. D. et al. 2007. Differential immunogold localisation of sulphated and unsulphated keratan sulphate proteoglycans in normal and macular dystrophy cornea using sulphation motif-specific antibodies. Histochemistry and Cell Biology 127 (1), pp.115-120. (10.1007/s00418-006-0228-8)
- Young, R. D. et al. 2007. Keratan sulfate glycosaminoglycan and the association with collagen fibrils in rudimentary lamellae in the developing avian cornea. Investigative Ophthalmology and Visual Science 48 (7), pp.3083-3088. (10.1167/iovs.06-1323)
2006
- Beecher, N. et al. 2006. Neonatal development of the corneal stroma in wild-type and lumican-null mice. Investigative Ophthalmology and Visual Science 47 (1), pp.146-150. (10.1167/iovs.05-0907)
- Doutch, J. J. et al. 2006. Propagation of infrared wavelengths through the corneal stroma with reference to hydration changes. Presented at: Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII Saratov, Russia 26-29 September 2006. Published in: Tuchin, V. V. ed. Saratov Fall Meeting 2006: optical technologies in biophysics and medicine VIII. Proceedings of the SPIE Vol. 6535. Bellingham, WA: SPIE(10.1117/12.740963)
- Gealy, E. C. et al. 2006. Association between the cytoskeleton and collagen secretion in the developing cornea [Abstract]. International Journal of Experimental Pathology 87 (1), pp.A43-A44. (10.1111/j.0959-9673.2006.00458.x)
- Hayashida, Y. et al., 2006. Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. PNAS 103 (36), pp.13333-13338. (10.1073/pnas.0605441103)
- Young, R. D. et al. 2006. Immunogold localization of keratan sulphate in macular corneal dystrophy using monoclonal antibodies to specific sulphation motifs [Abstract]. International Journal of Experimental Pathology 87 (1), pp.A49-A50. (10.1111/j.0959-9673.2006.00458.x)
- Young, R. D. et al. 2006. Sulphation patterns of keratan sulphate proteoglycan in sclerocornea resemble cornea rather than sclera [Letter]. British Journal of Ophthalmology 90 (3), pp.391-393. (10.1136/bjo.2005.085803)
2005
- Assiri, A. A. et al. 2005. Incidence and severity of keratoconus in Asir province, Saudi Arabia. British Journal of Ophthalmology 89 (11), pp.1403-1406. (10.1136/bjo.2005.074955)
- Beecher, N. et al., 2005. An x-ray diffraction study of corneal structure in mimecan-deficient mice. Investigative Ophthalmology and Visual Science 46 (11), pp.4046-4049. (10.1167/iovs.05-0325)
- Boote, C. et al. 2005. Lamellar orientation in human cornea in relation to mechanical properties. Journal of Structural Biology 149 (1), pp.1-6. (10.1016/j.jsb.2004.08.009)
- Quantock, A. J. et al. 2005. Stromal architecture and immune tolerance in additive corneal xenografts in rodents. Acta Ophthalmologica Scandinavica 83 (4), pp.462-466. (10.1111/j.1600-0420.2005.00509.x)
- Young, R. D. et al. 2005. Atypical composition and ultrastructure of proteoglycans in the mouse corneal stroma. Investigative Ophthalmology and Visual Science 46 (6), pp.1973-1978. (10.1167/iovs.04-1309)
2004
- Connon, C. J. et al., 2004. Understanding the function and location of a calcium activated chloride channel in ocular surface epithelium [Abstract]. Investigative Ophthalmology and Visual Science 45 , pp.U388-U388.
- Connon, C. J. et al. 2004. Spatial and temporal alterations in the collagen fibrillar array during the onset of transparency in the avian cornea. Experimental Eye Research 78 (5), pp.909-915. (10.1016/j.exer.2004.01.005)
2003
- Boote, C. et al. 2003. A wide-angle x-ray diffraction study of the developing embryonic chicken cornea. Fibre Diffraction Review 11 (1), pp.123-129.
- Boote, C. et al. 2003. Collagen orientation during development of the embryonic avian cornea. Fibre Diffraction Review 11 (1), pp.130.
- Connon, C. J. et al. 2003. Proteoglycan alterations and collagen reorganisation in the secondary avian cornea during development. Ophthalmic Research 35 (4), pp.177-184. (10.1159/000071168)
- Hayes, S. et al. 2003. Ultrastructural Changes in Keratoconic-like Mice Corneas [Abstract]. Fibre Diffraction Review 11 , pp.135.
- Meek, K. M. A. et al. 2003. Collagen fibril disorganisation in the corneas of keratocan-deficient mice as revealed by synchrotron X-ray diffraction [Abstract]. Investigative Ophthalmology and Visual Science 44 , pp.U245-U245.
- Quantock, A. J. et al. 2003. Collagen organization in the secondary chick cornea during development. Investigative Ophthalmology and Visual Science 44 (1), pp.130-136.
