Dr Henrik Sass
Teams and roles for Henrik Sass
Senior Lecturer
Overview
- Biogeochemistry
- Microbial Diversity
- Microbial Physiology
- Ecology
- Deep Biosphere
Publication
2025
- Soares, A. et al., 2025. Hydrogeological and geological partitioning of iron and sulfur cycling bacterial consortia in subsurface coal-based mine waters. FEMS Microbiology Ecology 101 (5) fiaf039. (10.1093/femsec/fiaf039)
2023
- Spencer, C. , Sass, H. and van Paassen, L. 2023. Increased microbially induced calcium carbonate precipitation (MICP) efficiency in multiple treatment sand biocementation processes by augmentation of cementation medium with ammonium chloride. Geotechnics 3 (4) 3040057. (10.3390/geotechnics3040057)
- Webster, G. et al. 2023. Methanogen activity and microbial diversity in Gulf of Cádiz mud volcano sediments. Frontiers in Microbiology 14 1157337. (10.3389/fmicb.2023.1157337)
2021
- Freitas, F. S. et al., 2021. New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation. Biogeosciences 18 , pp.4651-4679. (10.5194/bg-18-4651-2021)
2020
- Poniecka, E. A. et al. 2020. Physiological capabilities of cryoconite hole microorganisms. Frontiers in Microbiology 11 1783. (10.3389/fmicb.2020.01783)
- Spencer, C. , Sass, H. and van Paassen, L. 2020. Effect of jute fibres on the process of MICP and properties of biocemented sand. Materials 13 (23) 5429. (10.3390/ma13235429)
2019
- Parkes, R. J. et al. 2019. Rock-crushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere.. Environmental Microbiology Reports 11 (2), pp.165-172. (10.1111/1758-2229.12723)
- Sass, H. , Parkes, R. J. and Webster, G. 2019. Marine deep biosphere. In: Reference Module in Life Sciences. Elsevier. , pp.18-27. (10.1016/B978-0-12-809633-8.13031-6)
- Spencer, C. and Sass, H. 2019. Development of self-healing biocement. Presented at: 8th Congress of European Microbiologists (FEMS2019) Glasgow 07 - 11 Jul 2019. , pp.-.
- Spencer, C. and Sass, H. 2019. Use of carrier materials to immobilise and supply cementation medium for microbially mediated self-healing in biocement. Presented at: 4th International Conference “Innovative Materials, Structures and Technologies” (IMST 2019) Riga, Latvia 25 - 27 September 2019. IOP Conference Series: Materials Science and Engineering. Vol. 660.Vol. 012067. IOP Publishing(10.1088/1757-899X/660/1/012067)
- Webster, G. et al. 2019. Genome sequences of two choline-utilising methanogenic archaea, Methanococcoides spp., isolated from marine sediments. Microbiology Resource Announcements 8 (18) e00342-19. (10.1128/MRA.00342-19)
2018
- Poniecka, E. et al., 2018. Rapid development of anoxic niches in supraglacial ecosystems. Arctic, Antarctic, and Alpine Research 50 (1) S100015. (10.1080/15230430.2017.1420859)
2016
- Nobu, M. K. et al., 2016. Phylogeny and physiology of candidate phylum 'Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics. ISME Journal 10 (2), pp.273-286. (10.1038/ismej.2015.97)
- Sass, H. and Parkes, R. J. 2016. Deep sub-surface. In: Reference Module in Life Sciences. Elsevier(10.1016/B978-012373944-5.00275-3)
2015
- O'Sullivan, L. A. et al. 2015. Survival of Desulfotomaculum spores from estuarine sediments after serial autoclaving and high-temperature exposure. ISME Journal 9 , pp.922-933. (10.1038/ismej.2014.190)
- Roussel, E. G. P. et al. 2015. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes. FEMS Microbiology Ecology 91 (8) fiv084. (10.1093/femsec/fiv084)
2014
- Parkes, R. J. et al. 2014. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Marine Geology 352 , pp.409-425. (10.1016/j.margeo.2014.02.009)
- Parkes, R. J. et al. 2014. Studies on prokaryotic populations and processes in subseafloor sediments - an update. In: Kallmeyer, J. and Wagner, D. eds. Microbial Life of the Deep Biosphere. Berlin: de Gruyter. , pp.1-325.
