Professor Stuart Taylor
- Available for postgraduate supervision
Teams and roles for Stuart Taylor
Professor of Catalysis
Managing Director Cardiff Catalysis Institute
Overview
I am Professor of Catalysis and Deputy Head of the School of Chemistry at Cardiff University, and Director of the Cardiff Catalysis Institute. I joined Cardiff in 1997 after completing my PhD and postdoctoral research at the University of Liverpool. I am a Fellow of the Learned Society of Wales, a Fellow of the Royal Society of Chemistry, and was elected to Academia Europaea in 2025.
My research focuses on heterogeneous catalysis, with internationally recognised contributions to catalyst design, preparation, and mechanistic understanding. This work underpins advances in sustainability, green chemistry, energy, and environmental protection. I pioneered supercritical antisolvent precipitation for catalyst synthesis, leading to breakthroughs in low-temperature carbon monoxide oxidation. My research has appeared in leading journals, and is supported by major funding bodies and global industry partners.
My achievements have been recognised through the Sir John Meurig Thomas Catalysis Medal (2022), the Royal Society of Chemistry Sustainability, Environment and Energy Open Prize (2023), and the Learned Society of Wales Menelaus Medal (2024). I am committed to translating fundamental science into practical solutions, such as delivering catalysts for life-support systems and clean energy technologies.
Publication
2026
- Berko, M. B. et al., 2026. Continuous methane partial oxidation over Au/ZSM-5 catalysts. Catalysis Today 461 115531. (10.1016/j.cattod.2025.115531)
- Kazi Aurnob, A. et al., 2026. Methane partial oxidation over Rh/ZSM-5 catalysts in a high-pressure continuous flow reactor. Catalysis Today 462 115558. (10.1016/j.cattod.2025.115558)
2025
- Aggett, K. J. et al. 2025. The simultaneous total oxidation of toluene, propene and CO environmental pollutants using bimetallic AU‐PT/ZrO2/UVM‐7 catalysts. ChemCatChem 17 (7) e202401462. (10.1002/cctc.202401462)
- Aldred, M. P. et al., 2025. Studies on the reactions of lactone intermediates derived from levulinic acid: telescoped routes to higher levulinate ester biofuels. ACS Omega 10 (14), pp.13898-13905. (10.1021/acsomega.4c08315)
- Alsharif, H. et al. 2025. Ring opening hydrogenolysis of 5-hydroxymethyl furfural over supported bimetallic catalysts. Catalysis Science & Technology (10.1039/d5cy01286d)
- Li, Y. et al., 2025. Dynamic active site evolution in lanthanum‐based catalysts dictates ethane chlorination pathways. Angewandte Chemie International Edition 64 (34) e202505846. (10.1002/anie.202505846)
- Pitchers, J. R. et al. 2025. The selective oxidation of methanol to formaldehyde using novel iron molybdate catalysts prepared by supercritical antisolvent precipitation. Catalysis Science & Technology 15 (10), pp.3195-3203. (10.1039/D5CY00211G)
- Qi, H. et al. 2025. Tandem reductive amination and deuteration over a phosphorus-modified iron center.. Nature Communications 16 (1) 1840. (10.1038/s41467-024-55722-9)
- Qi, H. et al. 2025. Enhancing activation of D2O for highly efficient deuteration using an Fe-P pair-site catalyst. JACS Au 5 (6), pp.2666-2676. (10.1021/jacsau.5c00257)
- Shaddick, G. et al. 2025. Data science and AI for sustainable futures: Opportunities and challenges. Sustainability 17 (5) 2019. (10.3390/su17052019)
- Shah, P. M. et al. 2025. The effect of washing on improving activity of co-precipitated ceria manganese oxide catalysts for volatile organic compound total oxidation. Molecular Catalysis 573 114796. (10.1016/j.mcat.2024.114796)
- Suhaimi, N. H. S. et al., 2025. Perspective on CdS-based S-scheme photocatalysts for efficient photocatalytic applications: Characterisation techniques and optimal semiconductor coupling. International Journal of Hydrogen Energy 165 150929. (10.1016/j.ijhydene.2025.150929)
- Sun, Z. et al. 2025. Tailoring an Fe-Ov-Ce triggered phase-reversible oxygen carrier for intensified chemical looping CO2 splitting. Carbon Energy 7 (9) e70011. (10.1002/cey2.70011)
- Wang, K. et al., 2025. The effect of support calcination on carbon supported palladium catalysts for solvent-free benzyl alcohol oxidation. Catalysis Science & Technology 15 (18), pp.5346-5353. (10.1039/d5cy00027k)
- Williams, J. O. et al. 2025. The influence of reaction conditions on selective acetylene hydrogenation over sol immobilisation prepared AgPd/Al2O3 catalysts. ChemCatChem 17 (18) e202401794. (10.1002/cctc.202401794)
2024
- Aldred, M. P. et al., 2024. Nanoporous aluminosilicate mediated synthesis of 2- and 2,2-substituted 2,3-dihydroquinazolin-4(1H)-ones. Tetrahedron Letters 140 155037. (10.1016/j.tetlet.2024.155037)
- Alsharif, H. et al. 2024. Controlling the nanoparticle size and shape of a Pt/TiO 2 catalyst for enhanced hydrogenation of furfural to furfuryl alcohol †. RSC Sustainability 2 (12), pp.3888-3896. (10.1039/d4su00388h)
- Bailey, L. A. et al. 2024. Controlling palladium particle size and dispersion as a function of loading by chemical vapour impregnation: an investigation using propane total oxidation as a model reaction. Catalysis Science & Technology 14 (17), pp.5045-5053. (10.1039/d4cy00665h)
- Carter, J. H. et al. 2024. Origin of carbon monoxide formation in the oxidative dehydrogenation of propane using carbon dioxide. ACS Catalysis 14 (15), pp.11881-11892. (10.1021/acscatal.4c02628)
- Lawes, N. et al. 2024. Zn loading effects on the selectivity of PdZn catalysts for CO2 hydrogenation to methanol. Catalysis Letters 154 (4), pp.1603-1610. (10.1007/s10562-023-04437-5)
- Lawes, N. et al. 2024. CO2 hydrogenation to methanol on intermetallic PdGa and PdIn catalysts and the effect of Zn co-deposition. Applied Catalysis A: General 679 119735. (10.1016/j.apcata.2024.119735)
- Mugford, K. et al. 2024. Investigating physicochemical properties of MgO catalysts for the gas phase conversion of glycerol. ARKIVOC 2024 (3) 202412252. (10.24820/ark.5550190.p012.252)
- Ni, F. et al. 2024. The direct synthesis of H2O2 and in situ oxidation of methane: An investigation into the role of the support. Catalysis Today 442 114910. (10.1016/j.cattod.2024.114910)
- Saunders, K. et al. 2024. Exploring the feasibility of continuous CWAO of bisphenol A at near-ambient temperature and pressure through use of hydrophobic Pt catalysts. Applied Catalysis A: General 676 119637. (10.1016/j.apcata.2024.119637)
- Shen, L. et al., 2024. Hollow Au1Cu1(111) bimetallic catalyst promotes the selective electrochemical conversion of glycerol into glycolic acid. ACS Catalysis , pp.11343–11351. (10.1021/acscatal.4c00483)
2023
- Carter, J. H. et al., 2023. The selective oxidation of methane to methanol using in situ generated H 2 O 2 over palladium-based bimetallic catalysts †. Catalysis Science & Technology (10.1039/d3cy00116d)
- Dummer, N. F. et al. 2023. Methane oxidation to methanol. Chemical Reviews 9 , pp.6359-6411. (10.1021/acs.chemrev.2c00439)
- Evans, C. D. et al. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153 , pp.2026-2035. (10.1007/s10562-022-04111-2)
- Shah, P. M. et al. 2023. The effect of metal ratio and precipitation agent on highly active iron-manganese mixed metal oxide catalysts for propane total oxidation. Catalysts 13 (5) 794. (10.3390/catal13050794)
- Shah, P. M. , Bailey, L. A. and Taylor, S. H. 2023. The influence of cerium to manganese ratio and preparation method on the activity of ceria-manganese mixed metal oxide catalysts for voc total oxidation. Catalysts 13 (1) 114. (10.3390/catal13010114)
2022
- Bailey, L. A. et al. 2022. Preparation of biomass-derived furfuryl acetals by transacetalization reactions catalyzed by nanoporous aluminosilicates. ACS Sustainable Chemistry and Engineering 10 (41), pp.13759–13764. (10.1021/acssuschemeng.2c03968)
- Bowker, M. et al. 2022. Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck-Cardiff centre on the fundamentals of heterogeneous catalysis (funcat). Angewandte Chemie International Edition (10.1002/anie.202209016)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12 (9), pp.5371-5379. (10.1021/acscatal.2c00552)
- Chávez-Sifontes, M. et al., 2022. The promoter effect of Nb species on the catalytic performance of Ir-based catalysts for VOCs total oxidation. Journal of Environmental Chemical Engineering 10 (5) 108261. (10.1016/j.jece.2022.108261)
- Cooper, A. , Golunski, S. and Taylor, S. H. 2022. The effect of potassium inclusion in a silver catalyst for N2O-mediated oxidation of soot in oxidising exhaust gases. Catalysts 12 (7) 753. (10.3390/catal12070753)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122 (6), pp.6795-6849. (10.1021/acs.chemrev.1c00493)
- Eaimsumang, S. et al., 2022. Relationship between hydrothermal temperatures and structural properties of CeO2 and enhanced catalytic activity of propene/toluene/CO oxidation by Au/CeO2 catalysts. Frontiers in Chemistry 10 959152. (10.3389/fchem.2022.959152)
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Miedziak, P. J. et al. 2022. The over-riding role of autocatalysis in alllylic oxidation. Catalysis Letters 152 , pp.1003-1008. (10.1007/s10562-021-03707-4)
- Smith, L. R. et al. 2022. Recent advances on the valorization of glycerol into alcohols. Energies 15 (17) e6250. (10.3390/en15176250)
- Taylor, S. et al. 2022. Selective oxidation of methane to oxygenates using heterogeneous catalysts. In: Li, L. and Hargreaves, J. eds. Heterogeneous Catalysis for Sustainable Energy. Weinheim: Wiley. , pp.183-203.
- Tigwell, M. et al. 2022. Investigating catalytic properties which influence dehydration and oxidative dehydrogenation in aerobic glycerol oxidation over Pt/TiO2. Journal of Physical Chemistry C 126 (37), pp.15651-15661. (10.1021/acs.jpcc.2c03680)
- Ye, T. et al., 2022. Iron-chromium mixed metal oxides catalyse the oxidative dehydrogenation of propane using carbon dioxide. Catalysis Communications 162 106383. (10.1016/j.catcom.2021.106383)
2021
- Agarwal, N. et al. 2021. The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today 381 , pp.76-85. (10.1016/j.cattod.2020.09.001)
- Aggett, K. et al. 2021. The influence of precursor on the preparation of CeO2 catalysts for the total oxidation of the volatile organic compound propane. Catalysts 11 (12) 1461. (10.3390/catal11121461)
- Bartley, J. K. et al. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11 (10), pp.5916-5933. (10.1021/acscatal.1c00569)
- Carter, J. et al. 2021. Direct and oxidative dehydrogenation of propane: From catalyst design to industrial application. Green Chemistry 23 (24), pp.9747-9799. (10.1039/D1GC03700E)
- Chaffey, D. R. et al., 2021. Conversion of levulinic acid to levulinate ester biofuels by heterogeneous catalysts in the presence of acetals and ketals. Applied Catalysis B: Environmental 293 120219. (10.1016/j.apcatb.2021.120219)
- Freakley, S. J. et al. 2021. Methane oxidation to methanol in water. Accounts of Chemical Research 54 (11), pp.2614–2623. (10.1021/acs.accounts.1c00129)
- Gao, Z. et al., 2021. Controlling radical intermediates in photocatalytic conversion of low-carbon-number alcohols. ACS Sustainable Chemistry and Engineering 9 (18), pp.6188–6202. (10.1021/acssuschemeng.1c01066)
- Nowicka, E. et al., 2021. Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H2WO4, H3PO4 and H2O2: A route for upgrading heavy oil fractions. New Journal of Chemistry 45 (31), pp.13885-13892. (10.1039/D1NJ01986D)
- Palacios, M. et al., 2021. Characterisation and activity of mixed metal oxide catalysts for the gas-phase selective oxidation of toluene. Catalysis Today 363 , pp.73-84. (10.1016/j.cattod.2019.06.001)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Sanchis, R. et al., 2021. Highly active Co3O4-based catalysts for total oxidation of light C1-C3 alkanes prepared by a simple soft chemistry method: effect of the heat-treatment temperature and mixture of alkanes. Materials 14 (23) 7120. (10.3390/ma14237120)
- Schick, L. et al., 2021. Supported iridium catalysts for the total oxidation of short chain alkanes and their mixtures: influence of the support. Chemical Engineering Journal 417 127999. (10.1016/j.cej.2020.127999)
- Smith, L. R. et al. 2021. Gas phase clycerol valorization over ceria nanostructures with well-defined morphologies. ACS Catalysis 11 , pp.4893-4907. (10.1021/acscatal.0c05606)
- Tariq, A. et al. 2021. Combination of Cu/ZnO methanol synthesis catalysts and ZSM-5 zeolites to produce oxygenates from CO2 and H2. Topics in Catalysis 64 , pp.965-973. (10.1007/s11244-021-01447-8)
- Viéitez Calo, S. et al., 2021. Structure sensitivity and hydration effects in Pt/TiO2 and Pt/TiO2-SiO2 catalysts for NO and propane oxidation. Topics in Catalysis 64 , pp.955-964. (10.1007/s11244-021-01415-2)
2020
- Aldridge, J. K. et al. 2020. Ambient temperature CO oxidation using palladium-platinum bimetallic catalysts supported on tin oxide/alumina. Catalysts 10 (11) 1223. (10.3390/catal10111223)
- Bowker, M. et al. 2020. CO2 hydrogenation to CH3OH over PdZn catalysts, with reduced CH4 production. ChemCatChem 12 (23), pp.6024-6032. (10.1002/cctc.202000974)
- Caswell, T. et al. 2020. Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology 10 (7), pp.2083-2091. (10.1039/C9CY02473E)
- Cooper, A. et al. 2020. Influence of the preparation method of Ag-K/CeO2-ZrO2-Al2O3 catalysts on their structure and activity for the simultaneous removal of soot and NOx. Catalysts 10 (3), pp.-. 294. (10.3390/catal10030294)
- Devlia, J. et al., 2020. The formation of methanol from glycerol bio-waste over doped ceria based catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200059. (10.1098/rsta.2020.0059)
- Douthwaite, M. et al. 2020. Glycerol selective oxidation to lactic acid over AuPt nanoparticles; enhancing reaction selectivity and understanding by support modification. ChemCatChem 12 (11), pp.3097-3107. (10.1002/cctc.202000026)
- Eaimsumang, S. et al., 2020. Ceria nanorod supported gold nanoparticles as structured catalysts for the oxidative steam reforming of methanol: Effect of CTAB concentration on physiochemical properties and catalyst performance. Journal of Catalysis 392 , pp.254-265. (10.1016/j.jcat.2020.10.023)
- Evans, C. D. et al. 2020. Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. Journal of Chemical Physics 152 (13) 134705. (10.1063/1.5128595)
- García, T. et al., 2020. Insights into the production of upgraded biofuels using Mg-loaded mesoporous ZSM-5 zeolites. ChemCatChem 12 (20), pp.5236-5249. (10.1002/cctc.202000787)
- McVicker, R. et al. 2020. Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today 342 , pp.32-38. (10.1016/j.cattod.2018.12.017)
- Pattisson, S. et al. 2020. Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts. Catalysis Today 357 , pp.3-7. (10.1016/j.cattod.2019.04.053)
- Rogers, O. et al. 2020. Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the role of homogeneous vanadium species. Catalysis Science and Technology 10 (13), pp.4210-4218. (10.1039/D0CY00914H)
- Taylor, S. H. 2020. Catalysts for oxidative destruction of volatile organic compounds. Catalysts 10 (3) 343. (10.3390/catal10030343)
2019
- Chaffey, D. R. et al., 2019. Metal triflate-promoted allylic substitution reactions of cinnamyl alcohol in the presence of orthoesters and acetals. ACS Omega 4 , pp.15985-15991. (10.1021/acsomega.9b02059)
- Dai, X. et al., 2019. Efficient elimination of chlorinated organics on a phosphoric acid modified CeO2 catalyst: a hydrolytic destruction route. Environmental Science and Technology 53 (21), pp.12697-12705. (10.1021/acs.est.9b05088)
- García, T. et al., 2019. The key role of nanocasting in gold-based Fe2 O3 nanocasted catalysts for oxygen activation at the metal-support interface. ChemCatChem 11 (7), pp.1915-1927. (10.1002/cctc.201900210)
- Shah, P. M. et al. 2019. Ceria-zirconia mixed metal oxides prepared via mechanochemical grinding of carbonates for the total oxidation of propane and naphthalene. Catalysts 9 (5), pp.475. (10.3390/catal9050475)
- Shah, P. M. et al. 2019. Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene Volatile Organic Compounds. Applied Catalysis B: Environmental 253 , pp.331-340. (10.1016/j.apcatb.2019.04.061)
- Smith, L. R. et al. 2019. New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology 9 , pp.1464-1475. 6. (10.1039/C8CY02214C)
- Smith, P. J. et al. 2019. Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies 12 (7) 1359. (10.3390/en12071359)
2018
- Adamik, R. et al., 2018. Platinum nanoparticle inclusion into a carbonized polymer of intrinsic microporosity: electrochemical characteristics of a catalyst for electroless hydrogen peroxide production. Nanomaterials 8 (7) 542. (10.3390/nano8070542)
- Agarwal, N. et al. 2018. Low temperature selective methane oxidation to methanol utilizing molecular oxygen with gold palladium colloidal catalysts. Presented at: 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water New Orleans, LA, USA 18-22 March 2018. Abstracts of Papers of the American Chemical Society. Vol. 255.American Chemical Society. , pp.35.
