Professor Seralynne Vann
- Available for postgraduate supervision
Teams and roles for Seralynne Vann
Professor
Overview
Research summary
My main area of interest is understanding how our brains support memory and how these processes can break down in the cases of amnesia and dementia. A particular interest is how regions beyond the hippocampal formation contribute to memory with a specific focus of midbrain and medial diencephalic regions as well as the retrosplenial cortex. Our work has highlighted the importance of ascending projections from the midbrain and medial diencephalon for normal memory function. My research group uses a comparative approach to address the key question and a multi-level analysis ranging from cellular-level processes to behaviour. We use a number of convergent techniques including in vivo imaging, immunohistochemistry, lesions/inactivations/ electrophysiology, MR imaging, neuropsychology.
Publication
2025
- Lequin, M. et al., 2025. Mammillary body and hippocampal injury after acute perinatal arterial ischemic stroke. Neurology Open Access 1 (1) e0004. (10.1212/wn9.0000000000000004)
2024
- Dillingham, C. M. , Wilson, J. J. and Vann, S. 2024. Electrophysiological properties of the medial mammillary bodies across the sleep-wake cycle. eNeuro 11 (4) 0447-23. (10.1523/ENEURO.0447-23.2024)
- Milczarek, M. M. et al. 2024. Impairments in the early consolidation of spatial memories via group II mGluR agonism in the mammillary bodies. Scientific Reports 14 5977. (10.1038/s41598-024-56015-3)
- Perry, J. C. and Vann, S. D. 2024. Reduction in neurons immunoreactive for calcium-binding proteins in the anteroventral thalamic 1 nuclei of individuals with Down syndrome.. Neuroscience 557 , pp.56-66. (10.1016/j.neuroscience.2024.08.004)
2023
- Aggleton, J. P. , Vann, S. D. and O'Mara, S. M. 2023. Converging diencephalic and hippocampal supports for episodic memory. Neuropsychologia 191 108728. (10.1016/j.neuropsychologia.2023.108728)
- Milczarek, M. M. et al. 2023. Reduced mammillary body volume in individuals with a schizophrenia diagnosis: an analysis of the COBRE data set. npj Schizophrenia 9 48. (10.1038/s41537-023-00376-7)
- Vann, S. D. Grafman, J. H. ed. 2023. Effects of experimental brain lesions on spatial navigation. Reference Module in Neuroscience and Biobehavioral Psychology: Elsevier. (10.1016/b978-0-12-820480-1.00008-5)
2022
- Coad, B. et al. 2022. Apolipoprotein ε4 modifies obesity-related atrophy in the hippocampal formation of cognitively healthy adults. Neurobiology of Aging 113 , pp.39-54. (10.1016/j.neurobiolaging.2022.02.004)
- Lequin, M. H. et al., 2022. Mammillary body injury in neonatal encephalopathy: a multicentre, retrospective study. Pediatric Research 92 , pp.174-179. (10.1038/s41390-021-01436-3)
- McNaughton, N. and Vann, S. D. 2022. Construction of complex memories via parallel distributed cortical-subcortical iterative integration. Trends in Neurosciences 45 (7), pp.550-562. (10.1016/j.tins.2022.04.006)
- Meys, K. M. et al., 2022. The mammillary bodies: a review of causes of injury in infants and children. American Journal of Neuroradiology 43 (6), pp.802-812. (10.3174/ajnr.A7463)
- Vann, S. D. et al. 2022. Normative mammillary body volumes: From the neonatal period to young adult. NeuroImage: Reports 2 (4) 100122. (10.1016/j.ynirp.2022.100122)
2021
- Coad, B. M. et al. 2021. Apolipoprotein ε4 modifies obesity-related atrophy in the hippocampal formation of cognitively healthy adults. [Online].bioRxiv. Available at: https://doi.org/10.1101/2021.11.12.468385.