- Watkins, A. J. et al. 2014. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.). Applied and Environmental Microbiology 80 , pp.289-293. (10.1128/AEM.03076-13)
2013
- Seidel, M. et al., 2013. Phosphate-free ornithine lipid contents in Desulfovibrio spp. respond to growth temperature. Organic Geochemistry 59 , pp.133-142. (10.1016/j.orggeochem.2013.04.004)
2012
- Seidel, M. et al., 2012. Advection and diffusion determine vertical distribution of microbial communities in intertidal sediments as revealed by combined biogeochemical and molecular biological analysis. Organic Geochemistry 52 , pp.114-129. (10.1016/j.orggeochem.2012.08.015)
- Watkins, A. J. et al. 2012. Choline and N,N-Dimethylethanolamine as direct substrates for methanogens. Applied and Environmental Microbiology 78 (23), pp.8298-8303. (10.1128/AEM.01941-12)
2011
- Parkes, R. J. et al. 2011. Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity. Geology 39 (3), pp.219-222. (10.1130/G31598.1)
- Sass, H. and Parkes, R. J. 2011. Deep sub-surface. In: Schmidt, T. M. and Schaechter, M. eds. Topics in Ecological and Environmental Microbiology. Academic Press. , pp.393-407.
- Sass, H. and Parkes, R. J. 2011. Sub-seafloor sediments: an extreme but globally Significant prokaryotic habitat (Taxonomy, Diversity, Ecology). In: Horikoshi, K. ed. Extremophiles Handbook. Vol. 2, Springer Reference New York: Springer. , pp.1015-1042. (10.1007/978-4-431-53898-1_49)
- Webster, G. et al. 2011. Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark under heterotrophic conditions. FEMS Microbiology Ecology 77 (2), pp.248-263. (10.1111/j.1574-6941.2011.01109.x)
2010
- Parkes, R. J. et al. 2010. Methods for studying methanogens and methanogenesis in marine sediments. In: Timmis, K. H. ed. Handbook of Hydrocarbon and Lipid Microbiology. Vol. 5, Springer Reference Springer. , pp.3799-3827. (10.1007/978-3-540-77587-4_299)
- Sass, H. et al. 2010. Tateyamaria pelophila sp. nov., a facultatively anaerobic alphaproteobacterium isolated from tidal-flat sediment, and emended descriptions of the genus Tateyamaria and of Tateyamaria omphalii. International Journal of Systematic and Evolutionary Microbiology 60 (8), pp.1770-1777. (10.1099/ijs.0.013524-0)
2009
- Freese, E. et al., 2009. Gammaproteobacteria as a possible source of Eicosapentaenoic Acid in anoxic intertidal sediments. Microbial Ecology 57 (3), pp.444-454. (10.1007/s00248-008-9443-2)
- Fry, J. C. et al. 2009. Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6–2.3 km) above ∼ 150 Ma basement rock. Geomicrobiology Journal 26 (3), pp.163-178. (10.1080/01490450902724832)
- Parkes, R. J. and Sass, H. 2009. Deep Sub-Surface. In: Schaechter, M. ed. Encyclopedia of Microbiology. 3rd ed.. Academic Press. , pp.64-79. (10.1016/B978-012373944-5.00275-3)
- Parkes, R. J. et al. 2009. Culturable prokaryotic diversity of deep, gas hydrate sediments: First use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environmental Microbiology 11 (12), pp.3140-3153. (10.1111/j.1462-2920.2009.02018.x)
- Sass, H. et al. 2009. Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal(loid)-contaminated freshwater sediment. International Journal of Systematic and Evolutionary Microbiology 59 (9), pp.2208-2214. (10.1099/ijs.0.016709-0)
- Webster, G. et al. 2009. Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environmental Microbiology 11 (1), pp.239-257. (10.1111/j.1462-2920.2008.01759.x)
2008
- Fichtel, J. et al., 2008. High variations in endospore numbers within tidal flat sediments revealed by quantification of dipicolinic acid. Geomicrobiology Journal 25 (7-8), pp.371-380. (10.1080/01490450802402877)
- Fichtel, J. , Sass, H. and Rullkötter, J. 2008. Assessment of spore contamination in pepper by determination of dipicolinic acid with a highly sensitive HPLC approach. Food Control 19 (10), pp.1006-1010. (10.1016/j.foodcont.2007.09.006)
- Freese, E. et al., 2008. Variable temperature-related changes in fatty acid composition of bacterial isolates from German Wadden sea sediments representing different bacterial phyla. Organic Geochemistry 39 (10), pp.1427-1438. (10.1016/j.orggeochem.2008.06.005)
- Gittel, A. et al., 2008. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Environmental Microbiology 10 (10), pp.2645-2658. (10.1111/j.1462-2920.2008.01686.x)
