Ms Emma Randall
Teams and roles for Emma Randall
Research Assistant, Dementia Research Institute
Publication
2024
- Larin, M. et al., 2024. Cas9 nickase-mediated contractions of CAG/CTG repeats are transcription-dependent and replication-independent. NAR Molecular Medicine 1 (4) ugae013. (10.1093/narmme/ugae013)
- Murillo, A. et al., 2024. I001 Cas9 nickase-mediated contraction of CAG repeats in Huntington’s disease. Journal of Neurology, Neurosurgery and Psychiatry 95 (Suppl), pp.A141-A142. (10.1136/jnnp-2024-EHDN.283)
- Randall, E. L. 2024. Cas9 nickase-mediated contraction of CAG/CTG repeats at multiple disease loci. [Online].bioRxiv: Cold Spring Harbor Laboratory. (10.1101/2024.02.19.580669)Available at: https://doi.org/10.1101/2024.02.19.580669.
2022
- Murillo, A. et al., 2022. I05 CRISPR-Cas9 nickase-mediated gene editing to treat Huntington’s disease. Journal of Neurology, Neurosurgery and Psychiatry 93 (Suppl) A86. (10.1136/jnnp-2022-ehdn.231)
- Taylor, A. et al. 2022. Repeat Detector: versatile sizing of expanded tandem repeats and identification of interrupted alleles from targeted DNA sequencing. NAR Genomics and Bioinformatics 4 (4) lqac089. (10.1093/nargab/lqac089)
2020
- Reid, R. J. et al., 2020. Assessing the acute toxicity of insecticides to the buff-tailed bumblebee (Bombus terrestris audax). Pesticide Biochemistry and Physiology 166 104562. (10.1016/j.pestbp.2020.104562)
- Ruiz Buendía, G. A. et al., 2020. Three-dimensional chromatin interactions remain stable upon CAG/CTG repeat expansion. Science Advances 6 (27) eaaz4012. (10.1126/sciadv.aaz4012)
- Singh, K. S. et al., 2020. The genetic architecture of a host shift: an adaptive walk protected an aphid and its endosymbiont from plant chemical defenses. Science Advances 6 (19) eaba1070. (10.1126/sciadv.aba1070)
2019
- Beadle, K. et al., 2019. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. PLoS Genetics 15 (2) e1007903. (10.1371/journal.pgen.1007903)
- Mallott, M. et al., 2019. A flavin-dependent monooxgenase confers resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology 115 103247. (10.1016/j.ibmb.2019.103247)
2018
- Manjon, C. et al., 2018. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Current Biology 28 (7), pp.1137-1143.e5. (10.1016/j.cub.2018.02.045)
- Zimmer, C. T. et al., 2018. Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper. Current Biology 28 (2), pp.268-274.e5. (10.1016/j.cub.2017.11.060)
2017
- Arce, A. N. et al., 2017. Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. Journal of Applied Ecology 54 (4), pp.1199-1208. (10.1111/1365-2664.12792)
- Zimmer, C. T. et al., 2017. Use of the synergist piperonyl butoxide can slow the development of alpha-cypermethrin resistance in the whitefly Bemisia tabaci. Insect Molecular Biology 26 (2), pp.152-163. (10.1111/imb.12276)
2016
- Berger, M. et al., 2016. Insecticide resistance mediated by an exon skipping event. Molecular Ecology 25 (22), pp.5692-5704. (10.1111/mec.13882)
Articles
- Arce, A. N. et al., 2017. Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. Journal of Applied Ecology 54 (4), pp.1199-1208. (10.1111/1365-2664.12792)
- Beadle, K. et al., 2019. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. PLoS Genetics 15 (2) e1007903. (10.1371/journal.pgen.1007903)
- Berger, M. et al., 2016. Insecticide resistance mediated by an exon skipping event. Molecular Ecology 25 (22), pp.5692-5704. (10.1111/mec.13882)
- Larin, M. et al., 2024. Cas9 nickase-mediated contractions of CAG/CTG repeats are transcription-dependent and replication-independent. NAR Molecular Medicine 1 (4) ugae013. (10.1093/narmme/ugae013)
- Mallott, M. et al., 2019. A flavin-dependent monooxgenase confers resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella. Insect Biochemistry and Molecular Biology 115 103247. (10.1016/j.ibmb.2019.103247)
- Manjon, C. et al., 2018. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Current Biology 28 (7), pp.1137-1143.e5. (10.1016/j.cub.2018.02.045)
- Murillo, A. et al., 2024. I001 Cas9 nickase-mediated contraction of CAG repeats in Huntington’s disease. Journal of Neurology, Neurosurgery and Psychiatry 95 (Suppl), pp.A141-A142. (10.1136/jnnp-2024-EHDN.283)
- Murillo, A. et al., 2022. I05 CRISPR-Cas9 nickase-mediated gene editing to treat Huntington’s disease. Journal of Neurology, Neurosurgery and Psychiatry 93 (Suppl) A86. (10.1136/jnnp-2022-ehdn.231)
- Reid, R. J. et al., 2020. Assessing the acute toxicity of insecticides to the buff-tailed bumblebee (Bombus terrestris audax). Pesticide Biochemistry and Physiology 166 104562. (10.1016/j.pestbp.2020.104562)
- Ruiz Buendía, G. A. et al., 2020. Three-dimensional chromatin interactions remain stable upon CAG/CTG repeat expansion. Science Advances 6 (27) eaaz4012. (10.1126/sciadv.aaz4012)
- Singh, K. S. et al., 2020. The genetic architecture of a host shift: an adaptive walk protected an aphid and its endosymbiont from plant chemical defenses. Science Advances 6 (19) eaba1070. (10.1126/sciadv.aba1070)
- Taylor, A. et al. 2022. Repeat Detector: versatile sizing of expanded tandem repeats and identification of interrupted alleles from targeted DNA sequencing. NAR Genomics and Bioinformatics 4 (4) lqac089. (10.1093/nargab/lqac089)
- Zimmer, C. T. et al., 2017. Use of the synergist piperonyl butoxide can slow the development of alpha-cypermethrin resistance in the whitefly Bemisia tabaci. Insect Molecular Biology 26 (2), pp.152-163. (10.1111/imb.12276)
- Zimmer, C. T. et al., 2018. Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper. Current Biology 28 (2), pp.268-274.e5. (10.1016/j.cub.2017.11.060)
Websites
- Randall, E. L. 2024. Cas9 nickase-mediated contraction of CAG/CTG repeats at multiple disease loci. [Online].bioRxiv: Cold Spring Harbor Laboratory. (10.1101/2024.02.19.580669)Available at: https://doi.org/10.1101/2024.02.19.580669.