- Dillingham, C. M. et al. 2021. Time to put the mammillothalamic pathway into context. Neuroscience and Biobehavioral Reviews 121 , pp.60-74. (10.1016/j.neubiorev.2020.11.031)
2020
- Coad, B. et al. 2020. Precommissural and postcommissural fornix microstructure in healthy aging and cognition. Brain and Neuroscience Advances 4 , pp.1-12. (10.1177/2398212819899316)
- Craig, E. et al. 2020. Lack of change in CA1 dendritic spine density or clustering in rats following training on a radial-arm maze task [version 2; peer review: 2 approved]. Wellcome Open Research 5 68. (10.12688/wellcomeopenres.15745.2)
- Milczarek, M. M. and Vann, S. D. 2020. The retrosplenial cortex and long-term spatial memory: from the cell to the network. Current Opinion in Behavioral Sciences 32 , pp.50-56. (10.1016/j.cobeha.2020.01.014)
- Powell, A. et al. 2020. Stable encoding of visual cues in the mouse retrosplenial cortex. Cerebral Cortex 30 (8), pp.4424-4437. (10.1093/cercor/bhaa030)
2019
- Dillingham, C. M. et al. 2019. Mammillothalamic disconnection alters hippocampocortical oscillatory activity and microstructure: Implications for diencephalic amnesia. Journal of Neuroscience 39 (34), pp.6696-6713. (10.1523/JNEUROSCI.0827-19.2019)
- Dillingham, C. M. and Vann, S. D. 2019. Why Isn't the head-direction system necessary for direction? Lessons from the lateral mammillary nuclei. Frontiers in Neural Circuits 13 60. (10.3389/fncir.2019.00060)
- Molavi, M. et al., 2019. Signal change in the mammillary bodies after perinatal asphyxia. American Journal of Neuroradiology 40 (11), pp.1829-1834. (10.3174/ajnr.A6232)
- Perry, J. , Pakkenberg, B. and Vann, S. 2019. Striking reduction in neurons and glial cells in anterior thalamic nuclei of older patients with Down's syndrome. Neurobiology of Aging 75 , pp.54-61. (10.1016/j.neurobiolaging.2018.11.009)
- Wolff, M. and Vann, S. D. 2019. The Cognitive Thalamus as a gateway to mental representations. Journal of Neuroscience 39 (1), pp.3-14. 0479-18. (10.1523/JNEUROSCI.0479-18.2018)
2018
- Kinnavane, L. et al. 2018. Collateral projections innervate the mammillary bodies and retrosplenial cortex: A new category of hippocampal cells. eNeuro 5 (1) e0383-17.2018. (10.1523/ENEURO.0383-17.2018)
- Milczarek, M. M. , Vann, S. D. and Sengpiel, F. 2018. Spatial memory engram in the mouse retrosplenial cortex. Current Biology 28 (12), pp.1975-1980.e6. (10.1016/j.cub.2018.05.002)
- Nelson, A. et al. 2018. When is the rat retrosplenial cortex required for stimulus integration?. Behavioral Neuroscience 132 (5), pp.366-377. (10.1037/bne0000267)
- Powell, A. et al. 2018. Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat. Brain and Neuroscience Advances 2 , pp.1-15. (10.1177/2398212818811235)
- Vann, S. and Nelson, A. 2018. Anterior thalamic nuclei lesions have a greater impact than mammillothalamic tract lesions on the extended hippocampal system: a reply. Hippocampus 28 (10), pp.691-693. (10.1002/hipo.22953)
- Vann, S. D. 2018. Lesions within the head direction system reduce retrosplenial c-fos expression but do not impair performance on a radial-arm maze task. Behavioural Brain Research 338 , pp.153-158. (10.1016/j.bbr.2017.10.026)
2017
- Nelson, A. J. D. and Vann, S. D. 2017. The importance of mammillary body efferents for recency memory: towards a better understanding of diencephalic amnesia. Brain Structure and Function 222 (5), pp.2143-2156. (10.1007/s00429-016-1330-x)