- Sass, A. et al. 2008. Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Saline Systems 4 (8), pp.1-11. (10.1186/1746-1448-4-8)
- Süß, J. et al., 2008. Two distinct Photobacterium populations thrive in ancient Mediterranean sapropels. Microbial Ecology 55 (3), pp.371-383. (10.1007/s00248-007-9282-6)
2007
- Batzke, A. et al., 2007. Phylogenetic and Physiological Diversity of Cultured Deep-Biosphere Bacteria from Equatorial Pacific Ocean and Peru Margin Sediments. Geomicrobiology Journal 24 (3-4), pp.261-273. (10.1080/01490450701456453)
- Fichtel, J. et al., 2007. Spore dipicolinic acid contents used for estimating the number of endospores in sediments. FEMS Microbiology Ecology 61 (3), pp.522-532. (10.1111/j.1574-6941.2007.00354.x)
- Fichtel, J. et al., 2007. A highly sensitive HPLC method for determination of nanomolar concentrations of dipicolinic acid, a characteristic constituent of bacterial endospores. Journal of Microbiological Methods 70 (2), pp.319-327. (10.1016/j.mimet.2007.05.008)
- Parkes, R. J. and Sass, H. 2007. The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance. In: Barton, L. L. and Hamilton, W. A. eds. Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge: Cambridge University Press. , pp.329-358. (10.1017/CBO9780511541490.012)
- Sass, H. and Cypionka, H. 2007. Response of sulphate-reducing bacteria to oxygen. In: Barton, L. L. and Hamilton, W. A. eds. Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge: Cambridge University Press. , pp.167-183. (10.1017/CBO9780511541490.006)
- Webster, G. et al. 2007. Distribution of candidate division JS1 and other Bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCR-DGGE. FEMS Microbiology Ecology 62 (1), pp.78-89. (10.1111/j.1574-6941.2007.00372.x)
- Wilms, R. et al., 2007. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiology Ecology 59 (3), pp.611-621. (10.1111/j.1574-6941.2006.00225.x)
2006
- Martens-Habbena, W. and Sass, H. 2006. Sensitive determination of microbial growth by nucleic acid staining in aqueous suspension. Applied and environmental microbiology 72 (1), pp.87-95. (10.1128/AEM.72.1.87-95.2006)
- Ramamoorthy, S. et al., 2006. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. International Journal of Systematic and Evolutionary Microbiology 56 (12), pp.2729-2736. (10.1099/ijs.0.63610-0)
- Süß, J. et al., 2006. Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments. Environmental Microbiology 8 (10), pp.1753-1763. (10.1111/j.1462-2920.2006.01058.x)
- Wilms, R. et al., 2006. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environmental Microbiology 8 (4), pp.709-719. (10.1111/j.1462-2920.2005.00949.x)
- Wilms, R. et al., 2006. Specific Bacterial, Archaeal, and Eukaryotic Communities in Tidal-Flat Sediments along a Vertical Profile of Several Meters. Applied and Environmental Microbiology 72 (4), pp.2756-2764. (10.1128/AEM.72.4.2756-2764.2006)
2005
- Köpke, B. et al., 2005. Microbial diversity in coastal subsurface sediments - a cultivation approach using various electron acceptors and substrate gradients. Applied and environmental microbiology 71 (12), pp.7819-7830. (10.1128/AEM.71.12.7819-7830.2005)
- Warthmann, R. et al., 2005. Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation. Extremophiles 9 (3), pp.255-261. (10.1007/s00792-005-0441-8)
2004
- D'Hondt, S. et al., 2004. Distributions of Microbial Activities in Deep Subseafloor Sediments. Science 306 (5705), pp.2216-2221. (10.1126/science.1101155)
- Sass, H. and Cypionka, H. 2004. Isolation of Sulfate-Reducing Bacteria from the Terrestrial Deep Subsurface and Description of Desulfovibrio cavernae sp. nov. Systematic and Applied Microbiology 27 (5), pp.541-548. (10.1078/0723202041748181)
- Sass, H. et al. 2004. Desulfosporomusa polytropa gen. nov., sp. nov., a novel sulfate-reducing bacterium from sediments of an oligotrophic lake. Archives of Microbiology 182 (2-3), pp.204-211. (10.1007/s00203-004-0703-3)
- Süß, J. et al., 2004. Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiology Ecology 51 (1), pp.109-121. (10.1016/j.femsec.2004.07.010)
2003
- Sass, H. , Babenzien, C. and Babenzien, H. 2003. Sulfate reduction in the oligotrophic Lake Stechlin. Advances in Limnology 58 , pp.37-52.