- Armstrong, R. et al. 2018. The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts. ChemPhysChem 19 (4), pp.469-478. (10.1002/cphc.201701046)
- Chaffey, D. R. et al., 2018. Etherification reactions of furfuryl alcohol in the presence of orthoesters and ketals: application to the synthesis of furfuryl ether biofuels. ACS Sustainable Chemistry & Engineering 6 (4), pp.4996-5002. (10.1021/acssuschemeng.7b04636)
- Chow, Y. K. et al. 2018. A kinetic study of methane partial oxidation over FeZSM-5 using N2O as an oxidant. ChemPhysChem 19 (4), pp.402-411. (10.1002/cphc.201701202)
- Chow, Y. K. et al. 2018. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catalysis Science and Technology 2018 (8), pp.154-163. (10.1039/C7CY01769C)
- Davies, C. et al. 2018. Simultaneous removal of NOx and soot particulate from diesel exhaust by in-situ catalytic generation and utilisation of N2O. Applied Catalysis B: Environmental 239 , pp.10-15. (10.1016/j.apcatb.2018.07.072)
- Davies, D. et al. 2018. Dominant effect of support wettability on the reaction pathway for Catalytic Wet Air Oxidation over Pt and Ru nano-particle catalysts. ACS Catalysis (10.1021/acscatal.7b04039)
- Davies, T. E. , Taylor, S. H. and Graham, A. E. 2018. Nanoporous aluminosilicate-catalyzed telescoped acetalization-direct aldol reactions of acetals with 1,3-dicarbonyl compounds. ACS Omega 3 (11), pp.15482-15491. (10.1021/acsomega.8b02047)
- Jiang, Z. et al., 2018. Insight into the efficient oxidation of methyl-ethyl-ketone over hierarchically micro-mesostructured Pt/K-(Al)SiO 2 nanorod catalysts: Structure-activity relationships and mechanism. Applied Catalysis B: Environmental 226 , pp.220-233. (10.1016/j.apcatb.2017.12.007)
- Jones, M. et al. 2018. Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons. Journal of Catalysis 364 , pp.102-111. (10.1016/j.jcat.2018.05.012)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317 , pp.12-20. (10.1016/j.cattod.2018.03.046)
- Miedziak, P. et al. 2018. Gold as a catalyst for the ring opening of 2,5-Dimethylfuran. Catalysis Letters 148 (7), pp.2109-2116. (10.1007/s10562-018-2415-3)
- Moragues, A. et al., 2018. Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts. Journal of Catalysis 360 , pp.187-200. (10.1016/j.jcat.2018.02.003)
- Nowicka, E. et al. 2018. Mechanistic insights into selective oxidation of polyaromatic compounds using RICO chemistry. Chemistry - A European Journal 24 (47), pp.12359-12369. (10.1002/chem.201800423)
- Rogers, O. et al. 2018. The low temperature solvent-free aerobic oxidation of cyclohexene to cyclohexane diol over highly active Au/Graphite and Au/Graphene catalysts. Catalysts 8 (8), pp.311. (10.3390/catal8080311)
- Williams, C. et al. 2018. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catalysis , pp.2567-2576. (10.1021/acscatal.7b04417)
2017
- Agarwal, N. et al. 2017. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358 (6360), pp.223-227. (10.1126/science.aan6515)
- Albilali, R. K. et al., 2017. The selective hydrogenation of furfural over supported palladium nanoparticle catalysts prepared by sol-immobilisation: effect of catalyst support and reaction conditions. Catalysis Science and Technology 2018 (8), pp.252-267. (10.1039/C7CY02110K)
- Hernandez, N. et al., 2017. Carbonization of polymers of intrinsic microporosity to microporous heterocarbon: Capacitive pH measurements. Applied Materials Today 9 , pp.136-144. (10.1016/j.apmt.2017.06.003)
- Ivars-Barceló, F. et al., 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354 , pp.236-249. (10.1016/j.jcat.2017.08.020)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197 , pp.287-307. (10.1039/C6FD00202A)
- Liu, X. et al., 2017. Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide. Chemistry - A European Journal 23 (49)(10.1002/chem.201605941)
- Peneau, V. et al., 2017. The low temperature oxidation of propane using H2O2 and Fe/ZSM-5 catalysts; insights into the active site and enhancement of catalytic turnover frequencies. ChemCatChem 9 (4), pp.642-650. (10.1002/cctc.201601241)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9 (9), pp.1621-1631. (10.1002/cctc.201601603)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8 (3), pp.2436-2447. (10.1039/C6SC04130B)
- Taylor, S. H. 2017. Reflections on catalytic selective oxidation: opportunities and challenges [Editorial]. Catalysts 7 (1) 34. (10.3390/catal7010034)
- Taylor, S. H. et al. 2017. Oxidation of polynuclear aromatic hydrocarbons using ruthenium ion catalyzed oxidation: The role of aromatic ring number in reaction kinetics and product distribution. Chemistry - a European Journal (10.1002/chem.201704133)
2016
- Ab Rahim, M. H. et al., 2016. Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catalysis Science & Technology 6 (10), pp.3410-3418. (10.1039/C5CY01586C)
- Armstrong, R. , Hutchings, G. and Taylor, S. H. 2016. An overview of recent advances of the catalytic selective oxidation of ethane to oxygenates. Catalysts 6 (5) 71. (10.3390/catal6050071)
- Conte, M. et al., 2016. Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings. Catalysis Letters 146 (1), pp.126-135. (10.1007/s10562-015-1660-y)
- Cuenca, J. A. et al. 2016. Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. Journal of Physics: Condensed Matter 28 (10) 106002. (10.1088/0953-8984/28/10/106002)
- Da Ros, S. et al., 2016. Ethanol to 1,3-butadiene conversion by using ZrZn-containing MgO/SiO2 systems prepared by co-precipitation and effect of catalyst acidity modification. ChemCatChem 8 (14), pp.2376-2386. (10.1002/cctc.201600331)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188 , pp.427-450. (10.1039/C5FD00187K)
- Gandarias, I. et al., 2016. The selective oxidation of n-butanol to butyraldehyde by oxygen using stable Pt-based nanoparticulate catalysts: an efficient route for upgrading aqueous biobutanol. Catalysis Science & Technology 6 (12), pp.4201-4209. (10.1039/C5CY01726B)
- Iqbal, S. et al., 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275 , pp.35-39. (10.1016/j.cattod.2015.09.041)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272 , pp.74-79. (10.1016/j.cattod.2016.04.012)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531 , pp.83-87. (10.1038/nature16935)
- Liu, X. et al., 2016. One-step production of 1,3-butadiene from 2,3-butanediol dehydration. Chemistry - a European Journal 22 (35), pp.12290-12294. (10.1002/chem.201602390)
- Peneau, V. et al., 2016. The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. Catalysis Science & Technology 6 (20), pp.7521-7531. (10.1039/C6CY01332E)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648 , pp.163-169. (10.1016/j.susc.2015.11.010)
2015
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- Armstrong, R. et al. 2015. Low temperature catalytic partial oxidation of ethane to oxygenates by Fe– and Cu–ZSM-5 in a continuous flow reactor. Journal of Catalysis 330 , pp.84-92. (10.1016/j.jcat.2015.07.001)
- Clarke, T. J. et al. 2015. Mechanochemical synthesis of copper manganese oxide for the ambient temperature oxidation of carbon monoxide. Applied Catalysis B: Environmental 165 , pp.222-231. (10.1016/j.apcatb.2014.09.070)
- Clarke, T. J. , Kondrat, S. A. and Taylor, S. H. 2015. Total oxidation of naphthalene using copper manganese oxide catalysts. Catalysis Today 258 (2), pp.610-615. (10.1016/j.cattod.2015.01.032)
- Davies, T. E. et al. 2015. Dehydrative etherification reactions of glycerol with alcohols catalyzed by recyclable nanoporous aluminosilicates: telescoped routes to glyceryl ethers. ACS Sustainable Chemistry & Engineering 4 (3), pp.835-843. (10.1021/acssuschemeng.5b00894)
- Davies, T. E. et al. 2015. Nanoporous alumino- and borosilicate-mediated Meinwald rearrangement of epoxides. Applied Catalysis A: General 493 , pp.17-24. (10.1016/j.apcata.2014.12.031)
- Gandarias Goikoetxea, I. et al. 2015. Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. Chemsuschem 8 (3), pp.473-480. (10.1002/cssc.201403190)
- Garcia, T. et al., 2015. Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. Catalysis Today 254 , pp.12-20. (10.1016/j.cattod.2015.01.038)
- Haider, M. H. et al., 2015. Efficient green methanol synthesis from glycerol. Nature Chemistry 7 , pp.1028-1032. (10.1038/nchem.2345)
- Marin, R. P. et al., 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504 , pp.62-73. (10.1016/j.apcata.2015.02.023)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation. Chemistry - A European Journal 21 (11), pp.4285-4293. (10.1002/chem.201405831)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation [Cover Profile]. Chemistry - A European Journal 21 (11), pp.4169. (10.1002/chem.201406658)
- Peneau, V. et al. 2015. Co-oxidation of octane and benzaldehyde using molecular oxygen with Au–Pd/carbon prepared by sol-immobilisation. Catalysis Science & Technology 5 (8), pp.3953-3959. (10.1039/C5CY00453E)
- Puértolas, B. et al., 2015. High-temperature stable gold nanoparticle catalysts for application under severe conditions: the role of TiO2 nanodomains in structure and activity. ACS Catalysis 5 (2), pp.1078-1086. (10.1021/cs501741u)
- Rong, Y. et al., 2015. Intrinsically microporous polymer retains porosity in vacuum thermolysis to electroactive heterocarbon. Langmuir 31 (44), pp.12300-12306. (10.1021/acs.langmuir.5b02654)
- Sellick, D. , Morgan, D. J. and Taylor, S. H. 2015. Silica supported platinum catalysts for total oxidation of the polyaromatic hydrocarbon naphthalene: An investigation of metal loading and calcination temperature. Catalysts 5 (2), pp.690-702. (10.3390/catal5020690)
- Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
2014
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Brett, G. L. et al. 2014. Gold-based nanoparticulate catalysts for the oxidative esterification of 1,4-butanediol to dimethyl succinate. Topics in Catalysis 57 (6-9), pp.723-729. (10.1007/s11244-013-0229-5)
- D'Agostino, C. et al., 2014. Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. Catalysis Science & Technology 4 (5), pp.1313-1322. (10.1039/c4cy00027g)
- Davies, T. et al. 2014. Nanoporous aluminosilicate-mediated synthesis of ethers by a dehydrative etherification approach. ACS Sustainable Chemistry & Engineering 2 (4), pp.860-866. (10.1021/sc400492x)
- Forde, M. M. et al. 2014. High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano 8 (1), pp.957-969. (10.1021/nn405757q)
- Garcia, T. , Solsona, B. and Taylor, S. H. 2014. The catalytic oxidation of hydrocarbon volatile organic compounds. In: Duprez, D. and Cavani, F. eds. Handbook of Advanced Methods and Processes in Oxidation Catalysis. London: Imperial College Press. , pp.51-90. (10.1142/9781848167513_0003)
- Haider, M. et al. 2014. The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. Chemistry - a European Journal 20 (6), pp.1743-1752. (10.1002/chem.201302348)
- Kondrat, S. A. et al. 2014. Base-free oxidation of glycerol using titania-supported trimetallic Au-Pd-Pt nanoparticles. Chemsuschem 7 (5), pp.1326-1334. (10.1002/cssc.201300834)
- Kondrat, S. A. and Taylor, S. H. 2014. Catalyst preparation using supercritical fluid precipitation. In: Apesteguía, C. , Blekkan, E. and Spivey, J. eds. Catalysis. Vol. 26, Cambridge: Royal Society of Chemistry. , pp.218-249.