- Quantock, A. J. et al. 2003. Collagen Organization in the Secondary Chick Cornea during Development. Investigative Ophthalmology & Visual Science 44 (1), pp.130-136. (10.1167/iovs.02-0544)
- Quantock, A. J. et al. 2003. Annulus of collagen fibrils in mouse cornea and structural matrix alterations in a murine-specific keratopathy. Investigative Ophthalmology & Visual Science 44 (5), pp.1906-1911. (10.1167/iovs.02-0884)
2002
- Boote, C. et al. 2002. Collagen orientation during development of the embryonic avian cornea [Abstract]. Investigative Ophthalmology and Visual Science 43 E-Abstract 3214.
- Kostyuk, O. et al., 2002. Transparency of the bovine corneal stroma at physiological hydration and its dependence on concentration of the ambient anion. The Journal of Physiology 543 (2), pp.633-642. (10.1113/jphysiol.2002.021527)
- Quantock, A. , Koizumi, N. and Kinoshita, S. 2002. Limbal stem cell deficiencies and ocular surface reconstruction. Optometry Today 30 , pp.27-30.
- Quantock, A. J. et al. 2002. Keratan sulphate levels during development of the embryonic avian cornea. Investigative Ophthalmology and Visual Science 43 (E-Abst)
2001
- Kinoshita, S. et al., 2001. Characteristics of the human ocular surface epithelium. Progress in Retinal and Eye Research 20 (5), pp.639-673. (10.1016/S1350-9462(01)00007-6)
- Quantock, A. J. , Meek, K. M. A. and Chakravarti, S. 2001. An X-ray diffraction investigation of corneal structure in lumican-deficient mice. Investigative Ophthalmology and Visual Science 42 (8), pp.1750-1756.
- Sugita, J. et al., 2001. The detection of bacteria and bacterial biofilms in punctal plug holes. Cornea 20 (4), pp.362-365.
Articles
- Akhbanbetova, A. et al. 2017. A surgical cryoprobe for targeted transcorneal freezing and endothelial cell removal. Journal of Ophthalmology 2017 5614089. (10.1155/2017/5614089)
- Ashworth, S. et al. 2021. Chondroitin sulfate as a potential modulator of the stem cell niche in cornea. Frontiers in Cell and Developmental Biology 8 567358. (10.3389/fcell.2020.567358)
- Assiri, A. A. et al. 2005. Incidence and severity of keratoconus in Asir province, Saudi Arabia. British Journal of Ophthalmology 89 (11), pp.1403-1406. (10.1136/bjo.2005.074955)
- Baba, K. et al., 2021. The generation of fluorometholone nanocrystal eye drops, their metabolization to dihydrofluorometholone and penetration into rabbit eyes. International Journal of Pharmaceutics 592 120067. (10.1016/j.ijpharm.2020.120067)
- Baba, K. et al., 2020. Cell jamming, stratification and p63 expression in cultivated human corneal epithelial cell sheets. Scientific Reports 10 (1) 9282. (10.1038/s41598-020-64394-6)
- Bains, K. K. et al. 2023. Chondroitin sulphate/dermatan sulphate proteoglycans: potential regulators of corneal stem/progenitor cell phenotype in vitro. International Journal of Molecular Sciences 24 (3) 2095. (10.3390/ijms24032095)
- Bains, K. K. et al. 2023. Cell–cell and cell–matrix interactions at the presumptive stem cell niche of the chick corneal limbus. Cells 12 (19) 2334. (10.3390/cells12192334)
- Bains, K. K. et al. 2019. Recovering vision in corneal epithelial stem cell deficient eyes. Contact Lens and Anterior Eye 42 (4), pp.350-358. (10.1016/j.clae.2019.04.006)
- Beecher, N. et al., 2005. An x-ray diffraction study of corneal structure in mimecan-deficient mice. Investigative Ophthalmology and Visual Science 46 (11), pp.4046-4049. (10.1167/iovs.05-0325)
- Beecher, N. et al. 2006. Neonatal development of the corneal stroma in wild-type and lumican-null mice. Investigative Ophthalmology and Visual Science 47 (1), pp.146-150. (10.1167/iovs.05-0907)
- Bhat, M. A. et al., 2025. Transient ocular hypertension remodels astrocytes through S100B. PLoS ONE 20 (2) e0313556. (10.1371/journal.pone.0313556)
- Boote, C. et al. 2005. Lamellar orientation in human cornea in relation to mechanical properties. Journal of Structural Biology 149 (1), pp.1-6. (10.1016/j.jsb.2004.08.009)
- Boote, C. et al. 2008. Collagen organization in the chicken cornea and structural alterations in the retinopathy, globe enlarged (rge) phenotype - An X-ray diffraction study. Journal of Structural Biology 161 (1), pp.1-8. (10.1016/j.jsb.2007.08.015)
- Boote, C. et al. 2003. A wide-angle x-ray diffraction study of the developing embryonic chicken cornea. Fibre Diffraction Review 11 (1), pp.123-129.