- Sass, H. , Engelen, B. and Cypionka, H. 2003. Die tiefe Biosphäre – Mikrobiologie der Erdkruste. Biospektrum (5), pp.589-591.
2002
- Coolen, M. J. L. et al., 2002. Ongoing modification of Mediterranean Pleistocene Sapropels Mediated by Prokaryotes. Science 296 (5577), pp.2407-2410. (10.1126/science.1071893)
- Rütters, H. et al., 2002. Microbial communities in a Wadden Sea sediment core—clues from analyses of intact glyceride lipids, and released fatty acids. Organic Geochemistry 33 (7), pp.803-816. (10.1016/S0146-6380(02)00028-1)
- Rütters, H. et al., 2002. Phospholipid analysis as a tool to study complex microbial communities in marine sediments. Journal of Microbiological Methods 48 (2-3), pp.149-160. (10.1016/S0167-7012(01)00319-0)
- Sass, A. et al. 2002. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiology Ecology 40 (1), pp.47-54. (10.1111/j.1574-6941.2002.tb00935.x)
- Sass, A. et al. 2002. Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Archives of Microbiology 177 (6), pp.468-474. (10.1007/s00203-002-0415-5)
2001
- Rütters, H. et al., 2001. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Archives of Microbiology 176 (6), pp.435-442. (10.1007/s002030100343)
- Sass, A. et al. 2001. Microbial Communities in the Chemocline of a Hypersaline Deep-Sea Basin (Urania Basin, Mediterranean Sea). Applied and Environmental Microbiology 67 (12), pp.5392-5402. (10.1128/AEM.67.12.5392-5402.2001)
1999
- Babenzien, H. and Sass, H. 1999. Desulfurikation. In: von Tümpling, W. and Friedrich, G. eds. Methoden der biologischen Gewässeruntersuchung. Jena: Gustav Fischer Verlag. , pp.435-444.
- Fröhlich, J. et al., 1999. Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Canadian Journal of Microbiology 45 (2), pp.145-152. (10.1139/w98-222)
1998
- Overmann, J. et al., 1998. The ecological niche of the consortium " Pelochromatium roseum ". Archives of Microbiology 169 (2), pp.120-128. (10.1007/s002030050551)
- Sass, H. et al. 1998. Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Systematic and Applied Microbiology 21 (2), pp.212-219.
- Sass, H. et al. 1998. High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Archives of Microbiology 170 (4), pp.243-251. (10.1007/s002030050639)
1997
- Sass, H. , Cypionka, H. and Babenzien, H. 1997. Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiology Ecology 22 (3), pp.245-255. (10.1111/j.1574-6941.1997.tb00377.x)
1996
- Babenzien, H. and Sass, H. 1996. The sediment-water interface - habitat of the unusual bacterium Achromatium oxaliferum. Advances in Limnology 48 , pp.247-251.
- Sass, H. , Cypionka, H. and Babenzien, H. 1996. Sulfate-reducing bacteria from the oxic sediment layers of the oligotrophic Lake Stechlin. Advances in Limnology 48 , pp.241-246.
1992
- Sass, H. et al. 1992. Formation of thionates by freshwater and marine strains of sulfate-reducing bacteria. Archives of Microbiology 158 (6), pp.418-421. (10.1007/BF00276302)
Articles
- Babenzien, H. and Sass, H. 1996. The sediment-water interface - habitat of the unusual bacterium Achromatium oxaliferum. Advances in Limnology 48 , pp.247-251.