- Powell, A. L. et al., 2017. The rat retrosplenial cortex as a link for frontal functions: a lesion analysis. Behavioural Brain Research 335 , pp.88-102. (10.1016/j.bbr.2017.08.010)
- Powell, A. L. et al. 2017. The retrosplenial cortex and object recency memory in the rat. European Journal of Neuroscience 45 (11), pp.1451-1464. (10.1111/ejn.13577)
2016
- Christiansen, K. et al. 2016. The status of the precommissural and postcommissural fornix in normal ageing and mild cognitive impairment: An MRI tractography study. NeuroImage 130 , pp.35-47. (10.1016/j.neuroimage.2015.12.055)
- Christiansen, K. et al. 2016. Complementary subicular pathways to the anterior thalamic nuclei and mammillary bodies in the rat and macaque monkey brain. European Journal of Neuroscience 43 (8), pp.1044-1061. (10.1111/ejn.13208)
- Christiansen, K. et al. 2016. Topographic separation of fornical fibers associated with the anterior and posterior hippocampus in the human brain: an MRI-diffusion study. Brain and Behavior 7 (1)(10.1002/brb3.604)
- Frizzati, A. et al. 2016. Comparable reduction in Zif268 levels and cytochrome oxidase activity in the retrosplenial cortex following mammillothalamic tract lesions. Neuroscience 330 , pp.39-49. (10.1016/j.neuroscience.2016.05.030)
- O'Sullivan, M. and Vann, S. D. 2016. Amyloid imaging and Alzheimer's disease: the unsolved cases. Brain: A Journal of Neurology 139 (9), pp.2342-2344. (10.1093/brain/aww166)
2015
- Cen, D. , Rushton, S. K. and Vann, S. D. 2015. Can where we are tell us where to go? The role of positional cues in visual guidance of human walking. Journal of Vision 15 (12) 1328. (10.1167/15.12.1328)
- Dillingham, C. M. et al. 2015. Fornical and non-fornical projections from the rat hippocampal formation to the anterior thalamic nuclei. Hippocampus 25 (9), pp.977-992. (10.1002/hipo.22421)
- Dillingham, C. M. et al. 2015. Calcium-binding protein immunoreactivity in Gudden's tegmental nuclei and the hippocampal formation: differential co-localization in neurons projecting to the mammillary bodies. Frontiers in Neuroanatomy 9 103. (10.3389/fnana.2015.00103)
- Dillingham, C. M. et al. 2015. How do mammillary body inputs contribute to anterior thalamic function?. Neuroscience & Biobehavioral Reviews 54 , pp.108-119. (10.1016/j.neubiorev.2014.07.025)
- Jankowski, M. M. et al., 2015. Evidence for spatially-responsive neurons in the rostral thalamus. Frontiers in Behavioral Neuroscience 9 256. (10.3389/fnbeh.2015.00256)
- Nelson, A. J. D. et al. 2015. The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning. Frontiers in Behavioral Neuroscience 9 11. (10.3389/fnbeh.2015.00011)
- Nelson, A. J. D. et al. 2015. What does spatial alternation tell us about retrosplenial cortex function?. Frontiers in Behavioral Neuroscience 9 126. (10.3389/fnbeh.2015.00126)
- Vann, S. D. and Nelson, A. J. D. 2015. The mammillary bodies and memory. In: Progress in Brain Research. Vol. 219, Elsevier. , pp.163-185. (10.1016/bs.pbr.2015.03.006)
- Vann, S. D. and Nelson, A. J. D. 2015. The mammillary bodies and memory: more than a hippocampal relay. In: O'Mara, S. and Tsanov, M. eds. Progress in Brain Research. The Connected Hippocampus Elsevier. , pp.163-185.