- Boote, C. et al. 2003. Collagen orientation during development of the embryonic avian cornea. Fibre Diffraction Review 11 (1), pp.130.
- Boote, C. et al. 2002. Collagen orientation during development of the embryonic avian cornea [Abstract]. Investigative Ophthalmology and Visual Science 43 E-Abstract 3214.
- Bu, J. et al., 2024. Models for Meibomian gland dysfunction: In vivo and in vitro. The Ocular Surface 32 , pp.154-165. (10.1016/j.jtos.2024.03.003)
- Bu, J. et al., 2019. Hyperlipidemia induces meibomian gland dysfunction. The Ocular Surface 17 (4), pp.777-786. (10.1016/j.jtos.2019.06.002)
- Bu, J. et al., 2020. Hyperlipidemia affects tight junctions and pump function in the corneal endothelium. The American Journal of Pathology 190 (3), pp.563-576. (10.1016/j.ajpath.2019.11.008)
- Bushby, A. J. et al., 2011. Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nature Protocols 6 (6), pp.845-858. (10.1038/nprot.2011.332)
- Chan, W. et al. 2016. Topical delivery of a Rho-kinase inhibitor to the cornea via mucoadhesive film. European Journal of Pharmaceutical Sciences 91 , pp.256-264. (10.1016/j.ejps.2016.05.016)
- Connon, C. J. et al., 2004. Understanding the function and location of a calcium activated chloride channel in ocular surface epithelium [Abstract]. Investigative Ophthalmology and Visual Science 45 , pp.U388-U388.
- Connon, C. J. et al. 2004. Spatial and temporal alterations in the collagen fibrillar array during the onset of transparency in the avian cornea. Experimental Eye Research 78 (5), pp.909-915. (10.1016/j.exer.2004.01.005)
- Connon, C. J. et al. 2007. The biomechanics of amnion rupture: An X-Ray diffraction study. PLoS ONE 2 (11) e1147. (10.1371/journal.pone.0001147)
- Connon, C. J. et al. 2003. Proteoglycan alterations and collagen reorganisation in the secondary avian cornea during development. Ophthalmic Research 35 (4), pp.177-184. (10.1159/000071168)
- Doutch, J. J. et al., 2012. Ultraviolet transmission through the human corneal stroma. Biophysical Journal 102 (6), pp.1258-1264. (10.1016/j.bpj.2012.02.023)
- Doutch, J. J. , Quantock, A. J. and Meek, K. M. A. 2007. Changes in visible light transmission across the corneal stroma - art. no. 65350Q. Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII 6535 , pp.Q5350-Q5350.
- Doutch, J. J. et al. 2008. Light transmission in the human cornea as a function of position across the ocular surface: theoretical and experimental aspects. Biophysical Journal 95 (11), pp.5092-5099. (10.1529/biophysj.108.132316)
- Duncan, T. et al. 2010. Flow-manipulated, crosslinked collagen gels for use as corneal equivalents. Biomaterials 31 (34), pp.8996-9005. (10.1016/j.biomaterials.2010.08.042)
- Forrest, M. et al., 2014. The emerging roles of TCF4 in disease and development. Trends in Molecular Medicine 20 (6), pp.322-331. (10.1016/j.molmed.2014.01.010)
- Gealy, E. C. et al. 2006. Association between the cytoskeleton and collagen secretion in the developing cornea [Abstract]. International Journal of Experimental Pathology 87 (1), pp.A43-A44. (10.1111/j.0959-9673.2006.00458.x)
- Gealy, E. C. et al. 2009. Actin and type I collagen propeptide distribution in the developing chick cornea. Investigative Ophthalmology & Visual Science 50 (4), pp.1653 -1658. (10.1167/iovs.08-2554)
- Gealy, E. C. et al. 2007. Differential expression of the keratan sulphate proteoglycan, keratocan, during chick corneal embryogenesis. Histochemistry and Cell Biology 128 (6), pp.551-555. (10.1007/s00418-007-0332-4)
- Hammond, G. M. et al. 2020. The microanatomy of Bowman’s layer in the cornea of the pig: changes in collagen fibril architecture at the corneoscleral limbus. European Journal of Anatomy 24 (5), pp.399-406.
- Hashida, N. et al., 2022. Mitochondrial DNA as a biomarker for acute central serous chorioretinopathy: A case-control study. Frontiers in Medicine 9 938600. (10.3389/fmed.2022.938600)
- Hashida, N. et al., 2025. Rapid diagnosis of ocular viral infections via single virus detection using solid-state nanopore: A diagnostic evaluation study. PNAS Nexus 4 (6) pgaf161. (10.1093/pnasnexus/pgaf161)
- Hayashi, R. et al., 2018. CD200 facilitates the isolation of corneal epithelial cells derived from human pluripotent stem cells. Scientific Reports 8 (1) 16550. (10.1038/s41598-018-34845-2)
- Hayashi, R. et al., 2017. Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nature Protocols 12 (4), pp.683-696. (10.1038/nprot.2017.007)
- Hayashi, R. et al., 2016. Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531 , pp.376-380. (10.1038/nature17000)
- Hayashi, R. et al., 2022. Generation of 3D lacrimal gland organoids from human pluripotent stem cells. Nature 605 (7908), pp.126-131. (10.1038/s41586-022-04613-4)
- Hayashida, Y. et al., 2006. Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. PNAS 103 (36), pp.13333-13338. (10.1073/pnas.0605441103)
- Hayes, S. et al. 2003. Ultrastructural Changes in Keratoconic-like Mice Corneas [Abstract]. Fibre Diffraction Review 11 , pp.135.