- Batzke, A. et al., 2007. Phylogenetic and Physiological Diversity of Cultured Deep-Biosphere Bacteria from Equatorial Pacific Ocean and Peru Margin Sediments. Geomicrobiology Journal 24 (3-4), pp.261-273. (10.1080/01490450701456453)
- Coolen, M. J. L. et al., 2002. Ongoing modification of Mediterranean Pleistocene Sapropels Mediated by Prokaryotes. Science 296 (5577), pp.2407-2410. (10.1126/science.1071893)
- D'Hondt, S. et al., 2004. Distributions of Microbial Activities in Deep Subseafloor Sediments. Science 306 (5705), pp.2216-2221. (10.1126/science.1101155)
- Fichtel, J. et al., 2008. High variations in endospore numbers within tidal flat sediments revealed by quantification of dipicolinic acid. Geomicrobiology Journal 25 (7-8), pp.371-380. (10.1080/01490450802402877)
- Fichtel, J. et al., 2007. Spore dipicolinic acid contents used for estimating the number of endospores in sediments. FEMS Microbiology Ecology 61 (3), pp.522-532. (10.1111/j.1574-6941.2007.00354.x)
- Fichtel, J. et al., 2007. A highly sensitive HPLC method for determination of nanomolar concentrations of dipicolinic acid, a characteristic constituent of bacterial endospores. Journal of Microbiological Methods 70 (2), pp.319-327. (10.1016/j.mimet.2007.05.008)
- Fichtel, J. , Sass, H. and Rullkötter, J. 2008. Assessment of spore contamination in pepper by determination of dipicolinic acid with a highly sensitive HPLC approach. Food Control 19 (10), pp.1006-1010. (10.1016/j.foodcont.2007.09.006)
- Freese, E. et al., 2008. Variable temperature-related changes in fatty acid composition of bacterial isolates from German Wadden sea sediments representing different bacterial phyla. Organic Geochemistry 39 (10), pp.1427-1438. (10.1016/j.orggeochem.2008.06.005)
- Freese, E. et al., 2009. Gammaproteobacteria as a possible source of Eicosapentaenoic Acid in anoxic intertidal sediments. Microbial Ecology 57 (3), pp.444-454. (10.1007/s00248-008-9443-2)
- Freitas, F. S. et al., 2021. New insights into large-scale trends of apparent organic matter reactivity in marine sediments and patterns of benthic carbon transformation. Biogeosciences 18 , pp.4651-4679. (10.5194/bg-18-4651-2021)
- Fröhlich, J. et al., 1999. Isolation of Desulfovibrio intestinalis sp. nov. from the hindgut of the lower termite Mastotermes darwiniensis. Canadian Journal of Microbiology 45 (2), pp.145-152. (10.1139/w98-222)
- Fry, J. C. et al. 2009. Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6–2.3 km) above ∼ 150 Ma basement rock. Geomicrobiology Journal 26 (3), pp.163-178. (10.1080/01490450902724832)
- Gittel, A. et al., 2008. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Environmental Microbiology 10 (10), pp.2645-2658. (10.1111/j.1462-2920.2008.01686.x)
- Köpke, B. et al., 2005. Microbial diversity in coastal subsurface sediments - a cultivation approach using various electron acceptors and substrate gradients. Applied and environmental microbiology 71 (12), pp.7819-7830. (10.1128/AEM.71.12.7819-7830.2005)
- Martens-Habbena, W. and Sass, H. 2006. Sensitive determination of microbial growth by nucleic acid staining in aqueous suspension. Applied and environmental microbiology 72 (1), pp.87-95. (10.1128/AEM.72.1.87-95.2006)
- Nobu, M. K. et al., 2016. Phylogeny and physiology of candidate phylum 'Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics. ISME Journal 10 (2), pp.273-286. (10.1038/ismej.2015.97)
- O'Sullivan, L. A. et al. 2015. Survival of Desulfotomaculum spores from estuarine sediments after serial autoclaving and high-temperature exposure. ISME Journal 9 , pp.922-933. (10.1038/ismej.2014.190)
- Overmann, J. et al., 1998. The ecological niche of the consortium " Pelochromatium roseum ". Archives of Microbiology 169 (2), pp.120-128. (10.1007/s002030050551)