- Lopez, J. M. et al., 2014. Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation. Journal of catalysis 317 , pp.167-175. (10.1016/j.jcat.2014.06.021)
- Madrid, E. et al., 2014. Metastable ionic diodes derived from an amine-based polymer of intrinsic microporosity. Angewandte Chemie International Edition 53 (40), pp.10751-10754. (10.1002/anie.201405755)
- Marin, R. P. et al., 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4 (7), pp.1970-1978. (10.1039/c4cy00044g)
- Miedziak, P. J. et al. 2014. Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry 16 (6), pp.3132-3141. (10.1039/c4gc00087k)
- Ryabenkova, Y. et al., 2014. Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron 70 (36), pp.6055-6058. (10.1016/j.tet.2014.02.043)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
2013
- Ab Rahim, M. H. et al. 2013. Systematic study of the oxidation of methane using supported gold palladium nanoparticles under mild aqueous conditions. Topics in Catalysis 56 (18-20), pp.1843-1857. (10.1007/s11244-013-0121-3)
- Ab Rahim, M. H. et al. 2013. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angewandte Chemie - International Edition 52 (4), pp.1280-1284. (10.1002/anie.201207717)
- Brett, G. L. et al. 2013. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate. Chemsuschem 6 (10), pp.1952-1958. (10.1002/cssc.201300420)
- Budroni, G. et al., 2013. Selective deposition of palladium onto supported nickel - bimetallic catalysts for the hydrogenation of crotonaldehyde. Catalysis Science & Technology 3 (10), pp.2746-2754. (10.1039/c3cy00449j)
- Cao, E. et al., 2013. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles. Catalysis Today 203 , pp.146-152. (10.1016/j.cattod.2012.05.023)
- Cheong, S. et al., 2013. Au-Pd core-shell nanoparticles as alcohol oxidation catalysts: effect of shape and composition. ChemSusChem 6 (10), pp.1858-1862. (10.1002/cssc.201300483)
- D'Agostino, C. et al., 2013. Solvent effect and reactivity trend in the aerobic oxidation of 1,3-Propanediols over gold supported on Titania: NMR diffusion and relaxation studies. Chemistry - A European Journal 19 (35), pp.11725-11732. (10.1002/chem.201300502)
- Forde, M. M. et al. 2013. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. Journal of the American Chemical Society 135 (30), pp.11087-11099. 130716133536007. (10.1021/ja403060n)
- Garcia, T. et al., 2013. Total oxidation of naphthalene using bulk manganese oxide catalysts. Applied Catalysis A: General 450 , pp.169-177. (10.1016/j.apcata.2012.10.029)
- Hammond, C. et al. 2013. Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation: from synthesis to catalysis. ACS Catalysis 3 (4), pp.689-699. (10.1021/cs3007999)
- Hammond, C. et al. 2013. Aqueous-phase methane oxidation over Fe-MFI zeolites: promotion through isomorphous framework substitution. ACS Catalysis 3 (8), pp.1835-1844. 130702113713003. (10.1021/cs400288b)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162 , pp.365-378. (10.1039/c2fd20153d)
- Henning, A. M. et al., 2013. Gold-palladium core-shell nanocrystals with size and shape control optimized for catalytic performance. Angewandte Chemie - International Edition 52 (5), pp.1477-1480. (10.1002/anie.201207824)
- Marin, R. P. et al., 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140 , pp.671-679. (10.1016/j.apcatb.2013.04.076)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3 (4), pp.764-772. (10.1021/cs4000359)
- Ryabenkova, Y. et al. 2013. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today 203 , pp.139-145. (10.1016/j.cattod.2012.05.037)
- Sellick, D. R. et al. 2013. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation. Applied Catalysis B: Environmental 132 , pp.98-106. (10.1016/j.apcatb.2012.11.036)
- Varela-Gandía, F. J. et al., 2013. Total oxidation of naphthalene using palladium nanoparticles supported on BETA, ZSM-5, SAPO-5 and alumina powders. Applied Catalysis B: Environmental 129 , pp.98-105. (10.1016/j.apcatb.2012.08.041)
2012
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Aranda, A. et al., 2012. Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene. Applied Catalysis B: Environmental 127 , pp.77-88. (10.1016/j.apcatb.2012.07.033)
- Aranda, A. et al., 2012. High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants. Chemical Communications 48 (39), pp.4704-4706. (10.1039/c2cc31206a)
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
- Brett, G. L. et al. 2012. Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science & Technology 2 (1), pp.97-104. (10.1039/c1cy00254f)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2 (1), pp.105-112. (10.1039/c1cy00299f)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164 , pp.207-213. (10.1016/j.micromeso.2012.05.001)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Forde, M. M. et al. 2012. Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. Journal of Catalysis 290 , pp.177-185. (10.1016/j.jcat.2012.03.013)
- Haider, M. et al. 2012. Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis 286 , pp.206-213. (10.1016/j.jcat.2011.11.004)
- Hammond, C. et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angewandte Chemie - International Edition 51 (21), pp.5129-5133. (10.1002/anie.201108706)
- Hammond, C. et al. 2012. Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5. Chemistry - a European Journal 18 (49), pp.15735-15745. (10.1002/chem.201202802)
- Hammond, C. et al. 2012. Cover Picture: Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5 (Chem. Eur. J. 49/2012). Chemistry - A European Journal 18 (49), pp.15557. (10.1002/chem.201290208)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Kondrat, S. A. et al. 2012. Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science 3 (10), pp.2965-2971. (10.1039/c2sc20450a)
- Kotionova, T. et al. 2012. Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters 142 (9), pp.1114-1120. (10.1007/s10562-012-0872-7)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142 (9), pp.1049-1056. (10.1007/s10562-012-0869-2)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6 (8), pp.6600-6613. (10.1021/nn302299e)
- Ryabenkova, Y. et al. 2012. The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis 55 (19-20), pp.1283-1288. (10.1007/s11244-012-9909-9)
- Saiman, M. I. et al. 2012. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angewandte Chemie. International Edition 51 (24), pp.5981-5985. (10.1002/anie.201201059)
- Taylor, M. N. et al. 2012. Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. Journal of Catalysis 285 (1), pp.103-114. (10.1016/j.jcat.2011.09.019)
- Theodosiou, A. , Carley, A. F. and Taylor, S. H. 2012. A Raman investigation into the effect of temperature on ion-induced damage of graphite. Journal of Nuclear Materials 426 (1-3), pp.26-30. (10.1016/j.jnucmat.2012.03.023)
- Yip, L. et al., 2012. Nanoporous aluminosilicate mediated transacetalization reactions: application in glycerol valorization. Catalysis Science & Technology 2 (11), pp.2258-2263. (10.1039/c2cy20188g)
2011
- Brett, G. L. et al. 2011. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angewandte Chemie. International Edition 50 (43), pp.10136-10139. (10.1002/anie.201101772)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13 (7), pp.2528-2538. (10.1039/c0cp01852j)
- Garcia, T. et al., 2011. The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation. Catalysis Science & Technology 1 (8), pp.1367-1375. (10.1039/c0cy00032a)
- Jalama, K. et al., 2011. A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer-Tropsch reaction. Applied Catalysis A: General 395 (1-2), pp.1-9. (10.1016/j.apcata.2011.01.002)
- Kesavan, L. et al. 2011. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331 (6014), pp.195-199. (10.1126/science.1198458)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281 (2), pp.279-289. (10.1016/j.jcat.2011.05.012)
- Kubczyk, T. M. et al., 2011. Nanoporous aluminosilicate catalyzed Friedel-Crafts alkylation reactions of indoles with aldehydes and acetals. Green Chemistry 13 (9), pp.2320-2325. (10.1039/c1gc15669a)
- Lopez-Sanchez, J. A. et al., 2011. Hydrocarbon selective oxidation with heterogeneous gold catalysts. Patent WO 2011051642[Patent]
- Mantle, M. D. et al., 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115 (4), pp.1073-1079. (10.1021/jp105946q)
- Meenakshisundaram, S. et al. 2011. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. Chemistry - A European Journal 17 (23), pp.6524-6532. (10.1002/chem.201003484)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 163 (1), pp.47-54. (10.1016/j.cattod.2010.02.051)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 164 (1), pp.315-319. (10.1016/j.cattod.2010.10.028)
- Ntainjua Ndifor, E. et al. 2011. The Influence of platinum addition on nano-crystalline ceria catalysts for the total oxidation of naphthalene a model polycyclic aromatic hydrocarbon. Catalysis Letters 141 (12), pp.1732-1738. (10.1007/s10562-011-0710-3)
- Solsona, B. et al., 2011. Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. Journal of Hazardous Materials 187 (1-3), pp.544-552. (10.1016/j.jhazmat.2011.01.073)
- Solsona, B. et al., 2011. The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B - Environmental 101 (3-4), pp.388-396. (10.1016/j.apcatb.2010.10.008)
- Solsona, B. et al., 2011. Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal 175 , pp.271-278. (10.1016/j.cej.2011.09.104)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1 (5), pp.740-746. (10.1039/c1cy00064k)
- Thetford, A. et al. 2011. The decomposition of H2O2 over the components of Au/TiO2 catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467 (2131), pp.1885-1899. (10.1098/rspa.2010.0561)
- Weng, W. et al., 2011. Structural characterization of Niobium Phosphate Catalysts used for the Oxidative Dehydrogenation of Ethane to Ethylene. Microscopy and Microanalysis 17 (S2), pp.1738-1739. (10.1017/S1431927611009561)
- Weng, W. et al., 2011. Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics 13 (38), pp.17395-17404. (10.1039/c1cp21136f)
2010
- Aranda, A. et al., 2010. Total oxidation of naphthalene using mesoporous CeO2 catalysts synthesized by nanocasting from two dimensional SBA-15 and three dimensional KIT-6 and MCM-48 silica templates. Catalysis Letters 134 (1-2), pp.110-117. (10.1007/s10562-009-0203-9)
- Bartley, J. K. et al. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons(10.1002/0471227617.eoc139.pub2)
- Cole, K. J. et al., 2010. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catalysis Letters 138 (3-4), pp.143-147. (10.1007/s10562-010-0392-2)
- Meenakshisundaram, S. et al. 2010. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discussions 145 , pp.341-356. (10.1039/b908172k)
- Morgan, K. et al., 2010. TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts. Journal of Catalysis 276 (1), pp.38-48. (10.1016/j.jcat.2010.08.013)
- Myakonkaya, O. et al., 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3 (3), pp.339-341. (10.1002/cssc.200900280)
- Myakonkaya, O. et al., 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350 (2), pp.443-445. (10.1016/j.jcis.2010.06.064)
- Puertolas, B. et al., 2010. The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental 93 (3-4), pp.395-405. (10.1016/j.apcatb.2009.10.014)
- Robinson, M. C. W. et al., 2010. Synthesis of nanoporous aluminosilicate materials and their application as highly selective heterogeneous catalysts for the synthesis of β-amino alcohols. Journal of Molecular Catalysis A: Chemical 329 (1-2), pp.57-63. (10.1016/j.molcata.2010.06.018)
- Theodosiou, A. , Carley, A. F. and Taylor, S. H. 2010. Ion-induced damage in graphite: A Raman study. Journal of Nuclear Materials 403 (1-3), pp.108-112. (10.1016/j.jnucmat.2010.06.007)
2009
- Aranda, A. et al., 2009. Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol. Journal of Hazardous Materials 171 (1-3), pp.393-399. (10.1016/j.jhazmat.2009.06.013)
- Dimitratos, N. et al. 2009. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry 11 (8), pp.1209-1216. (10.1039/b823285g)
- Jones, C. et al. 2009. Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity. Journal of Molecular Catalysis A: Chemical 305 (1-2), pp.121-124. (10.1016/j.molcata.2008.10.027)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19 (45), pp.8619-8627. (10.1039/b911102f)
- Ntainjua Ndifor, E. and Taylor, S. H. 2009. The Catalytic Total Oxidation of Polycyclic Aromatic Hydrocarbons. Topics in Catalysis 52 (5), pp.528-541. (10.1007/s11244-009-9180-x)
- Robinson, M. W. et al., 2009. Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates. Organic & Biomolecular Chemistry 7 (12), pp.2559-2564. (10.1039/B900719A)
- Robinson, M. W. C. et al., 2009. Synthesis and catalytic activity of nanoporous aluminosilicate materials. Journal of Molecular Catalysis A: Chemical 314 (1-2), pp.10-14. (10.1016/j.molcata.2009.09.005)
- Solsona, B. et al., 2009. TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Applied Catalysis a-General 365 (2), pp.222-230. (10.1016/j.apcata.2009.06.016)
- Solsona, B. E. et al. 2009. Ceria and Gold/Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons: An In Situ DRIFTS Study. Topics in Catalysis 52 (5), pp.492-500. (10.1007/s11244-009-9184-6)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1 (2), pp.247-251. (10.1002/cctc.200900195)
- Taylor, M. N. et al., 2009. The Oxidative Dehydrogenation of Propane Using Vanadium Oxide Supported on Nanocrystalline Ceria. Topics in Catalysis 52 (12), pp.1660-1668. (10.1007/s11244-009-9307-0)
- Taylor, S. H. 2009. Preface: Catalytic Aspects of Complete Oxidation of Volatile Organic Compounds. Topics in Catalysis 52 (5), pp.457-457. (10.1007/s11244-009-9179-3)
2008
- Huang, H. et al., 2008. Purification of chemical feedstocks by the removal of aerial carbonyl sulfide by hydrolysis using rare earth promoted alumina catalysts. Green Chemistry 10 (5), pp.571-577. (10.1039/b717031a)
- Jones, C. et al. 2008. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications 2008 (14), pp.1707-1709. (10.1039/b800052m)
- Ntainjua Ndifor, E. , Carley, A. F. and Taylor, S. H. 2008. The role of support on the performance of platinum-based catalysts for the total oxidation of polycyclic aromatic hydrocarbons. Catalysis Today 137 (2-4), pp.362-366. (10.1016/j.cattod.2007.10.116)
- Ntainjua Ndifor, E. et al. 2008. The influence of cerium to urea preparation ratio of nanocrystalline ceria catalysts for the total oxidation of naphthalene. Catalysis Today 137 (2-4), pp.373-378. (10.1016/j.cattod.2007.12.140)
- Solsona, B. et al., 2008. Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Applied Catalysis B-Environmental 84 (1-2), pp.176-184. (10.1016/j.apcatb.2008.03.021)
- Taylor, M. et al., 2008. Deep oxidation of propane using palladium-titania catalysts modified by niobium. Applied Catalysis a-General 350 (1), pp.63-70. (10.1016/j.apcata.2008.07.045)
2007
- Al-Sayari, S. et al., 2007. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: Comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Topics in Catalysis 44 (1-2), pp.123-128. (10.1007/s11244-007-0285-9)
- Enache, D. I. et al., 2007. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance. Catalysis Today 122 (3-4), pp.407-411. (10.1016/j.cattod.2007.01.003)
- Enache, D. I. et al., 2007. Intensification of the solvent-free catalytic hydroformylation of cyclododecatriene: Comparison of a stirred batch reactor and a heat-exchange reactor. Catalysis Today 128 (1-2 SP), pp.18-25. (10.1016/j.cattod.2007.08.011)
- Enache, D. I. et al., 2007. Multiphase hydrogenation of resorcinol in structured and heat exchange reactor systems. Influence of the catalyst and the reactor configuration. Catalysis Today 128 (1-2 SP), pp.26-35. (10.1016/j.cattod.2007.08.012)
- Herzing, A. A. et al., 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13 , pp.102-103. (10.1017/S143192760707660X)
- Hutchings, G. J. and Taylor, S. H. 2007. Copper manganese based mixed oxides for CO oxidation at ambient temperature. Presented at: 234th ACS National Meeting Boston, MA, USA 19-23 August 2007.