- Wright, N. F. et al. 2015. A critical role for the anterior thalamus in directing attention to task-relevant stimuli. Journal of Neuroscience 35 (14), pp.5480-5488. (10.1523/JNEUROSCI.4945-14.2015)
2014
- Aggleton, J. P. et al. 2014. The origin of projections from the posterior cingulate and retrosplenial cortices to the anterior, medial dorsal and laterodorsal thalamic nuclei of macaque monkeys. European Journal of Neuroscience 39 (1), pp.107-123. (10.1111/ejn.12389)
- Hindley, E. et al. 2014. The rat retrosplenial cortex is required when visual cues are used flexibly to determine location. Behavioural Brain Research 263 , pp.98-107. (10.1016/j.bbr.2014.01.028)
- Hindley, E. L. et al. 2014. Dysgranular retrosplenial cortex lesions in rats disrupt cross-modal object recognition. Learning and Memory 21 (3), pp.171-179. (10.1101/lm.032516.113)
- Jankowski, M. M. et al., 2014. Nucleus reuniens of the thalamus contains head direction cells. eLife 3 e03075. (10.7554/eLife.03075)
- Nelson, A. J. D. et al. 2014. A novel role for the rat retrosplenial cortex in cognitive control. Learning and Memory 21 (2), pp.90-97. (10.1101/lm.032136.113)
- Nelson, A. J. D. and Vann, S. D. 2014. Mammilliothalamic tract lesions disrupt tests of visuo-spatial memory. Behavioral Neuroscience 128 (4), pp.494-503. (10.1037/bne0000001)
- Tsanov, M. et al., 2014. The irregular firing properties of thalamic head direction cells mediate turn-specific modulation of the directional tuning curve. Journal of Neurophysiology 112 (9), pp.2316-2331. (10.1152/jn.00583.2013)
2013
- Jankowski, M. M. et al., 2013. The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Frontiers in Systems Neuroscience 7 45. (10.3389/fnsys.2013.00045)
- Vann, S. D. 2013. Dismantling the Papez circuit for memory in rats. eLife 2 e00736. (10.7554/eLife.00736)
- Wright, N. F. et al. 2013. Segregation of parallel inputs to the anteromedial and anteroventral thalamic nuclei of the rat. Journal of Comparative Neurology 521 (13), pp.2966-2986. (10.1002/cne.23325)
2012
- Aggleton, J. P. et al. 2012. Medial temporal lobe projections to the retrosplenial cortex of the macaque monkey brain. Hippocampus 22 (9), pp.1883-1900. (10.1002/hipo.22024)
- Saunders, R. C. , Vann, S. D. and Aggleton, J. P. 2012. Projections from Gudden's tegmental nuclei to the mammillary body region in the cynomolgus monkey (Macaca fascicularis). Journal of Comparative Neurology 520 (6), pp.1128-1145. (10.1002/cne.22740)
2011
- Tsanov, M. et al., 2011. Oscillatory entrainment of thalamic neurons by theta rhythm in freely moving rats. Journal of Neurophysiology 105 (1), pp.4-17. (10.1152/jn.00771.2010)
- Tsanov, M. et al., 2011. Hippocampal inputs mediate theta-related plasticity in anterior thalamus. Neuroscience 187 , pp.52-62. (10.1016/j.neuroscience.2011.03.055)
- Tsanov, M. et al., 2011. Theta-modulated head direction cells in the rat anterior thalamus. The Journal of Neuroscience 31 (26), pp.9489-9502. (10.1523/JNEUROSCI.0353-11.2011)
- Tsanov, M. et al., 2011. Differential regulation of synaptic plasticity of the hippocampal and the hypothalamic inputs to the anterior thalamus. Hippocampus 21 (1), pp.1-8. (10.1002/hipo.20749)
- Vann, S. D. 2011. A role for the head-direction system in geometric learning. Behavioural Brain Research 224 (1), pp.201-206. (10.1016/j.bbr.2011.05.033)