- Hayes, S. et al. 2011. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma. PLoS ONE 6 (8) e22405. (10.1371/journal.pone.0022405)
- Hayes, S. et al. 2007. Comparative Study of Fibrillar Collagen Arrangement in the Corneas of Primates and Other Mammals. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 290 (12), pp.1542-1550. (10.1002/ar.20613)
- Hayes, S. et al. 2007. A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and X-ray scattering techniques. Experimental Eye Research 84 (3), pp.423-434. (10.1016/j.exer.2006.10.014)
- Hayes, S. et al. 2013. The effect of Riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS ONE 8 (1) e52860. (10.1371/journal.pone.0052860)
- He, X. et al., 2020. High-fat diet-induced functional and pathologic changes in lacrimal gland. The American Journal of Pathology 190 (12), pp.P2387-P2402. 2387. (10.1016/j.ajpath.2020.09.002)
- Hewitt, M. G. et al., 2020. In vitro topical delivery of chlorhexidine to the cornea: Enhancement using drug-loaded contact lenses and β-Cyclodextrin complexation, and the importance of simulating tear irrigation. Molecular Pharmaceutics 17 (4), pp.1428-1441. (10.1021/acs.molpharmaceut.0c00140)
- Ho, L. T. Y. et al. 2014. A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea. Matrix Biology 38 , pp.59-68. (10.1016/j.matbio.2014.06.004)
- Howard, L. et al., 2024. Single-cell transcriptomics reveals the molecular basis of human iPS cell differentiation into ectodermal ocular lineages. Communications Biology 7 (1) 1495. (10.1038/s42003-024-07130-4)
- Jones, F. E. et al. 2011. Investigation into endothelial cell morphology following new methods of posterior corneal surgery [Abstract]. International Journal of Experimental Pathology 92 (3), pp.A24. (10.1111/j.1365-2613.2010.00759.x)
- Kamma-Lorger, C. S. et al. 2010. Collagen and mature elastic fibre organisation as a function of depth in the human cornea and limbus. Journal of Structural Biology 169 (3), pp.424-430. (10.1016/j.jsb.2009.11.004)
- Kamuro, R. et al., 2025. PAX6-dependent differentiation landscape of ocular surface epithelium via single-cell RNA sequencing in hiPSC-derived ocular developmental organoid. Communications Biology 8 (1) 1220. (10.1038/s42003-025-08643-2)
- Khan, I. M. et al. 2011. Fibroblast growth factor 2 and transforming growth factor β1 induce precocious maturation of articular cartilage. Arthritis & Rheumatism 63 (11), pp.3417-3427. (10.1002/art.30543)
- Kinoshita, S. et al., 2001. Characteristics of the human ocular surface epithelium. Progress in Retinal and Eye Research 20 (5), pp.639-673. (10.1016/S1350-9462(01)00007-6)
- Kobayashi, Y. et al., 2017. Generation of a TALEN-mediated, p63 knock-in in human induced pluripotent stem cells. Stem Cell Research 25 , pp.256-265. (10.1016/j.scr.2017.10.015)
- Kobayashi, Y. et al., 2020. Ocular surface ectoderm instigated by WNT inhibition and BMP4. Stem Cell Research 46 101868. (10.1016/j.scr.2020.101868)
- Kostyuk, O. et al., 2002. Transparency of the bovine corneal stroma at physiological hydration and its dependence on concentration of the ambient anion. The Journal of Physiology 543 (2), pp.633-642. (10.1113/jphysiol.2002.021527)
- Koudouna, E. et al. 2018. Cell regulation of collagen fibril macrostructure during corneal morphogenesis. Acta Biomaterialia 79 , pp.96-112. (10.1016/j.actbio.2018.08.017)
- Koudouna, E. et al. 2021. Response to letter to Editor “comments on ‘cell regulation of collagen fibril macrostructure during corneal morphogenesis’ by Koudouna et al.”. Acta Biomaterialia 136 , pp.594-595. (10.1016/j.actbio.2021.09.061)
- Koudouna, E. et al. 2011. Preliminary electron microscopical studies of connective tissue in the human lamina cribrosa [Abstract]. International Journal of Experimental Pathology 92 (6), pp.A26. (10.1111/j.1365-2613.2011.00780.x)
- Koudouna, E. et al. 2020. Recapitulation of normal collagen architecture in embryonic wounded corneas. Scientific Reports 10 (1) 13815. (10.1038/s41598-020-70658-y)
- Koudouna, E. et al. 2023. Developmental changes in patterns of distribution of fibronectin and tenascin-C in the chicken cornea: evidence for distinct and independent functions during corneal development and morphogenesis. International Journal of Molecular Sciences 24 (4) 3555. (10.3390/ijms24043555)
- Lewis, P. et al. 2010. Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Structure 18 (2), pp.239-245. (10.1016/j.str.2009.11.013)
- Lewis, P. N. et al. 2021. Contrast-enhanced tissue processing of fibrillin-rich elastic fibres for 3D visualization by volume scanning electron microscopy. Methods and Protocols 4 (3) 56. (10.3390/mps4030056)