- Jalama, K. et al., 2007. Effect of the addition of Au on Co/TiO2 catalyst for the Fischer-Tropsch reaction. Topics in Catalysis 44 (1-2), pp.129-136. (10.1007/s11244-007-0286-8)
- Ntainjua Ndifor, E. et al. 2007. Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon. Applied Catalysis B-Environmental 76 (3-4), pp.248-256. (10.1016/j.apcatb.2007.05.027)
- Solsona, B. E. et al. 2007. Complete oxidation of short chain alkanes using a nanocrystalline cobalt oxide catalyst. Catalysis Letters 116 (3-4), pp.116-121. (10.1007/s10562-007-9136-3)
- Tang, Z. et al., 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249 (2), pp.208-219. (10.1016/j.jcat.2007.04.016)
- Zhao, Y. et al., 2007. Study of carbon monoxide hydrogenation over supported Au catalysts. Studies in Surface Science and Catalysis 163 , pp.141-151. (10.1016/S0167-2991(07)80477-0)
2006
- Conte, M. et al., 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313 (5791), pp.1270-1273. (10.1126/science.1130493)
- Coquet, R. et al., 2006. Calculations on the adsorption of Au to MgO surfaces using SIESTA. Journal of Materials Chemistry 16 (20), pp.1978-1988. (10.1039/b601213b)
- Davies, T. E. et al. 2006. Nanocrystalline cobalt oxide: a catalyst for selective alkane oxidation under ambient conditions. Chemical Communications (32), pp.3417-3419. (10.1039/b606973h)
- Garcia, T. , Solsona, B. E. and Taylor, S. H. 2006. Naphthalene total oxidation over metal oxide catalysts. Applied Catalysis B Environmental 66 (1-2), pp.92-99. (10.1016/j.apcatb.2006.03.003)
- Huang, H. et al., 2006. High temperature COS hydrolysis catalysed by γ-Al2O 3. Catalysis Letters 110 (3-4), pp.243-246. (10.1007/s10562-006-0115-x)
- Solsona, B. E. et al. 2006. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A General 312 , pp.67-76. (10.1016/j.apcata.2006.06.016)
- Song, N. et al., 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106 (3-4), pp.127-131. (10.1007/s10562-005-9619-z)
- Tang, Z. et al., 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162 , pp.219-226. (10.1016/S0167-2991(06)80910-9)
- Taylor, S. H. and Rhodes, C. 2006. The oxidation of carbon monoxide at ambient temperature over mixed copper-silver oxide catalysts. Catalysis Today 114 (4 SPEC), pp.357-361. (10.1016/j.cattod.2006.02.073)
2005
- Enache, D. I. et al., 2005. Experimental evaluation of a three-phase downflow capillary reactor. Industrial and Engineering Chemistry Research 44 (16), pp.6295-6303. (10.1021/ie049140y)
- Enache, D. I. et al., 2005. The hydrogenation of isophorone to trimethyl cyclohexanone using the downflow single capillary reactor. Catalysis Today 105 (3-4), pp.569-573. (10.1016/j.cattod.2005.06.013)
- Garcia, T. et al., 2005. Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds. Applied Catalysis B Environmental 62 (1-2), pp.66-76. (10.1016/j.apcatb.2005.06.016)
- Garcia, T. , Solsona, B. E. and Taylor, S. H. 2005. Nano-crystalline ceria catalysts for the abatement of polycyclic aromatic hydrocarbons. Catalysis Letters 105 (3-4), pp.183-189. (10.1007/s10562-005-8689-2)
- Huang, H. et al., 2005. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters 104 (1-2), pp.17-21. (10.1007/s10562-005-7430-5)
- Jeffery, E. L. et al., 2005. A density functional theory study of the adsorption of acetone to the (111) surface of Pt: Implications for hydrogenation catalysis. Catalysis Today 105 (1), pp.85-92. (10.1016/j.cattod.2005.04.013)
- Song, N. et al., 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236 (2), pp.282-291. (10.1016/j.jcat.2005.10.008)
- Taylor, S. H. and Rhodes, C. 2005. Ambient temperature oxidation of carbon monoxide using a Cu 2Ag2O3 catalyst. Catalysis Letters 101 (1-2), pp.31-33. (10.1007/s10562-004-3745-x)
- Zhao, Y. et al., 2005. Study of carbon monoxide hydrogenation over Au supported on zinc oxide catalysts. American Chemical Society, Division of Petroleum Chemistry, Preprints 50 (2), pp.206-207.
2004
- Davies, T. and Taylor, S. H. 2004. The oxidative dehydrogenation of propane using gallium-molybdenum based catalysts. Catalysis Letters 93 (3-4), pp.151-154. (10.1023/B:CATL.0000017069.52359.6a)
- Davies, T. and Taylor, S. H. 2004. The oxidative dehydrogenation of propane using gallium-molybdenum oxide-based catalysts. Journal of Molecular Catalysis A: Chemical 220 (1), pp.77-84. (10.1016/j.molcata.2004.01.027)
- Garcia, T. , Solsona, B. E. and Taylor, S. H. 2004. The oxidative destruction of hydrocarbon volatile organic compounds using palladium-vanadia-titania catalysts. Catalysis Letters 97 (1-2), pp.99-103. (10.1023/B:CATL.0000034294.35776.db)
- Garcia, T. et al., 2004. Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts. Journal of Catalysis 229 (1), pp.1-11. (10.1016/j.jcat.2004.09.018)
- Li, X. et al., 2004. Enantioselective hydrogenation using cinchona-modified Pt/γ-Al 2O3 catalysts: Comparison of the reaction of ethyl pyruvate and buta-2,3-dione. Catalysis Letters 96 (3-4), pp.147-151. (10.1023/B:CATL.0000030112.70608.a0)
- Solsona, B. E. et al. 2004. Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry 28 (6), pp.708-711. (10.1039/b315391f)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2004. Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using α-Al2O3. New Journal of Chemistry 28 (4), pp.471-476. (10.1039/b312340p)
2003
- Hammond, C. R. et al. 2003. A study of methane activation by modified gallium- and zinc-based catalysts. Research on Chemical Intermediates 29 (7-9), pp.911-920. (10.1163/156856703322601906)
- Mirzaei, A. A. et al., 2003. Characterisation of copper-manganese oxide catalysts: Effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Applied Catalysis A: General 253 (2), pp.499-508. (10.1016/S0926-860X(03)00563-5)
- Mirzaei, A. A. et al., 2003. Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na+ acting as catalyst poison. Catalysis Communications 4 (1), pp.17-20. (10.1016/S1566-7367(02)00231-5)
- Mirzaei, A. A. et al., 2003. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate aging atmosphere on catalyst activity. Catalysis Letters 87 (3-4), pp.103-108. (10.1023/A:1023416819195)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 2003. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catalysis Today 84 (3-4), pp.113-119. (10.1016/S0920-5861(03)00264-5)
- Taylor, S. H. et al. 2003. The partial oxidation of propane to formaldehyde using uranium mixed oxide catalysts. Catalysis Today 81 (2), pp.171-178. (10.1016/S0920-5861(03)00110-X)
- Taylor, S. H. and Pollard, A. J. J. 2003. Silica and boron nitride supported molybdenum and vanadium oxide catalysts for propane oxidation. Catalysis Today 81 (2), pp.179-188. (10.1016/S0920-5861(03)00111-1)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2003. Synthesis of methyl mercaptan and thiophene from CO/H2/H 2S using α-Al2O3. Catalysis Letters 91 (3-4), pp.181-183. (10.1023/B:CATL.0000007152.91400.95)
2002
- Hargreaves, J. S. J. et al., 2002. A study of the methane-deuterium exchange reaction over a range of metal oxides. Applied Catalysis A: General 227 (1-2), pp.191-200. (10.1016/S0926-860X(01)00935-8)
- Harris, R. H. et al. 2002. Water as a promoter of the complete oxidation of volatile organic compounds over uranium oxide catalysts. Catalysis Letters 78 (1-4), pp.369-372. (10.1023/A:1014916920128)
- Whittle, D. M. et al., 2002. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate ageing on catalyst activity. Physical Chemistry Chemical Physics 4 (23), pp.5915-5920. (10.1039/b207691h)
2001
- Cooper, C. A. et al. 2001. A combined experimental and theoretical approach to the study of methane activation over oxide catalysts. Catalysis Today 71 (1-2), pp.3-10. (10.1016/S0920-5861(01)00446-1)
- Cooper, C. A. et al. 2001. The role of gallium oxide in methane partial oxidation catalysts: an experimental and theoretical study. Studies in Surface Science and Catalysis 136 , pp.319-324.
- Taylor, S. H. et al. 2001. Water as a promoter of VOC destruction over uranium oxide catalysts. Abstracts of papers of the American Chemical Society 222 , pp.U378-U379.
2000
- Brown, A. S. C. , Hargreaves, J. S. C. and Taylor, S. H. 2000. Application of 'superacidic' metal oxides and their platinum doped counterparts to methane combustion. Catalysis Today 59 (3), pp.403-409. (10.1016/S0920-5861(00)00305-9)
- Palacios-Alcolado, M. and Taylor, S. H. 2000. Characterization of uranium oxides using in situ micro-raman spectroscopy. Applied Spectroscopy 54 (9), pp.1372-1378. (10.1366/0003702001951057)
- Taylor, S. H. et al. 2000. Activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catalysis Today 59 (3), pp.249-259. (10.1016/S0920-5861(00)00291-1)
- Taylor, S. H. et al. 2000. Structure and activity relationships for copper manganese and copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation [Abstract]. Abstracts of papers of the American Chemical Society 219 , pp.U534-U534.
- Taylor, S. H. and O'Leary, S. R. 2000. A study of uranium oxide based catalysts for the oxidative destruction of short chain alkanes. Applied Catalysis B: Environmental 25 (2-3), pp.137-149. (10.1016/S0926-3373(99)00128-9)
1999
- Brown, A. S. C. , Hargreaves, J. S. J. and Taylor, S. H. 1999. A study of "superacidic" MoO3/ZrO2 catalysts for methane oxidation. Catalysis Letters 57 (3), pp.109-113. (10.1023/A:1019047632335)
- Heneghan, C. S. et al. 1999. A temporal analysis of products study of the mechanism of VOC catalytic oxidation using uranium oxide catalysts. Catalysis Today 54 (1), pp.3-12. (10.1016/S0920-5861(99)00162-5)
- Hutchings, G. J. and Taylor, S. H. 1999. Designing oxidation catalysts. Catalysis Today 49 (1-3), pp.105-113.
- Hutchings, G. J. , Taylor, S. H. and Hudson, I. D. 1999. Designing heterogeneous oxidation catalysts. Studies in Surface Science and Catalysis 121 , pp.85-92. (10.1016/S0167-2991(99)80049-4)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 1999. Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications (15), pp.1373-1374. (10.1039/A903426I)
1998
- Hutchings, G. J. et al. 1998. Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General 166 (1), pp.143-152. (10.1016/S0926-860X(97)00248-2)
- Taylor, S. H. et al. 1998. The partial oxidation of methane to methanol: an approach to catalyst design. Catalysis Today 42 (3), pp.217-224. (10.1016/S0920-5861(98)00095-9)
1997
- Hudson, I. D. et al., 1997. New class of uranium oxide catalysts for the oxidative destruction of volatile organic compounds in the vapour phase. Presented at: 90th Annual Meeting Air Waste Management Association Toronto, Canada 8-13 June 1997. Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition. Toronto, Canada: Air & Waste Management Association
- Hutchings, G. J. et al. 1997. A novel approach to the scientific design of oxide catalysts for the partial oxidation of methane to methanol. Studies in Surface Science and Catalysis 107 , pp.41-46. (10.1016/S0167-2991(97)80314-X)
- Hutchings, G. J. et al. 1997. The catalytic combustion of volatile chloro-organic compounds using uranium oxide catalysts. Preprints - American Chemical Society, Division of Petroleum Chemistry 42 (1), pp.142-145.