- Vann, S. D. and Albasser, M. M. 2011. Hippocampus and neocortex: recognition and spatial memory. Current Opinion in Neurobiology 21 (3), pp.440-445. (10.1016/j.conb.2011.02.002)
- Vann, S. D. et al. 2011. Selective disconnection of the hippocampal formation projections to the mammillary bodies produces only mild deficits on spatial memory tasks: Implications for fornix function. Hippocampus 21 (9), pp.945-957. (10.1002/hipo.20796)
2010
- Aggleton, J. P. et al. 2010. Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. European Journal of Neuroscience 31 (12), pp.2292-2307. (10.1111/j.1460-9568.2010.07251.x)
- Albasser, M. M. et al. 2010. New behavioral protocols to extend our knowledge of rodent object recognition memory. Learning & Memory 17 (8), pp.407-419. (10.1101/lm.1879610)
- Pothuizen, H. H. J. et al. 2010. Effects of selective granular retrosplenial cortex lesions on spatial working memory in rats. Behavioural Brain Research 208 (2), pp.566-575. (10.1016/j.bbr.2010.01.001)
- Vann, S. D. 2010. Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia 48 (8), pp.2316-2327. (10.1016/j.neuropsychologia.2009.10.019)
- Wright, N. F. et al. 2010. Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat. The Journal of Comparative Neurology 518 (12), pp.2334-2354. (10.1002/cne.22336)
2009
- Aggleton, J. P. et al. 2009. Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of hippocampal-dependent spatial learning: Implications for the neural basis of scene learning. Behavioral Neuroscience 123 (3), pp.504-519. (10.1037/a0015404)
- Denby, C. E. et al., 2009. The frequency and extent of mammillary body atrophy associated with surgical removal of a colloid cyst. American Journal of Neuroradiology 30 (4), pp.736-743. (10.3174/ajnr.A1424)
- Pothuizen, H. H. J. et al. 2009. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. European Journal of Neuroscience 30 (5), pp.877-888. (10.1111/j.1460-9568.2009.06881.x)
- Vann, S. D. 2009. Gudden's ventral tegmental nucleus is vital for memory: re-evaluating diencephalic inputs for amnesia. Brain 132 (9), pp.2372-2384. (10.1093/brain/awp175)
- Vann, S. D. , Aggleton, J. P. and Maguire, E. A. 2009. What does the retrosplenial cortex do?. Nature Reviews Neuroscience 10 (11), pp.792-802. (10.1038/nrn2733)
- Vann, S. D. and Albasser, M. M. 2009. Hippocampal, retrosplenial, and prefrontal hypoactivity in a model of diencephalic amnesia: Evidence towards an interdependent subcortical-cortical memory network. Hippocampus 19 (11), pp.1090-1102. (10.1002/hipo.20574)
- Vann, S. D. et al. 2009. Impaired recollection but spared familiarity in patients with extended hippocampal system damage revealed by 3 convergent methods. Proceedings of the National Academy of Sciences 106 (13), pp.5442-5447. (10.1073/pnas.0812097106)
2008
- Aggleton, J. P. , Saunders, R. C. and Vann, S. D. 2008. Using hippocampal amnesia to understand the neural basis of diencephalic amnesia. In: Dere, E. et al., Handbook of Episodic Memory. Vol. 18, Amsterdam: Elsevier. , pp.503-519. (10.1016/S1569-7339(08)00227-0)
- Denby, C. et al., 2008. MRI measurement of fornix pathology: evidence of extensive fornix damage following surgical removal of colloid cysts in the third ventricle. Neuroscience Imaging 2 (3), pp.109-125.
- Denby, C. et al., 2008. Neuroimaging of the fornix: present and future. Neuroscience Imaging 2 (3), pp.135-148.