- Liao, Y. et al., 2025. A bioequivalent cornea cross-linking method using photo-initiators LAP and visible light. Materials Today Bio 34 102110. (10.1016/j.mtbio.2025.102110)
- Liles, M. et al., 2010. Differential relative sulfation of keratan sulfate glycosaminoglycan in the chick cornea during embryonic development. Investigative Ophthalmology and Visual Science 51 (3), pp.1365-1372. (10.1167/iovs.09-4004)
- Littlechild, S. et al. 2018. Keratan sulfate phenotype in the β-1,3-N-acetylglucosaminyltransferase-7-null mouse cornea. Investigative Ophthalmology and Visual Science 59 , pp.1641-1651. (10.1167/iovs.17-22716)
- Liu, Y. et al., 2025. Microbial influx during early postnatal life fortifies the ocular surface and guards against allergic eye disease in mice. Communications Biology 8 (1) 1694. (10.1038/s42003-025-09095-4)
- Maeno, S. et al., 2024. Imaging pathology in archived cornea with Fuchs' endothelial corneal dystrophy including tissue reprocessing for volume electron microscopy.. Scientific Reports 14 (1) 31786. (10.1038/s41598-024-82888-5)
- Maruyama, K. et al., 2022. Diagnosis of choroidal disease with deep learning-based image enhancement and volumetric quantification of optical coherence tomography. Translational Vision Science & Technology 11 (1) 22. (10.1167/tvst.11.1.22)
- Matsushita, K. et al., 2023. Barium-induced toxic anterior segment syndrome. European Journal of Ophthalmology 33 (3), pp.NP31-NP35. (10.1177/11206721211069223)
- Matsushita, K. et al., 2020. Assessment of a self-assembling peptide gel, SPG-178, in providing a clear operative field for trabeculectomy surgery for glaucoma in an animal model. Scientific Reports 10 (1) 11326. (10.1038/s41598-020-68171-3)
- Matusmoto, S. et al., 2025. Enhanced mitochondria-associated membrane formation in Fuchs endothelial corneal dystrophy: a novel link between endoplasmic reticulum stress and mitochondrial dysfunction. Japanese Journal of Ophthalmology (10.1007/s10384-025-01288-y)
- Meek, K. M. A. et al. 2003. Collagen fibril disorganisation in the corneas of keratocan-deficient mice as revealed by synchrotron X-ray diffraction [Abstract]. Investigative Ophthalmology and Visual Science 44 , pp.U245-U245.
- Morgan, S. et al. 2018. Microwave treatment of the cornea leads to localised disruption of the extracellular matrix. Scientific Reports 8 13742. (10.1038/s41598-018-32110-0)
- Morgan, S. R. et al. 2020. Controlled in vitro delivery of voriconazole and diclofenac to the cornea using contact lenses for the treatment of Acanthamoeba keratitis. International Journal of Pharmaceutics 579 119102. (10.1016/j.ijpharm.2020.119102)
- Nomi, K. et al., 2021. Generation of functional conjunctival epithelium, including goblet cells, from human iPSCs. Cell Reports 34 (5) 108715. (10.1016/j.celrep.2021.108715)
- Oie, Y. et al., 2023. Clinical trial of autologous cultivated limbal epithelial cell sheet transplantation for patients with limbal stem cell deficiency. Ophthalmology 130 (6), pp.608-614. (10.1016/j.ophtha.2023.01.016)
- Okumura, N. et al., 2017. Sustained activation of the unfolded protein response induces cell death in Fuchs' endothelial corneal dystrophy. Investigative Ophthalmology & Visual Science 58 (9), pp.3697-3707. (10.1167/iovs.16-21023)
- Okumura, N. et al., 2015. Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. Laboratory Investigation 95 , pp.1291-1304. (10.1038/labinvest.2015.111)
- Palka, B. P. et al. 2009. Depth-profiled synchrotron microbeam analysis of collagen fibril ultrastructure in the developing chick cornea [Abstract]. International Journal of Experimental Pathology 90 (2), pp.A126. (10.1111/j.1365-2613.2009.00644.x)
- Palka, B. P. et al. 2010. Structural Collagen Alterations in Macular Corneal Dystrophy Occur Mainly in the Posterior Stroma. Current Eye Research 35 (7), pp.580-586. (10.3109/02713681003760150)
- Parfitt, G. et al. 2011. Electron tomography reveals multiple self-association of chondroitin sulphate/dermatan sulphate proteoglycans in Chst5-null mouse corneas. Journal of Structural Biology 174 (3), pp.536-541. (10.1016/j.jsb.2011.03.015)
- Parfitt, G. J. et al. 2010. Three-dimensional reconstruction of collagen-proteoglycan interactions in the mouse corneal stroma by electron tomography. Journal of Structural Biology 170 (2), pp.392-397. (10.1016/j.jsb.2010.01.019)
- Quantock, A. , Koizumi, N. and Kinoshita, S. 2002. Limbal stem cell deficiencies and ocular surface reconstruction. Optometry Today 30 , pp.27-30.