1996
- Hutchings, G. J. et al. 1996. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature 384 (6607), pp.341-343. (10.1038/384341a0)
Articles
- Ab Rahim, M. H. et al., 2016. Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts. Catalysis Science & Technology 6 (10), pp.3410-3418. (10.1039/C5CY01586C)
- Ab Rahim, M. H. et al. 2013. Systematic study of the oxidation of methane using supported gold palladium nanoparticles under mild aqueous conditions. Topics in Catalysis 56 (18-20), pp.1843-1857. (10.1007/s11244-013-0121-3)
- Ab Rahim, M. H. et al. 2013. Oxidation of methane to methanol with hydrogen peroxide using supported gold-palladium alloy nanoparticles. Angewandte Chemie - International Edition 52 (4), pp.1280-1284. (10.1002/anie.201207717)
- Adamik, R. et al., 2018. Platinum nanoparticle inclusion into a carbonized polymer of intrinsic microporosity: electrochemical characteristics of a catalyst for electroless hydrogen peroxide production. Nanomaterials 8 (7) 542. (10.3390/nano8070542)
- Agarwal, N. et al. 2017. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358 (6360), pp.223-227. (10.1126/science.aan6515)
- Agarwal, N. et al. 2021. The direct synthesis of hydrogen peroxide over Au and Pd nanoparticles: A DFT study. Catalysis Today 381 , pp.76-85. (10.1016/j.cattod.2020.09.001)
- Aggett, K. et al. 2021. The influence of precursor on the preparation of CeO2 catalysts for the total oxidation of the volatile organic compound propane. Catalysts 11 (12) 1461. (10.3390/catal11121461)
- Aggett, K. J. et al. 2025. The simultaneous total oxidation of toluene, propene and CO environmental pollutants using bimetallic AU‐PT/ZrO2/UVM‐7 catalysts. ChemCatChem 17 (7) e202401462. (10.1002/cctc.202401462)
- Al-Sayari, S. et al., 2007. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature: Comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by coprecipitation. Topics in Catalysis 44 (1-2), pp.123-128. (10.1007/s11244-007-0285-9)
- Albilali, R. K. et al., 2017. The selective hydrogenation of furfural over supported palladium nanoparticle catalysts prepared by sol-immobilisation: effect of catalyst support and reaction conditions. Catalysis Science and Technology 2018 (8), pp.252-267. (10.1039/C7CY02110K)
- Aldred, M. P. et al., 2025. Studies on the reactions of lactone intermediates derived from levulinic acid: telescoped routes to higher levulinate ester biofuels. ACS Omega 10 (14), pp.13898-13905. (10.1021/acsomega.4c08315)
- Aldred, M. P. et al., 2024. Nanoporous aluminosilicate mediated synthesis of 2- and 2,2-substituted 2,3-dihydroquinazolin-4(1H)-ones. Tetrahedron Letters 140 155037. (10.1016/j.tetlet.2024.155037)
- Aldridge, J. K. et al. 2020. Ambient temperature CO oxidation using palladium-platinum bimetallic catalysts supported on tin oxide/alumina. Catalysts 10 (11) 1223. (10.3390/catal10111223)
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Alsharif, H. et al. 2025. Ring opening hydrogenolysis of 5-hydroxymethyl furfural over supported bimetallic catalysts. Catalysis Science & Technology (10.1039/d5cy01286d)
- Alsharif, H. et al. 2024. Controlling the nanoparticle size and shape of a Pt/TiO 2 catalyst for enhanced hydrogenation of furfural to furfuryl alcohol †. RSC Sustainability 2 (12), pp.3888-3896. (10.1039/d4su00388h)
- Aranda, A. et al., 2009. Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol. Journal of Hazardous Materials 171 (1-3), pp.393-399. (10.1016/j.jhazmat.2009.06.013)
- Aranda, A. et al., 2010. Total oxidation of naphthalene using mesoporous CeO2 catalysts synthesized by nanocasting from two dimensional SBA-15 and three dimensional KIT-6 and MCM-48 silica templates. Catalysis Letters 134 (1-2), pp.110-117. (10.1007/s10562-009-0203-9)
- Aranda, A. et al., 2012. Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene. Applied Catalysis B: Environmental 127 , pp.77-88. (10.1016/j.apcatb.2012.07.033)
- Aranda, A. et al., 2012. High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants. Chemical Communications 48 (39), pp.4704-4706. (10.1039/c2cc31206a)
- Armstrong, R. et al. 2015. Low temperature catalytic partial oxidation of ethane to oxygenates by Fe– and Cu–ZSM-5 in a continuous flow reactor. Journal of Catalysis 330 , pp.84-92. (10.1016/j.jcat.2015.07.001)
- Armstrong, R. , Hutchings, G. and Taylor, S. H. 2016. An overview of recent advances of the catalytic selective oxidation of ethane to oxygenates. Catalysts 6 (5) 71. (10.3390/catal6050071)
- Armstrong, R. et al. 2018. The role of copper speciation in the low temperature oxidative upgrading of short chain alkanes over Cu/ZSM-5 catalysts. ChemPhysChem 19 (4), pp.469-478. (10.1002/cphc.201701046)
- Bailey, L. A. et al. 2022. Preparation of biomass-derived furfuryl acetals by transacetalization reactions catalyzed by nanoporous aluminosilicates. ACS Sustainable Chemistry and Engineering 10 (41), pp.13759–13764. (10.1021/acssuschemeng.2c03968)
- Bailey, L. A. et al. 2024. Controlling palladium particle size and dispersion as a function of loading by chemical vapour impregnation: an investigation using propane total oxidation as a model reaction. Catalysis Science & Technology 14 (17), pp.5045-5053. (10.1039/d4cy00665h)
- Bartley, J. K. et al. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11 (10), pp.5916-5933. (10.1021/acscatal.1c00569)
- Berko, M. B. et al., 2026. Continuous methane partial oxidation over Au/ZSM-5 catalysts. Catalysis Today 461 115531. (10.1016/j.cattod.2025.115531)
- Bowker, M. et al. 2022. Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck-Cardiff centre on the fundamentals of heterogeneous catalysis (funcat). Angewandte Chemie International Edition (10.1002/anie.202209016)
- Bowker, M. et al. 2022. The critical role of βPdZn alloy in Pd/ZnO catalysts for the hydrogenation of carbon dioxide to methanol. ACS Catalysis 12 (9), pp.5371-5379. (10.1021/acscatal.2c00552)
- Bowker, M. et al. 2020. CO2 hydrogenation to CH3OH over PdZn catalysts, with reduced CH4 production. ChemCatChem 12 (23), pp.6024-6032. (10.1002/cctc.202000974)
- Brett, G. L. et al. 2011. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angewandte Chemie. International Edition 50 (43), pp.10136-10139. (10.1002/anie.201101772)
- Brett, G. L. et al. 2012. Oxidative esterification of 1,2-propanediol using gold and gold-palladium supported nanoparticles. Catalysis Science & Technology 2 (1), pp.97-104. (10.1039/c1cy00254f)
- Brett, G. L. et al. 2013. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate. Chemsuschem 6 (10), pp.1952-1958. (10.1002/cssc.201300420)
- Brett, G. L. et al. 2014. Gold-based nanoparticulate catalysts for the oxidative esterification of 1,4-butanediol to dimethyl succinate. Topics in Catalysis 57 (6-9), pp.723-729. (10.1007/s11244-013-0229-5)
- Brown, A. S. C. , Hargreaves, J. S. C. and Taylor, S. H. 2000. Application of 'superacidic' metal oxides and their platinum doped counterparts to methane combustion. Catalysis Today 59 (3), pp.403-409. (10.1016/S0920-5861(00)00305-9)
- Brown, A. S. C. , Hargreaves, J. S. J. and Taylor, S. H. 1999. A study of "superacidic" MoO3/ZrO2 catalysts for methane oxidation. Catalysis Letters 57 (3), pp.109-113. (10.1023/A:1019047632335)
- Budroni, G. et al., 2013. Selective deposition of palladium onto supported nickel - bimetallic catalysts for the hydrogenation of crotonaldehyde. Catalysis Science & Technology 3 (10), pp.2746-2754. (10.1039/c3cy00449j)
- Cao, E. et al., 2013. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles. Catalysis Today 203 , pp.146-152. (10.1016/j.cattod.2012.05.023)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13 (7), pp.2528-2538. (10.1039/c0cp01852j)
- Carter, J. et al. 2021. Direct and oxidative dehydrogenation of propane: From catalyst design to industrial application. Green Chemistry 23 (24), pp.9747-9799. (10.1039/D1GC03700E)
- Carter, J. H. et al., 2023. The selective oxidation of methane to methanol using in situ generated H 2 O 2 over palladium-based bimetallic catalysts †. Catalysis Science & Technology (10.1039/d3cy00116d)
- Carter, J. H. et al. 2024. Origin of carbon monoxide formation in the oxidative dehydrogenation of propane using carbon dioxide. ACS Catalysis 14 (15), pp.11881-11892. (10.1021/acscatal.4c02628)
- Caswell, T. et al. 2020. Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology 10 (7), pp.2083-2091. (10.1039/C9CY02473E)
- Chaffey, D. R. et al., 2019. Metal triflate-promoted allylic substitution reactions of cinnamyl alcohol in the presence of orthoesters and acetals. ACS Omega 4 , pp.15985-15991. (10.1021/acsomega.9b02059)
- Chaffey, D. R. et al., 2021. Conversion of levulinic acid to levulinate ester biofuels by heterogeneous catalysts in the presence of acetals and ketals. Applied Catalysis B: Environmental 293 120219. (10.1016/j.apcatb.2021.120219)
- Chaffey, D. R. et al., 2018. Etherification reactions of furfuryl alcohol in the presence of orthoesters and ketals: application to the synthesis of furfuryl ether biofuels. ACS Sustainable Chemistry & Engineering 6 (4), pp.4996-5002. (10.1021/acssuschemeng.7b04636)
- Chávez-Sifontes, M. et al., 2022. The promoter effect of Nb species on the catalytic performance of Ir-based catalysts for VOCs total oxidation. Journal of Environmental Chemical Engineering 10 (5) 108261. (10.1016/j.jece.2022.108261)
- Cheong, S. et al., 2013. Au-Pd core-shell nanoparticles as alcohol oxidation catalysts: effect of shape and composition. ChemSusChem 6 (10), pp.1858-1862. (10.1002/cssc.201300483)
- Chow, Y. K. et al. 2018. A kinetic study of methane partial oxidation over FeZSM-5 using N2O as an oxidant. ChemPhysChem 19 (4), pp.402-411. (10.1002/cphc.201701202)
- Chow, Y. K. et al. 2018. Investigating the influence of acid sites in continuous methane oxidation with N2O over Fe/MFI zeolites. Catalysis Science and Technology 2018 (8), pp.154-163. (10.1039/C7CY01769C)
- Clarke, T. J. et al. 2015. Mechanochemical synthesis of copper manganese oxide for the ambient temperature oxidation of carbon monoxide. Applied Catalysis B: Environmental 165 , pp.222-231. (10.1016/j.apcatb.2014.09.070)
- Clarke, T. J. , Kondrat, S. A. and Taylor, S. H. 2015. Total oxidation of naphthalene using copper manganese oxide catalysts. Catalysis Today 258 (2), pp.610-615. (10.1016/j.cattod.2015.01.032)
- Cole, K. J. et al., 2010. Copper Manganese Oxide Catalysts Modified by Gold Deposition: The Influence on Activity for Ambient Temperature Carbon Monoxide Oxidation. Catalysis Letters 138 (3-4), pp.143-147. (10.1007/s10562-010-0392-2)
- Conte, M. et al., 2016. Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings. Catalysis Letters 146 (1), pp.126-135. (10.1007/s10562-015-1660-y)
- Conte, M. et al., 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313 (5791), pp.1270-1273. (10.1126/science.1130493)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2 (1), pp.105-112. (10.1039/c1cy00299f)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164 , pp.207-213. (10.1016/j.micromeso.2012.05.001)
- Cooper, A. et al. 2020. Influence of the preparation method of Ag-K/CeO2-ZrO2-Al2O3 catalysts on their structure and activity for the simultaneous removal of soot and NOx. Catalysts 10 (3), pp.-. 294. (10.3390/catal10030294)
- Cooper, A. , Golunski, S. and Taylor, S. H. 2022. The effect of potassium inclusion in a silver catalyst for N2O-mediated oxidation of soot in oxidising exhaust gases. Catalysts 12 (7) 753. (10.3390/catal12070753)
- Cooper, C. A. et al. 2001. A combined experimental and theoretical approach to the study of methane activation over oxide catalysts. Catalysis Today 71 (1-2), pp.3-10. (10.1016/S0920-5861(01)00446-1)
- Cooper, C. A. et al. 2001. The role of gallium oxide in methane partial oxidation catalysts: an experimental and theoretical study. Studies in Surface Science and Catalysis 136 , pp.319-324.
- Coquet, R. et al., 2006. Calculations on the adsorption of Au to MgO surfaces using SIESTA. Journal of Materials Chemistry 16 (20), pp.1978-1988. (10.1039/b601213b)
- Crawley, J. W. M. et al. 2022. Heterogeneous trimetallic nanoparticles as catalysts. Chemical Reviews 122 (6), pp.6795-6849. (10.1021/acs.chemrev.1c00493)
- Cuenca, J. A. et al. 2016. Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements. Journal of Physics: Condensed Matter 28 (10) 106002. (10.1088/0953-8984/28/10/106002)
- Da Ros, S. et al., 2016. Ethanol to 1,3-butadiene conversion by using ZrZn-containing MgO/SiO2 systems prepared by co-precipitation and effect of catalyst acidity modification. ChemCatChem 8 (14), pp.2376-2386. (10.1002/cctc.201600331)
- D'Agostino, C. et al., 2013. Solvent effect and reactivity trend in the aerobic oxidation of 1,3-Propanediols over gold supported on Titania: NMR diffusion and relaxation studies. Chemistry - A European Journal 19 (35), pp.11725-11732. (10.1002/chem.201300502)
- D'Agostino, C. et al., 2014. Deactivation studies of a carbon supported AuPt nanoparticulate catalyst in the liquid-phase aerobic oxidation of 1,2-propanediol. Catalysis Science & Technology 4 (5), pp.1313-1322. (10.1039/c4cy00027g)
- Dai, X. et al., 2019. Efficient elimination of chlorinated organics on a phosphoric acid modified CeO2 catalyst: a hydrolytic destruction route. Environmental Science and Technology 53 (21), pp.12697-12705. (10.1021/acs.est.9b05088)
- Davies, C. et al. 2018. Simultaneous removal of NOx and soot particulate from diesel exhaust by in-situ catalytic generation and utilisation of N2O. Applied Catalysis B: Environmental 239 , pp.10-15. (10.1016/j.apcatb.2018.07.072)
- Davies, D. et al. 2018. Dominant effect of support wettability on the reaction pathway for Catalytic Wet Air Oxidation over Pt and Ru nano-particle catalysts. ACS Catalysis (10.1021/acscatal.7b04039)
- Davies, T. et al. 2014. Nanoporous aluminosilicate-mediated synthesis of ethers by a dehydrative etherification approach. ACS Sustainable Chemistry & Engineering 2 (4), pp.860-866. (10.1021/sc400492x)
- Davies, T. and Taylor, S. H. 2004. The oxidative dehydrogenation of propane using gallium-molybdenum based catalysts. Catalysis Letters 93 (3-4), pp.151-154. (10.1023/B:CATL.0000017069.52359.6a)
- Davies, T. and Taylor, S. H. 2004. The oxidative dehydrogenation of propane using gallium-molybdenum oxide-based catalysts. Journal of Molecular Catalysis A: Chemical 220 (1), pp.77-84. (10.1016/j.molcata.2004.01.027)
- Davies, T. E. et al. 2015. Dehydrative etherification reactions of glycerol with alcohols catalyzed by recyclable nanoporous aluminosilicates: telescoped routes to glyceryl ethers. ACS Sustainable Chemistry & Engineering 4 (3), pp.835-843. (10.1021/acssuschemeng.5b00894)
- Davies, T. E. et al. 2015. Nanoporous alumino- and borosilicate-mediated Meinwald rearrangement of epoxides. Applied Catalysis A: General 493 , pp.17-24. (10.1016/j.apcata.2014.12.031)
- Davies, T. E. et al. 2006. Nanocrystalline cobalt oxide: a catalyst for selective alkane oxidation under ambient conditions. Chemical Communications (32), pp.3417-3419. (10.1039/b606973h)
- Davies, T. E. , Taylor, S. H. and Graham, A. E. 2018. Nanoporous aluminosilicate-catalyzed telescoped acetalization-direct aldol reactions of acetals with 1,3-dicarbonyl compounds. ACS Omega 3 (11), pp.15482-15491. (10.1021/acsomega.8b02047)
- Devlia, J. et al., 2020. The formation of methanol from glycerol bio-waste over doped ceria based catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378 (2176) 20200059. (10.1098/rsta.2020.0059)
- Dimitratos, N. et al. 2009. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry 11 (8), pp.1209-1216. (10.1039/b823285g)
- Douthwaite, M. et al. 2020. Glycerol selective oxidation to lactic acid over AuPt nanoparticles; enhancing reaction selectivity and understanding by support modification. ChemCatChem 12 (11), pp.3097-3107. (10.1002/cctc.202000026)
- Dummer, N. F. et al. 2023. Methane oxidation to methanol. Chemical Reviews 9 , pp.6359-6411. (10.1021/acs.chemrev.2c00439)