- Pothuizen, H. H. J. , Aggleton, J. P. and Vann, S. D. 2008. Do rats with retrosplenial cortex lesions lack direction?. European Journal Of Neuroscience 28 (12), pp.2486-2498. (10.1111/j.1460-9568.2008.06550.x)
- Tsivilis, D. et al., 2008. A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nature Neuroscience 11 (7), pp.834-842. (10.1038/nn.2149)
- Vann, S. D. et al. 2008. Memory loss resulting from fornix and septal damage: Impaired supra-span recall but preserved recognition over a 24-hour delay. Neuropsychology 22 (5), pp.658-668. (10.1037/a0012542)
2007
- Hassabis, D. et al., 2007. Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences 104 (5), pp.1726-1731. (10.1073/pnas.0610561104)
- Kumaran, D. et al., 2007. Impaired spatial and non-spatial configural learning in patients with hippocampal pathology. Neuropsychologia 45 (12), pp.2699-2711. (10.1016/j.neuropsychologia.2007.04.007)
- Vann, S. D. , Saunders, R. C. and Aggleton, J. P. 2007. Distinct, parallel pathways link the medial mammillary bodies to the anterior thalamus in macaque monkeys. European Journal of Neuroscience 26 (6), pp.1575-1586. (10.1111/j.1460-9568.2007.05773.x)
2005
- Aggleton, J. P. et al. 2005. Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology. Neuropsychologia 43 (12), pp.1810-1823. (10.1016/j.neuropsychologia.2005.01.019)
- Aggleton, J. P. , Vann, S. D. and Saunders, R. C. 2005. Projections from the hippocampal region to the mammillary bodies in macaque monkeys. European Journal of Neuroscience 22 (10), pp.2519-2530. (10.1111/j.1460-9568.2005.04450.x)
- Vann, S. D. 2005. Transient spatial deficit associated with bilateral lesions of the lateral mammillary nuclei. European Journal of Neuroscience 21 (3), pp.820-824. (10.1111/j.1460-9568.2005.03896.x)
- Vann, S. D. and Aggleton, J. P. 2005. Selective Dysgranular Retrosplenial Cortex Lesions in Rats Disrupt Allocentric Performance of the Radial-Arm Maze Task. Behavioral Neuroscience 119 (6), pp.1682-1686. (10.1037/0735-7044.119.6.1682)
2004
- Aggleton, J. P. and Vann, S. D. 2004. Testing the importance of the retrosplenial navigation system: lesion size but not strain matters: a reply to Harker and Whishaw. Neuroscience & Biobehavioral Reviews 28 (5), pp.525-531. (10.1016/j.neubiorev.2004.08.003)
- Jenkins, T. A. et al., 2004. Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats?. European Journal of Neuroscience 19 (12), pp.3291-3304. (10.1111/j.0953-816X.2004.03421.x)
- Vann, S. D. and Aggleton, J. P. 2004. Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behavioural Brain Research 155 (1), pp.97-108. (10.1016/j.bbr.2004.04.005)
- Vann, S. D. and Aggleton, J. P. 2004. The mammillary bodies: Two memory systems in one?. Nature reviews neuroscience 5 (1), pp.35-44. (10.1038/nrn1299)
2003
- Aggleton, J. P. et al. 2003. Cortical and limbic interactions in memory processes. European Neuropsychopharmacology 13 (S4), pp.S135-S135. (10.1016/S0924-977X(03)91656-7)
- Vann, S. D. and Aggleton, J. P. 2003. Evidence of a spatial encoding deficit in rats with lesions of the mammillary bodies or mammillothalamic tract. Journal of Neuroscience 23 (8), pp.3506-3514.
- Vann, S. D. , Honey, R. C. and Aggleton, J. P. 2003. Lesions of the mammillothalamic tract impair the acquisition of spatial but not nonspatial contextual conditional discriminations. European Journal of Neuroscience 18 (8), pp.2413-2416. (10.1046/j.1460-9568.2003.02959.x)
- Vann, S. D. et al. 2003. Testing the importance of the caudal retrosplenial cortex for spatial memory in rats. Behavioural Brain Research 140 (1-2), pp.107-118. (10.1016/S0166-4328(02)00274-7)
- Zheng, Y. et al., 2003. Using Idiothetic Cues to Swim a Path With a Fixed Trajectory and Distance: Necessary Involvement of the Hippocampus, but Not the Retrosplenial Cortex. Behavioral Neuroscience 117 (6), pp.1363-1377. (10.1037/0735-7044.117.6.1363)
2002
- Machin, P. et al., 2002. Neurotoxic lesions of the rat perirhinal cortex fail to disrupt the acquisition of performance of tests of allocentric spatial memory. Behavioral Neuroscience 116 (2), pp.232-240. (10.1037//0735-7044.116.2.232)
- Vann, S. D. and Aggleton, J. P. 2002. Extensive cytotoxic lesions of the rat retrosplenial cortex revel consistent deficits on tasks that tax allocentric spatial memory. Behavioral Neuroscience 116 (1), pp.85-94. (10.1037//0735-7044.116.1.85)
- Ward-Robinson, J. et al. 2002. Sensory preconditioning in rats with lesions of the anterior thalamic nuclei: evidence for intact nonspatial 'relational' processing. Behavioural Brain Research 133 (2), pp.125-133. (10.1016/S0166-4328(01)00465-X)
2000
- Aggleton, J. P. et al. 2000. Identifying cortical inputs to the rat hippocampus that subserve allocentric spatial processes: a simple problem with a complex answer. Hippocampus 10 (4), pp.466-474. (10.1002/1098-1063(2000)10:4<466::AID-HIPO13>3.0.CO;2-Y)
- Vann, S. D. , Brown, M. W. and Aggleton, J. P. 2000. Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience 101 (4), pp.983-991. (10.1016/S0306-4522(00)00288-8)
- Vann, S. D. et al. 2000. Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests. Journal of Neuroscience 20 (7), pp.2711-2718.