- Quantock, A. J. et al. 2003. Collagen organization in the secondary chick cornea during development. Investigative Ophthalmology and Visual Science 44 (1), pp.130-136.
- Quantock, A. J. et al. 2003. Collagen Organization in the Secondary Chick Cornea during Development. Investigative Ophthalmology & Visual Science 44 (1), pp.130-136. (10.1167/iovs.02-0544)
- Quantock, A. J. et al. 2007. Small-angle fibre diffraction studies of corneal matrix structure: a depth profiled investigation of the human eye-bank cornea. Journal of Applied Crystallography 40 (S1), pp.S335-S340. (10.1107/S0021889807005523)
- Quantock, A. J. et al. 2003. Annulus of collagen fibrils in mouse cornea and structural matrix alterations in a murine-specific keratopathy. Investigative Ophthalmology & Visual Science 44 (5), pp.1906-1911. (10.1167/iovs.02-0884)
- Quantock, A. J. , Meek, K. M. A. and Chakravarti, S. 2001. An X-ray diffraction investigation of corneal structure in lumican-deficient mice. Investigative Ophthalmology and Visual Science 42 (8), pp.1750-1756.
- Quantock, A. J. et al. 2005. Stromal architecture and immune tolerance in additive corneal xenografts in rodents. Acta Ophthalmologica Scandinavica 83 (4), pp.462-466. (10.1111/j.1600-0420.2005.00509.x)
- Quantock, A. J. et al. 2002. Keratan sulphate levels during development of the embryonic avian cornea. Investigative Ophthalmology and Visual Science 43 (E-Abst)
- Quantock, A. J. et al. 2015. From nano to macro: Studying the hierarchical structure of the corneal extracellular matrix. Experimental Eye Research 133 , pp.81-99. (10.1016/j.exer.2014.07.018)
- Quantock, A. J. and Young, R. D. 2008. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Developmental Dynamics 237 (10), pp.2607-2621. (10.1002/dvdy.21579)
- Quantock, A. J. , Young, R. D. and Akama, T. O. 2010. Structural and biochemical aspects of keratan sulphate in the cornea. Cellular and Molecular Life Sciences 67 (6), pp.891-906. (10.1007/s00018-009-0228-7)
- Regini, J. W. et al. 2024. Membrane structures and functional correlates in the bi-segmented eye lens of the cephalopod. Biology Open 13 (9) bio060445. (10.1242/bio.060445)
- Regini, J. W. et al. 2007. X-Ray- and Neutron-Scattering Studies of α-Crystallin and Evidence That the Target Protein Sits in the Fenestrations of the α-Crystallin Shell. Investigative Ophthalmology & Visual Science 48 (6), pp.2695-2700. (10.1167/iovs.06-0559)
- Saito, T. et al., 2008. Sulfation patterns of keratan sulfate in different macular corneal dystrophy immunophenotypes using three different probes [Letter]. British Journal of Ophthalmology 92 (10), pp.1434-1436. (10.1136/bjo.2008.139527)
- Sasamoto, Y. et al., 2016. PAX6 isoforms, along with reprogramming factors, differentially regulate the induction of cornea-specific genes. Scientific Reports 6 20807. (10.1038/srep20807)
- Shibata, S. et al., 2018. Selective laminin-directed differentiation of human induced pluripotent stem cells into distinct ocular lineages. Cell Reports 25 (6), pp.1668-1679. (10.1016/j.celrep.2018.10.032)
- Shiraki, N. et al., 2022. PAX6-positive microglia evolve locally in hiPSC-derived ocular organoids. Stem Cell Reports 17 (2), pp.221-230. (10.1016/j.stemcr.2021.12.009)
- Soma, T. et al., 2017. A new graft insertion device for descemet stripping automated endothelial keratoplasty. Cornea 36 (11), pp.1432-1436. (10.1097/ICO.0000000000001302)
- Soma, T. et al., 2024. Induced pluripotent stem-cell-derived corneal epithelium for transplant surgery: a single-arm, open-label, first-in-human interventional study in Japan. The Lancet 404 (10466), pp.1929-1939. (10.1016/S0140-6736(24)01764-1)
- Sugita, J. et al., 2001. The detection of bacteria and bacterial biofilms in punctal plug holes. Cornea 20 (4), pp.362-365.