- Eaimsumang, S. et al., 2020. Ceria nanorod supported gold nanoparticles as structured catalysts for the oxidative steam reforming of methanol: Effect of CTAB concentration on physiochemical properties and catalyst performance. Journal of Catalysis 392 , pp.254-265. (10.1016/j.jcat.2020.10.023)
- Eaimsumang, S. et al., 2022. Relationship between hydrothermal temperatures and structural properties of CeO2 and enhanced catalytic activity of propene/toluene/CO oxidation by Au/CeO2 catalysts. Frontiers in Chemistry 10 959152. (10.3389/fchem.2022.959152)
- Enache, D. I. et al., 2007. Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance. Catalysis Today 122 (3-4), pp.407-411. (10.1016/j.cattod.2007.01.003)
- Enache, D. I. et al., 2007. Intensification of the solvent-free catalytic hydroformylation of cyclododecatriene: Comparison of a stirred batch reactor and a heat-exchange reactor. Catalysis Today 128 (1-2 SP), pp.18-25. (10.1016/j.cattod.2007.08.011)
- Enache, D. I. et al., 2005. Experimental evaluation of a three-phase downflow capillary reactor. Industrial and Engineering Chemistry Research 44 (16), pp.6295-6303. (10.1021/ie049140y)
- Enache, D. I. et al., 2007. Multiphase hydrogenation of resorcinol in structured and heat exchange reactor systems. Influence of the catalyst and the reactor configuration. Catalysis Today 128 (1-2 SP), pp.26-35. (10.1016/j.cattod.2007.08.012)
- Enache, D. I. et al., 2005. The hydrogenation of isophorone to trimethyl cyclohexanone using the downflow single capillary reactor. Catalysis Today 105 (3-4), pp.569-573. (10.1016/j.cattod.2005.06.013)
- Evans, C. D. et al. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153 , pp.2026-2035. (10.1007/s10562-022-04111-2)
- Evans, C. D. et al. 2020. Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. Journal of Chemical Physics 152 (13) 134705. (10.1063/1.5128595)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188 , pp.427-450. (10.1039/C5FD00187K)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Forde, M. M. et al. 2013. Partial oxidation of ethane to oxygenates using Fe- and Cu-containing ZSM-5. Journal of the American Chemical Society 135 (30), pp.11087-11099. 130716133536007. (10.1021/ja403060n)
- Forde, M. M. et al. 2012. Methane oxidation using silica-supported N-bridged di-iron phthalocyanine catalyst. Journal of Catalysis 290 , pp.177-185. (10.1016/j.jcat.2012.03.013)
- Forde, M. M. et al. 2014. High activity redox catalysts synthesized by chemical vapor impregnation. ACS Nano 8 (1), pp.957-969. (10.1021/nn405757q)
- Freakley, S. J. et al. 2021. Methane oxidation to methanol in water. Accounts of Chemical Research 54 (11), pp.2614–2623. (10.1021/acs.accounts.1c00129)
- Gandarias, I. et al., 2016. The selective oxidation of n-butanol to butyraldehyde by oxygen using stable Pt-based nanoparticulate catalysts: an efficient route for upgrading aqueous biobutanol. Catalysis Science & Technology 6 (12), pp.4201-4209. (10.1039/C5CY01726B)
- Gandarias Goikoetxea, I. et al. 2015. Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions. Chemsuschem 8 (3), pp.473-480. (10.1002/cssc.201403190)
- Gao, Z. et al., 2021. Controlling radical intermediates in photocatalytic conversion of low-carbon-number alcohols. ACS Sustainable Chemistry and Engineering 9 (18), pp.6188–6202. (10.1021/acssuschemeng.1c01066)
- Garcia, T. et al., 2015. Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. Catalysis Today 254 , pp.12-20. (10.1016/j.cattod.2015.01.038)
- García, T. et al., 2019. The key role of nanocasting in gold-based Fe2 O3 nanocasted catalysts for oxygen activation at the metal-support interface. ChemCatChem 11 (7), pp.1915-1927. (10.1002/cctc.201900210)
- García, T. et al., 2020. Insights into the production of upgraded biofuels using Mg-loaded mesoporous ZSM-5 zeolites. ChemCatChem 12 (20), pp.5236-5249. (10.1002/cctc.202000787)
- Garcia, T. et al., 2013. Total oxidation of naphthalene using bulk manganese oxide catalysts. Applied Catalysis A: General 450 , pp.169-177. (10.1016/j.apcata.2012.10.029)
- Garcia, T. , Solsona, B. E. and Taylor, S. H. 2004. The oxidative destruction of hydrocarbon volatile organic compounds using palladium-vanadia-titania catalysts. Catalysis Letters 97 (1-2), pp.99-103. (10.1023/B:CATL.0000034294.35776.db)
- Garcia, T. et al., 2005. Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds. Applied Catalysis B Environmental 62 (1-2), pp.66-76. (10.1016/j.apcatb.2005.06.016)
- Garcia, T. et al., 2004. Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts. Journal of Catalysis 229 (1), pp.1-11. (10.1016/j.jcat.2004.09.018)
- Garcia, T. , Solsona, B. E. and Taylor, S. H. 2005. Nano-crystalline ceria catalysts for the abatement of polycyclic aromatic hydrocarbons. Catalysis Letters 105 (3-4), pp.183-189. (10.1007/s10562-005-8689-2)
- Garcia, T. , Solsona, B. E. and Taylor, S. H. 2006. Naphthalene total oxidation over metal oxide catalysts. Applied Catalysis B Environmental 66 (1-2), pp.92-99. (10.1016/j.apcatb.2006.03.003)
- Garcia, T. et al., 2011. The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation. Catalysis Science & Technology 1 (8), pp.1367-1375. (10.1039/c0cy00032a)
- Haider, M. et al. 2014. The effect of grafting zirconia and ceria onto alumina as a support for silicotungstic acid for the catalytic dehydration of glycerol to acrolein. Chemistry - a European Journal 20 (6), pp.1743-1752. (10.1002/chem.201302348)
- Haider, M. et al. 2012. Rubidium- and caesium-doped silicotungstic acid catalysts supported on alumina for the catalytic dehydration of glycerol to acrolein. Journal of Catalysis 286 , pp.206-213. (10.1016/j.jcat.2011.11.004)
- Haider, M. H. et al., 2015. Efficient green methanol synthesis from glycerol. Nature Chemistry 7 , pp.1028-1032. (10.1038/nchem.2345)
- Hammond, C. et al. 2013. Elucidation and evolution of the active component within Cu/Fe/ZSM-5 for catalytic methane oxidation: from synthesis to catalysis. ACS Catalysis 3 (4), pp.689-699. (10.1021/cs3007999)
- Hammond, C. et al. 2013. Aqueous-phase methane oxidation over Fe-MFI zeolites: promotion through isomorphous framework substitution. ACS Catalysis 3 (8), pp.1835-1844. 130702113713003. (10.1021/cs400288b)
- Hammond, C. et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angewandte Chemie - International Edition 51 (21), pp.5129-5133. (10.1002/anie.201108706)
- Hammond, C. et al. 2012. Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5. Chemistry - a European Journal 18 (49), pp.15735-15745. (10.1002/chem.201202802)
- Hammond, C. et al. 2012. Cover Picture: Catalytic and mechanistic insights of the low-temperature selective oxidation of methane over Cu-promoted Fe-ZSM-5 (Chem. Eur. J. 49/2012). Chemistry - A European Journal 18 (49), pp.15557. (10.1002/chem.201290208)
- Hammond, C. R. et al. 2003. A study of methane activation by modified gallium- and zinc-based catalysts. Research on Chemical Intermediates 29 (7-9), pp.911-920. (10.1163/156856703322601906)
- Hargreaves, J. S. J. et al., 2002. A study of the methane-deuterium exchange reaction over a range of metal oxides. Applied Catalysis A: General 227 (1-2), pp.191-200. (10.1016/S0926-860X(01)00935-8)
- Harris, R. H. et al. 2002. Water as a promoter of the complete oxidation of volatile organic compounds over uranium oxide catalysts. Catalysis Letters 78 (1-4), pp.369-372. (10.1023/A:1014916920128)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162 , pp.365-378. (10.1039/c2fd20153d)
- Heneghan, C. S. et al. 1999. A temporal analysis of products study of the mechanism of VOC catalytic oxidation using uranium oxide catalysts. Catalysis Today 54 (1), pp.3-12. (10.1016/S0920-5861(99)00162-5)
- Henning, A. M. et al., 2013. Gold-palladium core-shell nanocrystals with size and shape control optimized for catalytic performance. Angewandte Chemie - International Edition 52 (5), pp.1477-1480. (10.1002/anie.201207824)
- Hernandez, N. et al., 2017. Carbonization of polymers of intrinsic microporosity to microporous heterocarbon: Capacitive pH measurements. Applied Materials Today 9 , pp.136-144. (10.1016/j.apmt.2017.06.003)
- Herzing, A. A. et al., 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13 , pp.102-103. (10.1017/S143192760707660X)
- Huang, H. et al., 2005. COS hydrolysis using zinc-promoted alumina catalysts. Catalysis Letters 104 (1-2), pp.17-21. (10.1007/s10562-005-7430-5)
- Huang, H. et al., 2006. High temperature COS hydrolysis catalysed by γ-Al2O 3. Catalysis Letters 110 (3-4), pp.243-246. (10.1007/s10562-006-0115-x)
- Huang, H. et al., 2008. Purification of chemical feedstocks by the removal of aerial carbonyl sulfide by hydrolysis using rare earth promoted alumina catalysts. Green Chemistry 10 (5), pp.571-577. (10.1039/b717031a)
- Hutchings, G. J. et al. 1997. A novel approach to the scientific design of oxide catalysts for the partial oxidation of methane to methanol. Studies in Surface Science and Catalysis 107 , pp.41-46. (10.1016/S0167-2991(97)80314-X)
- Hutchings, G. J. et al. 1996. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature 384 (6607), pp.341-343. (10.1038/384341a0)
- Hutchings, G. J. et al. 1997. The catalytic combustion of volatile chloro-organic compounds using uranium oxide catalysts. Preprints - American Chemical Society, Division of Petroleum Chemistry 42 (1), pp.142-145.
- Hutchings, G. J. et al. 1998. Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General 166 (1), pp.143-152. (10.1016/S0926-860X(97)00248-2)
- Hutchings, G. J. and Taylor, S. H. 1999. Designing oxidation catalysts. Catalysis Today 49 (1-3), pp.105-113.
- Hutchings, G. J. , Taylor, S. H. and Hudson, I. D. 1999. Designing heterogeneous oxidation catalysts. Studies in Surface Science and Catalysis 121 , pp.85-92. (10.1016/S0167-2991(99)80049-4)
- Iqbal, S. et al., 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275 , pp.35-39. (10.1016/j.cattod.2015.09.041)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272 , pp.74-79. (10.1016/j.cattod.2016.04.012)
- Ivars-Barceló, F. et al., 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354 , pp.236-249. (10.1016/j.jcat.2017.08.020)
- Jalama, K. et al., 2007. Effect of the addition of Au on Co/TiO2 catalyst for the Fischer-Tropsch reaction. Topics in Catalysis 44 (1-2), pp.129-136. (10.1007/s11244-007-0286-8)
- Jalama, K. et al., 2011. A comparison of Au/Co/Al2O3 and Au/Co/SiO2 catalysts in the Fischer-Tropsch reaction. Applied Catalysis A: General 395 (1-2), pp.1-9. (10.1016/j.apcata.2011.01.002)
- Jeffery, E. L. et al., 2005. A density functional theory study of the adsorption of acetone to the (111) surface of Pt: Implications for hydrogenation catalysis. Catalysis Today 105 (1), pp.85-92. (10.1016/j.cattod.2005.04.013)
- Jiang, Z. et al., 2018. Insight into the efficient oxidation of methyl-ethyl-ketone over hierarchically micro-mesostructured Pt/K-(Al)SiO 2 nanorod catalysts: Structure-activity relationships and mechanism. Applied Catalysis B: Environmental 226 , pp.220-233. (10.1016/j.apcatb.2017.12.007)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Jones, C. et al. 2009. Copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of calcination on activity. Journal of Molecular Catalysis A: Chemical 305 (1-2), pp.121-124. (10.1016/j.molcata.2008.10.027)
- Jones, C. et al. 2008. Cobalt promoted copper manganese oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications 2008 (14), pp.1707-1709. (10.1039/b800052m)
- Jones, M. et al. 2018. Zinc promoted alumina catalysts for the fluorination of chlorofluorocarbons. Journal of Catalysis 364 , pp.102-111. (10.1016/j.jcat.2018.05.012)
- Kazi Aurnob, A. et al., 2026. Methane partial oxidation over Rh/ZSM-5 catalysts in a high-pressure continuous flow reactor. Catalysis Today 462 115558. (10.1016/j.cattod.2025.115558)
- Kesavan, L. et al. 2011. Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331 (6014), pp.195-199. (10.1126/science.1198458)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281 (2), pp.279-289. (10.1016/j.jcat.2011.05.012)
- Kondrat, S. A. et al. 2014. Base-free oxidation of glycerol using titania-supported trimetallic Au-Pd-Pt nanoparticles. Chemsuschem 7 (5), pp.1326-1334. (10.1002/cssc.201300834)
- Kondrat, S. A. et al. 2012. Physical mixing of metal acetates: a simple, scalable method to produce active chloride free bimetallic catalysts. Chemical Science 3 (10), pp.2965-2971. (10.1039/c2sc20450a)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197 , pp.287-307. (10.1039/C6FD00202A)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317 , pp.12-20. (10.1016/j.cattod.2018.03.046)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531 , pp.83-87. (10.1038/nature16935)
- Kotionova, T. et al. 2012. Oxidative Esterification of Homologous 1,3-Propanediols. Catalysis Letters 142 (9), pp.1114-1120. (10.1007/s10562-012-0872-7)
- Kubczyk, T. M. et al., 2011. Nanoporous aluminosilicate catalyzed Friedel-Crafts alkylation reactions of indoles with aldehydes and acetals. Green Chemistry 13 (9), pp.2320-2325. (10.1039/c1gc15669a)
- Lawes, N. et al. 2024. Zn loading effects on the selectivity of PdZn catalysts for CO2 hydrogenation to methanol. Catalysis Letters 154 (4), pp.1603-1610. (10.1007/s10562-023-04437-5)
- Lawes, N. et al. 2024. CO2 hydrogenation to methanol on intermetallic PdGa and PdIn catalysts and the effect of Zn co-deposition. Applied Catalysis A: General 679 119735. (10.1016/j.apcata.2024.119735)
- Lawes, N. et al. 2022. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts.. Faraday Discussions (10.1039/D2FD00119E)
- Li, X. et al., 2004. Enantioselective hydrogenation using cinchona-modified Pt/γ-Al 2O3 catalysts: Comparison of the reaction of ethyl pyruvate and buta-2,3-dione. Catalysis Letters 96 (3-4), pp.147-151. (10.1023/B:CATL.0000030112.70608.a0)
- Li, Y. et al., 2025. Dynamic active site evolution in lanthanum‐based catalysts dictates ethane chlorination pathways. Angewandte Chemie International Edition 64 (34) e202505846. (10.1002/anie.202505846)
- Liu, X. et al., 2017. Catalytic partial oxidation of cyclohexane by bimetallic Ag/Pd nanoparticles on magnesium oxide. Chemistry - A European Journal 23 (49)(10.1002/chem.201605941)
- Liu, X. et al., 2016. One-step production of 1,3-butadiene from 2,3-butanediol dehydration. Chemistry - a European Journal 22 (35), pp.12290-12294. (10.1002/chem.201602390)
- Lopez, J. M. et al., 2014. Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation. Journal of catalysis 317 , pp.167-175. (10.1016/j.jcat.2014.06.021)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142 (9), pp.1049-1056. (10.1007/s10562-012-0869-2)
- Madrid, E. et al., 2014. Metastable ionic diodes derived from an amine-based polymer of intrinsic microporosity. Angewandte Chemie International Edition 53 (40), pp.10751-10754. (10.1002/anie.201405755)
- Mantle, M. D. et al., 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115 (4), pp.1073-1079. (10.1021/jp105946q)
- Marin, R. P. et al., 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504 , pp.62-73. (10.1016/j.apcata.2015.02.023)
- Marin, R. P. et al., 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4 (7), pp.1970-1978. (10.1039/c4cy00044g)
- Marin, R. P. et al., 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140 , pp.671-679. (10.1016/j.apcatb.2013.04.076)
- McVicker, R. et al. 2020. Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today 342 , pp.32-38. (10.1016/j.cattod.2018.12.017)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6 (8), pp.6600-6613. (10.1021/nn302299e)
- Meenakshisundaram, S. et al. 2010. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discussions 145 , pp.341-356. (10.1039/b908172k)
- Meenakshisundaram, S. et al. 2011. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. Chemistry - A European Journal 17 (23), pp.6524-6532. (10.1002/chem.201003484)
- Miedziak, P. et al. 2018. Gold as a catalyst for the ring opening of 2,5-Dimethylfuran. Catalysis Letters 148 (7), pp.2109-2116. (10.1007/s10562-018-2415-3)
- Miedziak, P. J. et al. 2022. The over-riding role of autocatalysis in alllylic oxidation. Catalysis Letters 152 , pp.1003-1008. (10.1007/s10562-021-03707-4)