- Parkes, R. J. et al. 2019. Rock-crushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere.. Environmental Microbiology Reports 11 (2), pp.165-172. (10.1111/1758-2229.12723)
- Parkes, R. J. et al. 2014. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Marine Geology 352 , pp.409-425. (10.1016/j.margeo.2014.02.009)
- Parkes, R. J. et al. 2011. Prokaryotes stimulate mineral H2 formation for the deep biosphere and subsequent thermogenic activity. Geology 39 (3), pp.219-222. (10.1130/G31598.1)
- Parkes, R. J. et al. 2009. Culturable prokaryotic diversity of deep, gas hydrate sediments: First use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). Environmental Microbiology 11 (12), pp.3140-3153. (10.1111/j.1462-2920.2009.02018.x)
- Poniecka, E. et al., 2018. Rapid development of anoxic niches in supraglacial ecosystems. Arctic, Antarctic, and Alpine Research 50 (1) S100015. (10.1080/15230430.2017.1420859)
- Poniecka, E. A. et al. 2020. Physiological capabilities of cryoconite hole microorganisms. Frontiers in Microbiology 11 1783. (10.3389/fmicb.2020.01783)
- Ramamoorthy, S. et al., 2006. Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. International Journal of Systematic and Evolutionary Microbiology 56 (12), pp.2729-2736. (10.1099/ijs.0.63610-0)
- Roussel, E. G. P. et al. 2015. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes. FEMS Microbiology Ecology 91 (8) fiv084. (10.1093/femsec/fiv084)
- Rütters, H. et al., 2002. Microbial communities in a Wadden Sea sediment core—clues from analyses of intact glyceride lipids, and released fatty acids. Organic Geochemistry 33 (7), pp.803-816. (10.1016/S0146-6380(02)00028-1)
- Rütters, H. et al., 2001. Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Archives of Microbiology 176 (6), pp.435-442. (10.1007/s002030100343)
- Rütters, H. et al., 2002. Phospholipid analysis as a tool to study complex microbial communities in marine sediments. Journal of Microbiological Methods 48 (2-3), pp.149-160. (10.1016/S0167-7012(01)00319-0)
- Sass, A. et al. 2002. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiology Ecology 40 (1), pp.47-54. (10.1111/j.1574-6941.2002.tb00935.x)
- Sass, A. et al. 2008. Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Saline Systems 4 (8), pp.1-11. (10.1186/1746-1448-4-8)
- Sass, A. et al. 2002. Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Archives of Microbiology 177 (6), pp.468-474. (10.1007/s00203-002-0415-5)
- Sass, A. et al. 2001. Microbial Communities in the Chemocline of a Hypersaline Deep-Sea Basin (Urania Basin, Mediterranean Sea). Applied and Environmental Microbiology 67 (12), pp.5392-5402. (10.1128/AEM.67.12.5392-5402.2001)
- Sass, H. , Babenzien, C. and Babenzien, H. 2003. Sulfate reduction in the oligotrophic Lake Stechlin. Advances in Limnology 58 , pp.37-52.
- Sass, H. et al. 1998. Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Systematic and Applied Microbiology 21 (2), pp.212-219.
- Sass, H. and Cypionka, H. 2004. Isolation of Sulfate-Reducing Bacteria from the Terrestrial Deep Subsurface and Description of Desulfovibrio cavernae sp. nov. Systematic and Applied Microbiology 27 (5), pp.541-548. (10.1078/0723202041748181)
- Sass, H. , Cypionka, H. and Babenzien, H. 1996. Sulfate-reducing bacteria from the oxic sediment layers of the oligotrophic Lake Stechlin. Advances in Limnology 48 , pp.241-246.
- Sass, H. , Cypionka, H. and Babenzien, H. 1997. Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiology Ecology 22 (3), pp.245-255. (10.1111/j.1574-6941.1997.tb00377.x)
- Sass, H. , Engelen, B. and Cypionka, H. 2003. Die tiefe Biosphäre – Mikrobiologie der Erdkruste. Biospektrum (5), pp.589-591.