- Tanaka, Y. et al., 2011. Transparent, tough collagen laminates prepared by oriented flow casting, multi-cyclic vitrification and chemical cross-linking. Biomaterials 32 (13), pp.3358-3366. (10.1016/j.biomaterials.2010.11.011)
- Tanaka, Y. et al., 2011. Anisotropic mechanical properties of collagen hydrogels induced by uniaxial-flow for ocular applications. Journal of Biomaterials Science. Polymer Edition 22 (11), pp.1427-1442. (10.1163/092050610X510542)
- Veronesi, G. et al., 2011. X-ray spectro-microscopy at ID21: mapping of elements and chemical states at subcellular level [Abstract]. European Biophysics Journal 40 (S1), pp.S130-S131. (10.1007/s00249-011-0734-z)
- Wang, K. et al., 2020. Cell compaction is not required for the development of gradient refractive index profiles in the embryonic chick lens. Experimental Eye Research 197 108112. (10.1016/j.exer.2020.108112)
- Wang, S. et al., 2022. Obstructive sleep apnea affects lacrimal gland function. Investigative Ophthalmology & Visual Science 63 (3) 3. (10.1167/iovs.63.3.3)
- Wang, X. et al. 2025. Early diagnosis of keratoconus using corneal biomechanics and OCT derived technologies. Eye and Vision 12 (1) 18. (10.1186/s40662-025-00435-3)
- Watanabe, S. et al., 2021. Human iPS cells engender corneal epithelial stem cells with holoclone-forming capabilities. iScience 24 (6) 102688. (10.1016/j.isci.2021.102688)
- Wong, A. et al., 2022. A composite system based upon hydroxypropyl cyclodextrins and soft hydrogel contact lenses for the delivery of therapeutic doses of econazole to the cornea, in vitro. Pharmaceutics 14 (8) e1631. (10.3390/pharmaceutics14081631)
- Wu, Y. et al., 2020. High-fat diet induces dry eye-like ocular surface damages in murine. The Ocular Surface 18 (2), pp.267-276. (10.1016/j.jtos.2020.02.009)
- Yamada, K. et al., 2015. Mesenchymal-epithelial cell interactions and proteoglycan matrix composition in the presumptive stem cell niche of the rabbit corneal limbus. Molecular Vision 21 , pp.1328-1329.
- Yamasaki, K. et al., 2008. Genomic Aberrations and Cellular Heterogeneity in SV40-Immortalized Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science 50 (2), pp.604-613. (10.1167/iovs.08-2239)
- Young, R. D. et al. 2019. Cell-independent matrix configuration in early corneal development. Experimental Eye Research 187 107772. (10.1016/j.exer.2019.107772)
- Young, R. D. et al. 2020. Observations on nascent matrix structures in embryonic cornea: Important in cell interactions, or merely vestiges of the lens surface?. Archives of Clinical and Experimental Ophthalmology 2 (2), pp.67-72. (10.46439/ophthalmology.2.014)
- Young, R. D. et al. 2014. Three-dimensional aspects of matrix assembly by cells in the developing cornea. Proceedings of the National Academy of Sciences 111 (2), pp.687-692. (10.1073/pnas.1313561110)
- Young, R. D. et al. 2007. Differential immunogold localisation of sulphated and unsulphated keratan sulphate proteoglycans in normal and macular dystrophy cornea using sulphation motif-specific antibodies. Histochemistry and Cell Biology 127 (1), pp.115-120. (10.1007/s00418-006-0228-8)
- Young, R. D. et al. 2006. Immunogold localization of keratan sulphate in macular corneal dystrophy using monoclonal antibodies to specific sulphation motifs [Abstract]. International Journal of Experimental Pathology 87 (1), pp.A49-A50. (10.1111/j.0959-9673.2006.00458.x)
- Young, R. D. et al. 2007. Keratan sulfate glycosaminoglycan and the association with collagen fibrils in rudimentary lamellae in the developing avian cornea. Investigative Ophthalmology and Visual Science 48 (7), pp.3083-3088. (10.1167/iovs.06-1323)
- Young, R. D. et al. 2011. Large Proteoglycan Complexes and Disturbed Collagen Architecture in the Corneal Extracellular Matrix of Mucopolysaccharidosis Type VII (Sly Syndrome). Investigative Ophthalmology & Visual Science 52 (9), pp.6720-6728. (10.1167/iovs.11-7377)
- Young, R. D. et al. 2006. Sulphation patterns of keratan sulphate proteoglycan in sclerocornea resemble cornea rather than sclera [Letter]. British Journal of Ophthalmology 90 (3), pp.391-393. (10.1136/bjo.2005.085803)
- Young, R. D. et al. 2009. Stromal Edema in Klf4 Conditional Null Mouse Cornea Is Associated with Altered Collagen Fibril Organization and Reduced Proteoglycans. Investigative Ophthalmology & Visual Science 50 (9), pp.4155-4161. (10.1167/iovs.09-3561)