- Miedziak, P. J. et al. 2014. Base-free glucose oxidation using air with supported gold catalysts. Green Chemistry 16 (6), pp.3132-3141. (10.1039/c4gc00087k)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 163 (1), pp.47-54. (10.1016/j.cattod.2010.02.051)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 164 (1), pp.315-319. (10.1016/j.cattod.2010.10.028)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19 (45), pp.8619-8627. (10.1039/b911102f)
- Mirzaei, A. A. et al., 2003. Characterisation of copper-manganese oxide catalysts: Effect of precipitate ageing upon the structure and morphology of precursors and catalysts. Applied Catalysis A: General 253 (2), pp.499-508. (10.1016/S0926-860X(03)00563-5)
- Mirzaei, A. A. et al., 2003. Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na+ acting as catalyst poison. Catalysis Communications 4 (1), pp.17-20. (10.1016/S1566-7367(02)00231-5)
- Mirzaei, A. A. et al., 2003. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate aging atmosphere on catalyst activity. Catalysis Letters 87 (3-4), pp.103-108. (10.1023/A:1023416819195)
- Moragues, A. et al., 2018. Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts. Journal of Catalysis 360 , pp.187-200. (10.1016/j.jcat.2018.02.003)
- Morgan, K. et al., 2010. TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts. Journal of Catalysis 276 (1), pp.38-48. (10.1016/j.jcat.2010.08.013)
- Mugford, K. et al. 2024. Investigating physicochemical properties of MgO catalysts for the gas phase conversion of glycerol. ARKIVOC 2024 (3) 202412252. (10.24820/ark.5550190.p012.252)
- Myakonkaya, O. et al., 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3 (3), pp.339-341. (10.1002/cssc.200900280)
- Myakonkaya, O. et al., 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350 (2), pp.443-445. (10.1016/j.jcis.2010.06.064)
- Ni, F. et al. 2024. The direct synthesis of H2O2 and in situ oxidation of methane: An investigation into the role of the support. Catalysis Today 442 114910. (10.1016/j.cattod.2024.114910)
- Nowicka, E. et al. 2018. Mechanistic insights into selective oxidation of polyaromatic compounds using RICO chemistry. Chemistry - A European Journal 24 (47), pp.12359-12369. (10.1002/chem.201800423)
- Nowicka, E. et al., 2021. Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H2WO4, H3PO4 and H2O2: A route for upgrading heavy oil fractions. New Journal of Chemistry 45 (31), pp.13885-13892. (10.1039/D1NJ01986D)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation. Chemistry - A European Journal 21 (11), pp.4285-4293. (10.1002/chem.201405831)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation [Cover Profile]. Chemistry - A European Journal 21 (11), pp.4169. (10.1002/chem.201406658)
- Ntainjua Ndifor, E. , Carley, A. F. and Taylor, S. H. 2008. The role of support on the performance of platinum-based catalysts for the total oxidation of polycyclic aromatic hydrocarbons. Catalysis Today 137 (2-4), pp.362-366. (10.1016/j.cattod.2007.10.116)
- Ntainjua Ndifor, E. et al. 2011. The Influence of platinum addition on nano-crystalline ceria catalysts for the total oxidation of naphthalene a model polycyclic aromatic hydrocarbon. Catalysis Letters 141 (12), pp.1732-1738. (10.1007/s10562-011-0710-3)
- Ntainjua Ndifor, E. et al. 2007. Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon. Applied Catalysis B-Environmental 76 (3-4), pp.248-256. (10.1016/j.apcatb.2007.05.027)
- Ntainjua Ndifor, E. et al. 2008. The influence of cerium to urea preparation ratio of nanocrystalline ceria catalysts for the total oxidation of naphthalene. Catalysis Today 137 (2-4), pp.373-378. (10.1016/j.cattod.2007.12.140)
- Ntainjua Ndifor, E. and Taylor, S. H. 2009. The Catalytic Total Oxidation of Polycyclic Aromatic Hydrocarbons. Topics in Catalysis 52 (5), pp.528-541. (10.1007/s11244-009-9180-x)
- Palacios, M. et al., 2021. Characterisation and activity of mixed metal oxide catalysts for the gas-phase selective oxidation of toluene. Catalysis Today 363 , pp.73-84. (10.1016/j.cattod.2019.06.001)
- Palacios-Alcolado, M. and Taylor, S. H. 2000. Characterization of uranium oxides using in situ micro-raman spectroscopy. Applied Spectroscopy 54 (9), pp.1372-1378. (10.1366/0003702001951057)
- Pattisson, S. et al. 2020. Low temperature solvent-free allylic oxidation of cyclohexene using graphitic oxide catalysts. Catalysis Today 357 , pp.3-7. (10.1016/j.cattod.2019.04.053)
- Peneau, V. et al., 2017. The low temperature oxidation of propane using H2O2 and Fe/ZSM-5 catalysts; insights into the active site and enhancement of catalytic turnover frequencies. ChemCatChem 9 (4), pp.642-650. (10.1002/cctc.201601241)
- Peneau, V. et al., 2016. The partial oxidation of propane under mild aqueous conditions with H2O2 and ZSM-5 catalysts. Catalysis Science & Technology 6 (20), pp.7521-7531. (10.1039/C6CY01332E)
- Peneau, V. et al. 2015. Co-oxidation of octane and benzaldehyde using molecular oxygen with Au–Pd/carbon prepared by sol-immobilisation. Catalysis Science & Technology 5 (8), pp.3953-3959. (10.1039/C5CY00453E)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3 (4), pp.764-772. (10.1021/cs4000359)
- Pitchers, J. R. et al. 2025. The selective oxidation of methanol to formaldehyde using novel iron molybdate catalysts prepared by supercritical antisolvent precipitation. Catalysis Science & Technology 15 (10), pp.3195-3203. (10.1039/D5CY00211G)
- Puertolas, B. et al., 2010. The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental 93 (3-4), pp.395-405. (10.1016/j.apcatb.2009.10.014)
- Puértolas, B. et al., 2015. High-temperature stable gold nanoparticle catalysts for application under severe conditions: the role of TiO2 nanodomains in structure and activity. ACS Catalysis 5 (2), pp.1078-1086. (10.1021/cs501741u)
- Qi, H. et al. 2025. Tandem reductive amination and deuteration over a phosphorus-modified iron center.. Nature Communications 16 (1) 1840. (10.1038/s41467-024-55722-9)
- Qi, H. et al. 2025. Enhancing activation of D2O for highly efficient deuteration using an Fe-P pair-site catalyst. JACS Au 5 (6), pp.2666-2676. (10.1021/jacsau.5c00257)
- Robinson, M. C. W. et al., 2010. Synthesis of nanoporous aluminosilicate materials and their application as highly selective heterogeneous catalysts for the synthesis of β-amino alcohols. Journal of Molecular Catalysis A: Chemical 329 (1-2), pp.57-63. (10.1016/j.molcata.2010.06.018)
- Robinson, M. W. et al., 2009. Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates. Organic & Biomolecular Chemistry 7 (12), pp.2559-2564. (10.1039/B900719A)
- Robinson, M. W. C. et al., 2009. Synthesis and catalytic activity of nanoporous aluminosilicate materials. Journal of Molecular Catalysis A: Chemical 314 (1-2), pp.10-14. (10.1016/j.molcata.2009.09.005)
- Rogers, O. et al. 2020. Adipic acid formation from cyclohexanediol using platinum and vanadium catalysts: elucidating the role of homogeneous vanadium species. Catalysis Science and Technology 10 (13), pp.4210-4218. (10.1039/D0CY00914H)
- Rogers, O. et al. 2018. The low temperature solvent-free aerobic oxidation of cyclohexene to cyclohexane diol over highly active Au/Graphite and Au/Graphene catalysts. Catalysts 8 (8), pp.311. (10.3390/catal8080311)
- Rong, Y. et al., 2015. Intrinsically microporous polymer retains porosity in vacuum thermolysis to electroactive heterocarbon. Langmuir 31 (44), pp.12300-12306. (10.1021/acs.langmuir.5b02654)
- Ryabenkova, Y. et al. 2013. The selective oxidation of 1,2-propanediol to lactic acid using mild conditions and gold-based nanoparticulate catalysts. Catalysis Today 203 , pp.139-145. (10.1016/j.cattod.2012.05.037)
- Ryabenkova, Y. et al. 2012. The Selective Oxidation of 1,2-Propanediol by Supported Gold-Based Nanoparticulate Catalysts. Topics in Catalysis 55 (19-20), pp.1283-1288. (10.1007/s11244-012-9909-9)
- Ryabenkova, Y. et al., 2014. Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron 70 (36), pp.6055-6058. (10.1016/j.tet.2014.02.043)
- Saiman, M. I. et al. 2012. Involvement of surface-bound radicals in the oxidation of toluene using supported Au-Pd nanoparticles. Angewandte Chemie. International Edition 51 (24), pp.5981-5985. (10.1002/anie.201201059)
- Sainna, M. et al., 2021. A combined periodic DFT and QM/MM approach to understand the radical mechanism of the catalytic production of methanol from glycerol. Faraday Discussions 229 , pp.108-130. (10.1039/D0FD00005A)
- Sanchis, R. et al., 2021. Highly active Co3O4-based catalysts for total oxidation of light C1-C3 alkanes prepared by a simple soft chemistry method: effect of the heat-treatment temperature and mixture of alkanes. Materials 14 (23) 7120. (10.3390/ma14237120)
- Saunders, K. et al. 2024. Exploring the feasibility of continuous CWAO of bisphenol A at near-ambient temperature and pressure through use of hydrophobic Pt catalysts. Applied Catalysis A: General 676 119637. (10.1016/j.apcata.2024.119637)
- Schick, L. et al., 2021. Supported iridium catalysts for the total oxidation of short chain alkanes and their mixtures: influence of the support. Chemical Engineering Journal 417 127999. (10.1016/j.cej.2020.127999)
- Sellick, D. , Morgan, D. J. and Taylor, S. H. 2015. Silica supported platinum catalysts for total oxidation of the polyaromatic hydrocarbon naphthalene: An investigation of metal loading and calcination temperature. Catalysts 5 (2), pp.690-702. (10.3390/catal5020690)
- Sellick, D. R. et al. 2013. Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation. Applied Catalysis B: Environmental 132 , pp.98-106. (10.1016/j.apcatb.2012.11.036)
- Shaddick, G. et al. 2025. Data science and AI for sustainable futures: Opportunities and challenges. Sustainability 17 (5) 2019. (10.3390/su17052019)
- Shah, P. M. et al. 2025. The effect of washing on improving activity of co-precipitated ceria manganese oxide catalysts for volatile organic compound total oxidation. Molecular Catalysis 573 114796. (10.1016/j.mcat.2024.114796)
- Shah, P. M. et al. 2023. The effect of metal ratio and precipitation agent on highly active iron-manganese mixed metal oxide catalysts for propane total oxidation. Catalysts 13 (5) 794. (10.3390/catal13050794)
- Shah, P. M. , Bailey, L. A. and Taylor, S. H. 2023. The influence of cerium to manganese ratio and preparation method on the activity of ceria-manganese mixed metal oxide catalysts for voc total oxidation. Catalysts 13 (1) 114. (10.3390/catal13010114)
- Shah, P. M. et al. 2019. Ceria-zirconia mixed metal oxides prepared via mechanochemical grinding of carbonates for the total oxidation of propane and naphthalene. Catalysts 9 (5), pp.475. (10.3390/catal9050475)
- Shah, P. M. et al. 2019. Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene Volatile Organic Compounds. Applied Catalysis B: Environmental 253 , pp.331-340. (10.1016/j.apcatb.2019.04.061)
- Shen, L. et al., 2024. Hollow Au1Cu1(111) bimetallic catalyst promotes the selective electrochemical conversion of glycerol into glycolic acid. ACS Catalysis , pp.11343–11351. (10.1021/acscatal.4c00483)
- Smith, L. R. et al. 2022. Recent advances on the valorization of glycerol into alcohols. Energies 15 (17) e6250. (10.3390/en15176250)
- Smith, L. R. et al. 2021. Gas phase clycerol valorization over ceria nanostructures with well-defined morphologies. ACS Catalysis 11 , pp.4893-4907. (10.1021/acscatal.0c05606)
- Smith, L. R. et al. 2019. New insights for the valorisation of glycerol over MgO catalysts in the gas-phase. Catalysis Science and Technology 9 , pp.1464-1475. 6. (10.1039/C8CY02214C)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9 (9), pp.1621-1631. (10.1002/cctc.201601603)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8 (3), pp.2436-2447. (10.1039/C6SC04130B)
- Smith, P. J. et al. 2019. Investigating the Influence of Reaction Conditions and the Properties of Ceria for the Valorisation of Glycerol. Energies 12 (7) 1359. (10.3390/en12071359)
- Solsona, B. et al., 2011. Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. Journal of Hazardous Materials 187 (1-3), pp.544-552. (10.1016/j.jhazmat.2011.01.073)
- Solsona, B. et al., 2008. Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Applied Catalysis B-Environmental 84 (1-2), pp.176-184. (10.1016/j.apcatb.2008.03.021)
- Solsona, B. et al., 2011. The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B - Environmental 101 (3-4), pp.388-396. (10.1016/j.apcatb.2010.10.008)
- Solsona, B. et al., 2009. TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Applied Catalysis a-General 365 (2), pp.222-230. (10.1016/j.apcata.2009.06.016)
- Solsona, B. E. et al. 2007. Complete oxidation of short chain alkanes using a nanocrystalline cobalt oxide catalyst. Catalysis Letters 116 (3-4), pp.116-121. (10.1007/s10562-007-9136-3)
- Solsona, B. et al., 2011. Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal 175 , pp.271-278. (10.1016/j.cej.2011.09.104)
- Solsona, B. E. et al. 2004. Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry 28 (6), pp.708-711. (10.1039/b315391f)
- Solsona, B. E. et al. 2009. Ceria and Gold/Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons: An In Situ DRIFTS Study. Topics in Catalysis 52 (5), pp.492-500. (10.1007/s11244-009-9184-6)
- Solsona, B. E. et al. 2006. Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A General 312 , pp.67-76. (10.1016/j.apcata.2006.06.016)
- Song, N. et al., 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236 (2), pp.282-291. (10.1016/j.jcat.2005.10.008)
- Song, N. et al., 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106 (3-4), pp.127-131. (10.1007/s10562-005-9619-z)
- Suhaimi, N. H. S. et al., 2025. Perspective on CdS-based S-scheme photocatalysts for efficient photocatalytic applications: Characterisation techniques and optimal semiconductor coupling. International Journal of Hydrogen Energy 165 150929. (10.1016/j.ijhydene.2025.150929)
- Sun, Z. et al. 2025. Tailoring an Fe-Ov-Ce triggered phase-reversible oxygen carrier for intensified chemical looping CO2 splitting. Carbon Energy 7 (9) e70011. (10.1002/cey2.70011)
- Tang, Z. et al., 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162 , pp.219-226. (10.1016/S0167-2991(06)80910-9)
- Tang, Z. et al., 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249 (2), pp.208-219. (10.1016/j.jcat.2007.04.016)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1 (2), pp.247-251. (10.1002/cctc.200900195)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1 (5), pp.740-746. (10.1039/c1cy00064k)
- Tariq, A. et al. 2021. Combination of Cu/ZnO methanol synthesis catalysts and ZSM-5 zeolites to produce oxygenates from CO2 and H2. Topics in Catalysis 64 , pp.965-973. (10.1007/s11244-021-01447-8)
- Taylor, M. et al., 2008. Deep oxidation of propane using palladium-titania catalysts modified by niobium. Applied Catalysis a-General 350 (1), pp.63-70. (10.1016/j.apcata.2008.07.045)
- Taylor, M. N. et al., 2009. The Oxidative Dehydrogenation of Propane Using Vanadium Oxide Supported on Nanocrystalline Ceria. Topics in Catalysis 52 (12), pp.1660-1668. (10.1007/s11244-009-9307-0)
- Taylor, M. N. et al. 2012. Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. Journal of Catalysis 285 (1), pp.103-114. (10.1016/j.jcat.2011.09.019)
- Taylor, S. H. 2020. Catalysts for oxidative destruction of volatile organic compounds. Catalysts 10 (3) 343. (10.3390/catal10030343)
- Taylor, S. H. 2009. Preface: Catalytic Aspects of Complete Oxidation of Volatile Organic Compounds. Topics in Catalysis 52 (5), pp.457-457. (10.1007/s11244-009-9179-3)
- Taylor, S. H. 2017. Reflections on catalytic selective oxidation: opportunities and challenges [Editorial]. Catalysts 7 (1) 34. (10.3390/catal7010034)
- Taylor, S. H. et al. 1998. The partial oxidation of methane to methanol: an approach to catalyst design. Catalysis Today 42 (3), pp.217-224. (10.1016/S0920-5861(98)00095-9)
- Taylor, S. H. et al. 2001. Water as a promoter of VOC destruction over uranium oxide catalysts. Abstracts of papers of the American Chemical Society 222 , pp.U378-U379.
