Professor Simon Reed
Teams and roles for Simon Reed
Publication
2025
2024
2023
2022
2021
2020
2018
2017
2016
2015
- Bennett, M. R. et al. 2015. Sandcastle: software for revealing latent information in multiple experimental ChIP-chip datasets via a novel normalisation procedure. Scientific Reports 5 13395. (10.1038/srep13395)
- Menzies, G. et al. 2015. Base damage, local sequence context and TP53 mutation hotspots: a molecular dynamics study of benzo[a]pyrene induced DNA distortion and mutability. Nucleic Acids Research 43 (19), pp.9133-9146. (10.1093/nar/gkv910)
- Powell, J. R. et al., 2015. 3D-DIP-Chip: a microarray-based method to measure genomic DNA damage. Scientific Reports 5 7975. (10.1038/srep07975)
- Waters, R. , van Eijk, P. and Reed, S. 2015. Histone modification and chromatin remodeling during NER. DNA Repair 36 , pp.105-113. (10.1016/j.dnarep.2015.09.013)
- Zhou, Z. et al., 2015. UV induced ubiquitination of the yeast Rad4–Rad23 complex promotes survival by regulating cellular dNTP pools. Nucleic Acids Research 43 (15), pp.7360-7370. (10.1093/nar/gkv680)
2013
- Colmont, C. S. et al. 2013. Human basal cell carcinoma tumor-initiating cells are resistant to etoposide [Letter]. Journal of Investigative Dermatology 134 (3), pp.867-870. (10.1038/jid.2013.377)
- Colmont, C. S. et al. 2013. CD200-expressing human basal cell carcinoma cells initiate tumor growth. Proceedings of the National Academy of Sciences of the United States of America 110 (4), pp.1434-1439. (10.1073/pnas.1211655110)
- Powell, J. et al., 2013. Functional genome-wide analysis: a technical review, its developments and its relevance to cancer research. Recent Patents on DNA and Gene Sequences 7 (2), pp.157-166. (10.2174/18722156113079990020)
- Yu, Y. et al. 2013. Histone variant Htz1 promotes histone H3 acetylation to enhance nucleotide excision repair in Htz1 nucleosomes. Nucleic Acids Research 41 (19), pp.9006-9019. (10.1093/nar/gkt688)
2012
2011
2010
2009
2008
2007
2006
2005
2004
2001
Articles
- Bennett, M. R. et al. 2012. Bioinformatic analyses of genome wide nucleotide
excision repair datasets in Saccharomyces cerevisiae [Abstract]. Mutagenesis 27 (1), pp.121. (10.1093/mutage/ger068)
- Bennett, M. R. et al. 2015. Sandcastle: software for revealing latent information in multiple experimental ChIP-chip datasets via a novel normalisation procedure. Scientific Reports 5 13395. (10.1038/srep13395)
- Colmont, C. S. et al. 2013. Human basal cell carcinoma tumor-initiating cells are resistant to etoposide [Letter]. Journal of Investigative Dermatology 134 (3), pp.867-870. (10.1038/jid.2013.377)
- Colmont, C. S. et al. 2013. CD200-expressing human basal cell carcinoma cells initiate tumor growth. Proceedings of the National Academy of Sciences of the United States of America 110 (4), pp.1434-1439. (10.1073/pnas.1211655110)
- Dobbs, F. M. et al., 2022. Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq. Nature Communications 13 3989. (10.1038/s41467-022-31702-9)
- Fletcher, C. E. et al., 2022. A non-coding RNA balancing act: miR-346-induced DNA damage is limited by the long non-coding RNA NORAD in prostate cancer. Molecular Cancer 21 82. (10.1186/s12943-022-01540-w)
- Gillette, T. G. et al., 2001. The 19S complex of the proteasome regulates nucleotide excision repair in yeast. Genes & Development 15 (12), pp.1528-1539. (10.1101/gad.869601)
- Irizar, M. A. et al. 2010. Silenced yeast chromatin is maintained by Sir2 in preference to permitting histone acetylations for efficient NER. Nucleic Acids Research 38 (14), pp.4675-4686. (10.1093/nar/gkq242)
- Klapwijk, J. C. et al., 2024. Improving the assessment of risk factors relevant to potential carcinogenicity of gene therapies: a consensus article. Human Gene Therapy 35 (15-16), pp.527-542. (10.1089/hum.2024.033)
- Lynch, A. M. et al., 2023. Next Generation Sequencing Workshop at the Royal Society of Medicine (London, May 2022): how genomics is on the path to modernizing genetic toxicology. Mutagenesis (10.1093/mutage/gead012)
- Mackay, H. L. et al., 2024. USP50 suppresses alternative RecQ helicase use and deleterious DNA2 activity during replication. Nature Communications 15 8102. (10.1038/s41467-024-52250-4)
- Mehmood, A. et al., 2025. Association of DDR pathway proteins and breast cancer risk in a Pakistani population. Future Oncology (10.1080/14796694.2025.2581508)
- Menzies, G. et al. 2021. Carcinogen-induced DNA structural distortion differences in the RAS gene isoforms; the importance of local sequence. BMC Chemistry 15 51. (10.1186/s13065-021-00777-8)
- Menzies, G. et al. 2015. Base damage, local sequence context and TP53 mutation hotspots: a molecular dynamics study of benzo[a]pyrene induced DNA distortion and mutability. Nucleic Acids Research 43 (19), pp.9133-9146. (10.1093/nar/gkv910)