- Sass, H. et al. 2010. Tateyamaria pelophila sp. nov., a facultatively anaerobic alphaproteobacterium isolated from tidal-flat sediment, and emended descriptions of the genus Tateyamaria and of Tateyamaria omphalii. International Journal of Systematic and Evolutionary Microbiology 60 (8), pp.1770-1777. (10.1099/ijs.0.013524-0)
- Sass, H. et al. 2004. Desulfosporomusa polytropa gen. nov., sp. nov., a novel sulfate-reducing bacterium from sediments of an oligotrophic lake. Archives of Microbiology 182 (2-3), pp.204-211. (10.1007/s00203-004-0703-3)
- Sass, H. et al. 2009. Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal(loid)-contaminated freshwater sediment. International Journal of Systematic and Evolutionary Microbiology 59 (9), pp.2208-2214. (10.1099/ijs.0.016709-0)
- Sass, H. et al. 1992. Formation of thionates by freshwater and marine strains of sulfate-reducing bacteria. Archives of Microbiology 158 (6), pp.418-421. (10.1007/BF00276302)
- Sass, H. et al. 1998. High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Archives of Microbiology 170 (4), pp.243-251. (10.1007/s002030050639)
- Seidel, M. et al., 2012. Advection and diffusion determine vertical distribution of microbial communities in intertidal sediments as revealed by combined biogeochemical and molecular biological analysis. Organic Geochemistry 52 , pp.114-129. (10.1016/j.orggeochem.2012.08.015)
- Seidel, M. et al., 2013. Phosphate-free ornithine lipid contents in Desulfovibrio spp. respond to growth temperature. Organic Geochemistry 59 , pp.133-142. (10.1016/j.orggeochem.2013.04.004)
- Soares, A. et al., 2025. Hydrogeological and geological partitioning of iron and sulfur cycling bacterial consortia in subsurface coal-based mine waters. FEMS Microbiology Ecology 101 (5) fiaf039. (10.1093/femsec/fiaf039)
- Spencer, C. , Sass, H. and van Paassen, L. 2020. Effect of jute fibres on the process of MICP and properties of biocemented sand. Materials 13 (23) 5429. (10.3390/ma13235429)
- Spencer, C. , Sass, H. and van Paassen, L. 2023. Increased microbially induced calcium carbonate precipitation (MICP) efficiency in multiple treatment sand biocementation processes by augmentation of cementation medium with ammonium chloride. Geotechnics 3 (4) 3040057. (10.3390/geotechnics3040057)
- Süß, J. et al., 2004. Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiology Ecology 51 (1), pp.109-121. (10.1016/j.femsec.2004.07.010)
- Süß, J. et al., 2008. Two distinct Photobacterium populations thrive in ancient Mediterranean sapropels. Microbial Ecology 55 (3), pp.371-383. (10.1007/s00248-007-9282-6)
- Süß, J. et al., 2006. Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments. Environmental Microbiology 8 (10), pp.1753-1763. (10.1111/j.1462-2920.2006.01058.x)
- Warthmann, R. et al., 2005. Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation. Extremophiles 9 (3), pp.255-261. (10.1007/s00792-005-0441-8)
- Watkins, A. J. et al. 2014. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.). Applied and Environmental Microbiology 80 , pp.289-293. (10.1128/AEM.03076-13)
- Watkins, A. J. et al. 2012. Choline and N,N-Dimethylethanolamine as direct substrates for methanogens. Applied and Environmental Microbiology 78 (23), pp.8298-8303. (10.1128/AEM.01941-12)
- Webster, G. et al. 2009. Subsurface microbiology and biogeochemistry of a deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). Environmental Microbiology 11 (1), pp.239-257. (10.1111/j.1462-2920.2008.01759.x)
- Webster, G. et al. 2023. Methanogen activity and microbial diversity in Gulf of Cádiz mud volcano sediments. Frontiers in Microbiology 14 1157337. (10.3389/fmicb.2023.1157337)
- Webster, G. et al. 2019. Genome sequences of two choline-utilising methanogenic archaea, Methanococcoides spp., isolated from marine sediments. Microbiology Resource Announcements 8 (18) e00342-19. (10.1128/MRA.00342-19)
- Webster, G. et al. 2011. Enrichment and cultivation of prokaryotes associated with the sulphate-methane transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark under heterotrophic conditions. FEMS Microbiology Ecology 77 (2), pp.248-263. (10.1111/j.1574-6941.2011.01109.x)
- Webster, G. et al. 2007. Distribution of candidate division JS1 and other Bacteria in tidal sediments of the German Wadden Sea using targeted 16S rRNA gene PCR-DGGE. FEMS Microbiology Ecology 62 (1), pp.78-89. (10.1111/j.1574-6941.2007.00372.x)
- Wilms, R. et al., 2006. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environmental Microbiology 8 (4), pp.709-719. (10.1111/j.1462-2920.2005.00949.x)
- Wilms, R. et al., 2007. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiology Ecology 59 (3), pp.611-621. (10.1111/j.1574-6941.2006.00225.x)
- Wilms, R. et al., 2006. Specific Bacterial, Archaeal, and Eukaryotic Communities in Tidal-Flat Sediments along a Vertical Profile of Several Meters. Applied and Environmental Microbiology 72 (4), pp.2756-2764. (10.1128/AEM.72.4.2756-2764.2006)
Book sections
- Babenzien, H. and Sass, H. 1999. Desulfurikation. In: von Tümpling, W. and Friedrich, G. eds. Methoden der biologischen Gewässeruntersuchung. Jena: Gustav Fischer Verlag. , pp.435-444.