- Young, R. D. et al. 2005. Atypical composition and ultrastructure of proteoglycans in the mouse corneal stroma. Investigative Ophthalmology and Visual Science 46 (6), pp.1973-1978. (10.1167/iovs.04-1309)
Book sections
- Knupp, C. et al. 2009. The architecture of the cornea and structural basis of its transparency. In: McPherson, A. ed. Advances in Protein Chemistry and Structural Biology. Vol. 78, London: Academic Press. , pp.25-49. (10.1016/S1876-1623(08)78002-7)
- Meek, K. M. et al. 2020. X-ray diffraction imaging of corneal ultrastructure. In: Ahearne, M. ed. Corneal Regeneration: Methods and Protocols. Vol. 2145, Methods in Molecular Biology New York, NY, USA: Humana. , pp.231-247. (10.1007/978-1-0716-0599-8_16)
Conferences
- Doutch, J. J. et al. 2006. Propagation of infrared wavelengths through the corneal stroma with reference to hydration changes. Presented at: Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII Saratov, Russia 26-29 September 2006. Published in: Tuchin, V. V. ed. Saratov Fall Meeting 2006: optical technologies in biophysics and medicine VIII. Proceedings of the SPIE Vol. 6535. Bellingham, WA: SPIE(10.1117/12.740963)
Research
Funding
Research Council and Major Charity Funding As Principal Investigator* or Co- Investigator
| 2001-2002 | *EPSRC Project Grant | 59,634 |
| 2001-2006 | MRC Programme Grant (Meek, Quantock, Hodson, Caterson) | 1,083,276 |
| 2003-2006 | *BBSRC Project Grant | 281,524 |
| 2004-2008 | *BBSRC Project Grant | 310,135 |
| 2005 | BBSRC Equipment Grant (Erichsen et al.) | 69,864 |
| 2005-2009 | *BBSRC Japan Partnering Award | 30,000 |
| 2007-2012 | MRC Project Grant (Meek, Quantock) | 1,351,744 |
| 2008-2011 | BBSRC Project Grant (Knupp, Quantock) | 387,000 |
| 2008-2011 | *EPSRC Project Grant | 843,159 |
| 2012-2017 | MRC Programme Grant (Meek, Boote, Knupp, Quantock) | 1,754,774 |
| 2012-2015 | *The Wellcome Trust/Department of Health | 543,126 |
Research Team
Dr Rob Young, Senior Research Associate, A new minimally-invasive treatment for corneal endothelial dysfunction, The Wellcome Trust/Department of Health, 2012-2015
Miss Stacy Littlechild, PhD Student, Sir Martin Evans University President's Research Scholarship.
Dr Alina Akhbanbetova, PhD Student, Ser Cymru National Research Network Scholarship.
Teaching
My main teaching in the School is on the first year module, Geometrical Optics, and in my supervision of third year project students. I also supervise the research projects of between four and six third year undergraduates each year, and within the university I teach on a third year 'Tissue Engineering' module in the School of Biosciences and on the Masters degree in the Cardiff Institute for Tissue Engineering and Repair.
Biography
Educational and Professional Qualifications
- 1991- Open University Oxford Research Unit, Oxford, UK, Ph.D., Biophysics.
- 1985-University of East Anglia, Norwich, UK, B.Sc. Physics
Honours and awards
- 2004- Daiwa Adrian Prize for excellence in Anglo-Japanese research
- 2012- Association for Research in Ophthalmology and Vision Sciences Silver Fellow
Academic positions
- 2009-present-Cardiff University, Cardiff, UK Professor: School of Optometry and Vision Sciences
- 2004-2009- Cardiff University, Cardiff, UKSenior Lecturer: School of Optometry and Vision Sciences
- 1999-2004- Cardiff University, Cardiff, UK Lecturer: School of Optometry and Vision Sciences
- 1996-1999 - Kyoto Prefectural University of Medicine Kyoto, Japan Research Associate: Department of Ophthalmology
- 1992-1996- Saint Louis University School of Medicine, St. Louis, USA. Research Associate: Department of Ophthalmology
- 1987-1992- Open University Oxford Research Unit, Oxford, UK Research Assistant: Biophysics Group
Committees and reviewing
- 2010-present- School of Optometry and Vision Sciences Director of Research
- 2012-present- Cardiff Institute of Tissue Engineering and Repair Executive Board
External committees
- 1999-2001- BBSRC Biology Neutron Advisort Panel
- 2005-2008- Association for Research in Ophthalmology and Vision Sciences Annual Meeting program Committee
- 2008- EPSRC Fellowship Panel
- 2008- EPSRC Physics Prioritisation Panel
- 2008-2011- External Examiner, Lancaster University, MSc Biophotonics
- 2009-2012- External Examiner, Swansea University, Foundations in Physiology
- 2010-present: External Examiner, Swansea University, BSc Medical Sciences and Humanities
- 2008-present: Wales Manager, Japan Society for the Promotion of Science Alumni Association
- 2009-present: Fellowship Panel: Japan Society for the Promotion of Science