- Murat, P. et al., 2022. DNA replication initiation shapes the mutational landscape and expression of the human genome. Science Advances 8 (45)(10.1126/sciadv.add3686)
- Newton, M. D. et al., 2023. Negative DNA supercoiling induces genome-wide Cas9 off-target activity. Molecular Cell 83 (19), pp.3533-3545.e5. (10.1016/j.molcel.2023.09.008)
- Piasecka, A. et al. 2018. The Y. bercovieri Anbu crystal structure sheds light on the evolution of highly (pseudo)symmetric multimers. Journal of Molecular Biology 430 (5), pp.611-627. (10.1016/j.jmb.2017.11.016)
- Powell, J. et al., 2013. Functional genome-wide analysis: a technical review, its developments and its relevance to cancer research. Recent Patents on DNA and Gene Sequences 7 (2), pp.157-166. (10.2174/18722156113079990020)
- Powell, J. R. et al., 2015. 3D-DIP-Chip: a microarray-based method to measure genomic DNA damage. Scientific Reports 5 7975. (10.1038/srep07975)
- Reed, S. H. 2011. Nucleotide excision repair in chromatin: damage removal at the drop of a HAT. DNA Repair 10 (7), pp.734-742. (10.1016/j.dnarep.2011.04.029)
- Reed, S. H. et al. 2006. Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. Embo J 25 , pp.2529-2538. (10.1038/sj.emboj.7601120)
- Silver, H. R. et al., 2011. A role for SUMO in nucleotide excision repair. DNA Repair 10 (12), pp.1243-1251. (10.1016/j.dnarep.2011.09.013)
- Teng, Y. et al. 2011. A novel method for the genome-wide high resolution analysis of DNA damage. Nucleic Acids Research 39 (2) e10. (10.1093/nar/gkq1036)
- Teng, Y. et al. 2008. Saccharomyces cerevisiae Rad16 mediates ultraviolet-dependent histone H3 acetylation required for efficient global genome nucleotide-excision repair. EMBO Reports 9 (1), pp.97-102. (10.1038/sj.embor.7401112)
- Teng, Y. et al. 2009. Lux ex tenebris: Nucleotide resolution DNA repair and nucleosome mapping. Methods 48 (1), pp.23-34. (10.1016/j.ymeth.2009.02.017)
- van Eijk, P. et al., 2018. Nucleosome remodeling at origins of global genome?nucleotide excision repair occurs at the boundaries of higher-order chromatin structure. Genome Research 29 (1), pp.74-84. (10.1101/gr.237198.118)
- Wang, D. et al., 2018. XPF plays an indispensable role in relieving silver nanoparticle induced DNA damage stress in human cells. Toxicology Letters 288 , pp.44-54. (10.1016/j.toxlet.2018.02.022)
- Wang, D. et al., 2020. LRIK interacts with the Ku70–Ku80 heterodimer enhancing the efficiency of NHEJ repair. Cell Death and Differentiation 27 , pp.3337-3353. (10.1038/s41418-020-0581-5)
- Waters, R. et al. 2012. Nucleotide excision repair in cellular chromatin: studies with yeast from nucleotide to gene to genome. International Journal of Molecular Sciences 13 (9), pp.11141-11164. (10.3390/ijms130911141)
- Waters, R. et al. 2012. Emerging technologies in genotoxicity testing: measuring
DNA damage in entire genomes at high resolution [Abstract]. Mutagenesis 27 (1), pp.112. (10.1093/mutage/ger068)
- Waters, R. et al. 2009. Tilting at windmills? The nucleotide excision repair of chromosomal DNA. DNA Repair 8 (2), pp.146-152. (10.1016/j.dnarep.2008.11.001)
- Waters, R. , van Eijk, P. and Reed, S. 2015. Histone modification and chromatin remodeling during NER. DNA Repair 36 , pp.105-113. (10.1016/j.dnarep.2015.09.013)
- Yancoskie, M. N. et al., 2023. To incise or not and where: SET-domain methyltransferases know. Trends in Biochemical Sciences 48 (4), pp.321-330. (10.1016/j.tibs.2022.10.003)
- Yu, S. et al., 2016. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin. Genome Research 26 , pp.1376-1387. (10.1101/gr.209106.116)
- Yu, S. et al. 2004. The yeast Rad7/Rad16/Abf1 complex generates superhelical torsion in DNA that is required for nucleotide excision repair. DNA repair 3 (3), pp.277-287. (10.1016/j.dnarep.2003.11.004)
- Yu, S. et al. 2009. ABF1-binding sites promote efficient global genome nucleotide excision repair. Journal of Biological Chemistry 284 (2), pp.966-973. (10.1074/jbc.M806830200)
- Yu, S. et al. 2011. How chromatin is remodelled during DNA repair of UV-induced DNA damage in Saccharomyces cerevisiae. PLoS Genetics 7 (6) e1002124. (10.1371/journal.pgen.1002124)
- Yu, Y. et al. 2013. Histone variant Htz1 promotes histone H3 acetylation to enhance nucleotide excision repair in Htz1 nucleosomes. Nucleic Acids Research 41 (19), pp.9006-9019. (10.1093/nar/gkt688)
- Yu, Y. et al. 2005. UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proceedings of the National Academy of Sciences 102 (24), pp.8650-8655. (10.1073/pnas.0501458102)
- Zhou, Z. et al., 2015. UV induced ubiquitination of the yeast Rad4–Rad23 complex promotes survival by regulating cellular dNTP pools. Nucleic Acids Research 43 (15), pp.7360-7370. (10.1093/nar/gkv680)
- Zuo, Y. et al., 2024. Long non-coding RNA LIP interacts with PARP-1 influencing the efficiency of base excision repair. Non-coding RNA Research 9 (3), pp.649-658. (10.1016/j.ncrna.2024.03.010)
Book sections
Monographs