- Parkes, R. J. and Sass, H. 2009. Deep Sub-Surface. In: Schaechter, M. ed. Encyclopedia of Microbiology. 3rd ed.. Academic Press. , pp.64-79. (10.1016/B978-012373944-5.00275-3)
- Parkes, R. J. and Sass, H. 2007. The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance. In: Barton, L. L. and Hamilton, W. A. eds. Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge: Cambridge University Press. , pp.329-358. (10.1017/CBO9780511541490.012)
- Parkes, R. J. et al. 2014. Studies on prokaryotic populations and processes in subseafloor sediments - an update. In: Kallmeyer, J. and Wagner, D. eds. Microbial Life of the Deep Biosphere. Berlin: de Gruyter. , pp.1-325.
- Parkes, R. J. et al. 2010. Methods for studying methanogens and methanogenesis in marine sediments. In: Timmis, K. H. ed. Handbook of Hydrocarbon and Lipid Microbiology. Vol. 5, Springer Reference Springer. , pp.3799-3827. (10.1007/978-3-540-77587-4_299)
- Sass, H. and Cypionka, H. 2007. Response of sulphate-reducing bacteria to oxygen. In: Barton, L. L. and Hamilton, W. A. eds. Sulphate-Reducing Bacteria: Environmental and Engineered Systems. Cambridge: Cambridge University Press. , pp.167-183. (10.1017/CBO9780511541490.006)
- Sass, H. and Parkes, R. J. 2011. Deep sub-surface. In: Schmidt, T. M. and Schaechter, M. eds. Topics in Ecological and Environmental Microbiology. Academic Press. , pp.393-407.
- Sass, H. and Parkes, R. J. 2016. Deep sub-surface. In: Reference Module in Life Sciences. Elsevier(10.1016/B978-012373944-5.00275-3)
- Sass, H. and Parkes, R. J. 2011. Sub-seafloor sediments: an extreme but globally Significant prokaryotic habitat (Taxonomy, Diversity, Ecology). In: Horikoshi, K. ed. Extremophiles Handbook. Vol. 2, Springer Reference New York: Springer. , pp.1015-1042. (10.1007/978-4-431-53898-1_49)
- Sass, H. , Parkes, R. J. and Webster, G. 2019. Marine deep biosphere. In: Reference Module in Life Sciences. Elsevier. , pp.18-27. (10.1016/B978-0-12-809633-8.13031-6)
Conferences
- Spencer, C. and Sass, H. 2019. Development of self-healing biocement. Presented at: 8th Congress of European Microbiologists (FEMS2019) Glasgow 07 - 11 Jul 2019. , pp.-.
- Spencer, C. and Sass, H. 2019. Use of carrier materials to immobilise and supply cementation medium for microbially mediated self-healing in biocement. Presented at: 4th International Conference “Innovative Materials, Structures and Technologies” (IMST 2019) Riga, Latvia 25 - 27 September 2019. IOP Conference Series: Materials Science and Engineering. Vol. 660.Vol. 012067. IOP Publishing(10.1088/1757-899X/660/1/012067)
Research
Henrik joined the School in June 2004. He worked in the fields of limnology, ecology, biogeochemistry and microbial physiology with special emphasis on anaerobic microorganisms.
His current research projects are mainly dealing with the "deep biosphere" that can be found down to several hundred meters beneath the sea floor, and how the bacteria survive and grow under these extreme conditions. Other research interests are the microbial interaction with the biogeochemical cycles of manganese, iron, nitrogen and sulfur.
Biography
Portfolio
- School Safety Officer
Academia
- Dipl. Biol. (University of Constance, Germany)
- PhD (University of Oldenburg, Germany)