- Taylor, S. H. et al. 2000. Activity and mechanism of uranium oxide catalysts for the oxidative destruction of volatile organic compounds. Catalysis Today 59 (3), pp.249-259. (10.1016/S0920-5861(00)00291-1)
- Taylor, S. H. et al. 2000. Structure and activity relationships for copper manganese and copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation [Abstract]. Abstracts of papers of the American Chemical Society 219 , pp.U534-U534.
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 2003. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Catalysis Today 84 (3-4), pp.113-119. (10.1016/S0920-5861(03)00264-5)
- Taylor, S. H. , Hutchings, G. J. and Mirzaei, A. A. 1999. Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation. Chemical Communications (15), pp.1373-1374. (10.1039/A903426I)
- Taylor, S. H. et al. 2003. The partial oxidation of propane to formaldehyde using uranium mixed oxide catalysts. Catalysis Today 81 (2), pp.171-178. (10.1016/S0920-5861(03)00110-X)
- Taylor, S. H. et al. 2017. Oxidation of polynuclear aromatic hydrocarbons using ruthenium ion catalyzed oxidation: The role of aromatic ring number in reaction kinetics and product distribution. Chemistry - a European Journal (10.1002/chem.201704133)
- Taylor, S. H. and O'Leary, S. R. 2000. A study of uranium oxide based catalysts for the oxidative destruction of short chain alkanes. Applied Catalysis B: Environmental 25 (2-3), pp.137-149. (10.1016/S0926-3373(99)00128-9)
- Taylor, S. H. and Pollard, A. J. J. 2003. Silica and boron nitride supported molybdenum and vanadium oxide catalysts for propane oxidation. Catalysis Today 81 (2), pp.179-188. (10.1016/S0920-5861(03)00111-1)
- Taylor, S. H. and Rhodes, C. 2005. Ambient temperature oxidation of carbon monoxide using a Cu 2Ag2O3 catalyst. Catalysis Letters 101 (1-2), pp.31-33. (10.1007/s10562-004-3745-x)
- Taylor, S. H. and Rhodes, C. 2006. The oxidation of carbon monoxide at ambient temperature over mixed copper-silver oxide catalysts. Catalysis Today 114 (4 SPEC), pp.357-361. (10.1016/j.cattod.2006.02.073)
- Theodosiou, A. , Carley, A. F. and Taylor, S. H. 2012. A Raman investigation into the effect of temperature on ion-induced damage of graphite. Journal of Nuclear Materials 426 (1-3), pp.26-30. (10.1016/j.jnucmat.2012.03.023)
- Theodosiou, A. , Carley, A. F. and Taylor, S. H. 2010. Ion-induced damage in graphite: A Raman study. Journal of Nuclear Materials 403 (1-3), pp.108-112. (10.1016/j.jnucmat.2010.06.007)
- Thetford, A. et al. 2011. The decomposition of H2O2 over the components of Au/TiO2 catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 467 (2131), pp.1885-1899. (10.1098/rspa.2010.0561)
- Tigwell, M. et al. 2022. Investigating catalytic properties which influence dehydration and oxidative dehydrogenation in aerobic glycerol oxidation over Pt/TiO2. Journal of Physical Chemistry C 126 (37), pp.15651-15661. (10.1021/acs.jpcc.2c03680)
- Varela-Gandía, F. J. et al., 2013. Total oxidation of naphthalene using palladium nanoparticles supported on BETA, ZSM-5, SAPO-5 and alumina powders. Applied Catalysis B: Environmental 129 , pp.98-105. (10.1016/j.apcatb.2012.08.041)
- Viéitez Calo, S. et al., 2021. Structure sensitivity and hydration effects in Pt/TiO2 and Pt/TiO2-SiO2 catalysts for NO and propane oxidation. Topics in Catalysis 64 , pp.955-964. (10.1007/s11244-021-01415-2)
- Wang, K. et al., 2025. The effect of support calcination on carbon supported palladium catalysts for solvent-free benzyl alcohol oxidation. Catalysis Science & Technology 15 (18), pp.5346-5353. (10.1039/d5cy00027k)
- Weng, W. et al., 2011. Structural characterization of Niobium Phosphate Catalysts used for the Oxidative Dehydrogenation of Ethane to Ethylene. Microscopy and Microanalysis 17 (S2), pp.1738-1739. (10.1017/S1431927611009561)
- Weng, W. et al., 2011. Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics 13 (38), pp.17395-17404. (10.1039/c1cp21136f)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
- Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
- Whittle, D. M. et al., 2002. Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate ageing on catalyst activity. Physical Chemistry Chemical Physics 4 (23), pp.5915-5920. (10.1039/b207691h)
- Williams, C. et al. 2018. Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. ACS Catalysis , pp.2567-2576. (10.1021/acscatal.7b04417)
- Williams, J. O. et al. 2025. The influence of reaction conditions on selective acetylene hydrogenation over sol immobilisation prepared AgPd/Al2O3 catalysts. ChemCatChem 17 (18) e202401794. (10.1002/cctc.202401794)
- Ye, T. et al., 2022. Iron-chromium mixed metal oxides catalyse the oxidative dehydrogenation of propane using carbon dioxide. Catalysis Communications 162 106383. (10.1016/j.catcom.2021.106383)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648 , pp.163-169. (10.1016/j.susc.2015.11.010)
- Yip, L. et al., 2012. Nanoporous aluminosilicate mediated transacetalization reactions: application in glycerol valorization. Catalysis Science & Technology 2 (11), pp.2258-2263. (10.1039/c2cy20188g)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2004. Catalytic synthesis of methanethiol from CO/H2/H2S mixtures using α-Al2O3. New Journal of Chemistry 28 (4), pp.471-476. (10.1039/b312340p)
- Zhang, B. , Taylor, S. H. and Hutchings, G. J. 2003. Synthesis of methyl mercaptan and thiophene from CO/H2/H 2S using α-Al2O3. Catalysis Letters 91 (3-4), pp.181-183. (10.1023/B:CATL.0000007152.91400.95)
- Zhao, Y. et al., 2005. Study of carbon monoxide hydrogenation over Au supported on zinc oxide catalysts. American Chemical Society, Division of Petroleum Chemistry, Preprints 50 (2), pp.206-207.
- Zhao, Y. et al., 2007. Study of carbon monoxide hydrogenation over supported Au catalysts. Studies in Surface Science and Catalysis 163 , pp.141-151. (10.1016/S0167-2991(07)80477-0)
Book sections
- Bartley, J. K. et al. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons(10.1002/0471227617.eoc139.pub2)
- Garcia, T. , Solsona, B. and Taylor, S. H. 2014. The catalytic oxidation of hydrocarbon volatile organic compounds. In: Duprez, D. and Cavani, F. eds. Handbook of Advanced Methods and Processes in Oxidation Catalysis. London: Imperial College Press. , pp.51-90. (10.1142/9781848167513_0003)
- Kondrat, S. A. and Taylor, S. H. 2014. Catalyst preparation using supercritical fluid precipitation. In: Apesteguía, C. , Blekkan, E. and Spivey, J. eds. Catalysis. Vol. 26, Cambridge: Royal Society of Chemistry. , pp.218-249.
- Taylor, S. et al. 2022. Selective oxidation of methane to oxygenates using heterogeneous catalysts. In: Li, L. and Hargreaves, J. eds. Heterogeneous Catalysis for Sustainable Energy. Weinheim: Wiley. , pp.183-203.
Conferences
- Agarwal, N. et al. 2018. Low temperature selective methane oxidation to methanol utilizing molecular oxygen with gold palladium colloidal catalysts. Presented at: 255th National Meeting and Exposition of the American-Chemical-Society (ACS) - Nexus of Food, Energy, and Water New Orleans, LA, USA 18-22 March 2018. Abstracts of Papers of the American Chemical Society. Vol. 255.American Chemical Society. , pp.35.
- Hudson, I. D. et al., 1997. New class of uranium oxide catalysts for the oxidative destruction of volatile organic compounds in the vapour phase. Presented at: 90th Annual Meeting Air Waste Management Association Toronto, Canada 8-13 June 1997. Proceedings of the 1997 Air & Waste Management Association's 90th Annual Meeting & Exhibition. Toronto, Canada: Air & Waste Management Association
- Hutchings, G. J. and Taylor, S. H. 2007. Copper manganese based mixed oxides for CO oxidation at ambient temperature. Presented at: 234th ACS National Meeting Boston, MA, USA 19-23 August 2007.
Patents
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
- Lopez-Sanchez, J. A. et al., 2011. Hydrocarbon selective oxidation with heterogeneous gold catalysts. Patent WO 2011051642[Patent]
Research
My research focuses on heterogeneous catalysis and its role in enabling sustainable chemical processes. Catalysis is central to producing cleaner fuels, reducing emissions, and achieving net-zero targets, yet designing efficient catalysts requires understanding the relationship between their structure, preparation, and reaction mechanisms.
A major theme of my work is catalyst synthesis and discovery. I pioneered supercritical antisolvent (SAS) precipitation for catalyst preparation, enabling breakthroughs such as using georgeite as a precursor for highly active copper-based catalysts for methanol synthesis and hydrogen production. Detailed investigation of how preparation controls the performance of catalysts for low-temperature carbon monoxide oxidation have led to innovations for catalysts now used in critical life-support systems and emission control technologies.
My research combines preparation with advanced characterisation and mechanistic studies to reveal how catalysts operate at the molecular level. This knowledge drives the design of catalysts for selective oxidation, CO₂ conversion, and VOC removal for environmental protection, contributing to sustainability and circular economy goals.
Future directions include developing catalysts for CO₂ hydrogenation to methanol and other renewable fuels, advancing methane valorisation under mild conditions, and creating robust catalytic systems for green chemical manufacturing. We are also exploring multifunctional catalysts for integrated processes and collaborating to apply cutting-edge characterisation and computational modelling to accelerate catalyst discovery and fundamental understanding.
Teaching
Currently I teach year 3 catalysis:
CH3310 Heterogeneous Catalysis
Previously I have taught across a wide range of undergraduate and postgraduate modules, including Physical Chemistry, Inorganic Chemistry, Analytical Chemistry, spectroscopy, energy resources, and materials. My contributions spanned tutorials, workshops, laboratory practicals, and supervision of research projects. I have contributed to curriculum development and major programme updates, and served as course convenor for multiple modules. Internationally, I have delivered courses at the EU PIONEER Summer School (Spain) and the Hokkaido University Summer Institute (Japan). My outreach work includes organising Royal Society Summer Science Exhibitions, STEM Live events, and Harwell Campus Open Days, inspiring future scientists and promoting the impact of chemistry.
Biography
Professor Stuart Taylor joined Cardiff University in 1997 as a Lecturer in Chemistry and was later promoted to Senior Lecturer (2007), Reader (2010) and full Professor (2013). He is currently Deputy Head of the School of Chemistry and Director of the Cardiff Catalysis Institute (CCI). Over his career, he has held several senior leadership roles including Director of Research and Director of Innovation and Engagement.
He studied Applied Chemistry at Brunel University (1987–1991) and completed his PhD at the University of Liverpool (1991–1994) on selective methane oxidation. After postdoctoral research and a role as Principal Scientist at Liverpool, he moved to Cardiff to establish his research group in heterogeneous catalysis.
Professor Taylor’s research focuses on catalyst design and preparation for sustainable chemical processes, green chemistry, and environmental protection. He pioneered supercritical antisolvent precipitation for catalyst synthesis, leading to breakthroughs in low-temperature carbon monoxide oxidation and selective methane conversion. His work has been published in leading journals including Nature and Science, and is supported by major UKRI and EU grants and collaborations with industry worldwide.
He is a Fellow of the Royal Society of Chemistry and the Learned Society of Wales, and was elected to Academia Europaea in 2025. His contributions have been recognised by award of the Sir John Meurig Thomas Catalysis Medal (2022), the RSC Environment Prize (2023), and the Learned Society of Wales Menelaus Medal (2024).
Supervisions
- Heterogeneous catalysis
- Catalyst preparation
- Catalyst structure and activity relationships
- Environmental catalysis
- Selective oxidation catalysis