- Vann, S. D. et al. 2000. Using Fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions. Journal of Neuroscience 20 (21), pp.8144-8152.
Articles
- Aggleton, J. P. , Vann, S. D. and O'Mara, S. M. 2023. Converging diencephalic and hippocampal supports for episodic memory. Neuropsychologia 191 108728. (10.1016/j.neuropsychologia.2023.108728)
- Aggleton, J. P. et al. 2003. Cortical and limbic interactions in memory processes. European Neuropsychopharmacology 13 (S4), pp.S135-S135. (10.1016/S0924-977X(03)91656-7)
- Aggleton, J. P. et al. 2010. Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. European Journal of Neuroscience 31 (12), pp.2292-2307. (10.1111/j.1460-9568.2010.07251.x)
- Aggleton, J. P. et al. 2009. Lesions of the fornix and anterior thalamic nuclei dissociate different aspects of hippocampal-dependent spatial learning: Implications for the neural basis of scene learning. Behavioral Neuroscience 123 (3), pp.504-519. (10.1037/a0015404)
- Aggleton, J. P. et al. 2014. The origin of projections from the posterior cingulate and retrosplenial cortices to the anterior, medial dorsal and laterodorsal thalamic nuclei of macaque monkeys. European Journal of Neuroscience 39 (1), pp.107-123. (10.1111/ejn.12389)
- Aggleton, J. P. and Vann, S. D. 2004. Testing the importance of the retrosplenial navigation system: lesion size but not strain matters: a reply to Harker and Whishaw. Neuroscience & Biobehavioral Reviews 28 (5), pp.525-531. (10.1016/j.neubiorev.2004.08.003)
- Aggleton, J. P. et al. 2005. Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology. Neuropsychologia 43 (12), pp.1810-1823. (10.1016/j.neuropsychologia.2005.01.019)
- Aggleton, J. P. et al. 2000. Identifying cortical inputs to the rat hippocampus that subserve allocentric spatial processes: a simple problem with a complex answer. Hippocampus 10 (4), pp.466-474. (10.1002/1098-1063(2000)10:4<466::AID-HIPO13>3.0.CO;2-Y)
- Aggleton, J. P. , Vann, S. D. and Saunders, R. C. 2005. Projections from the hippocampal region to the mammillary bodies in macaque monkeys. European Journal of Neuroscience 22 (10), pp.2519-2530. (10.1111/j.1460-9568.2005.04450.x)
- Aggleton, J. P. et al. 2012. Medial temporal lobe projections to the retrosplenial cortex of the macaque monkey brain. Hippocampus 22 (9), pp.1883-1900. (10.1002/hipo.22024)
- Albasser, M. M. et al. 2010. New behavioral protocols to extend our knowledge of rodent object recognition memory. Learning & Memory 17 (8), pp.407-419. (10.1101/lm.1879610)
- Cen, D. , Rushton, S. K. and Vann, S. D. 2015. Can where we are tell us where to go? The role of positional cues in visual guidance of human walking. Journal of Vision 15 (12) 1328. (10.1167/15.12.1328)
- Christiansen, K. et al. 2016. The status of the precommissural and postcommissural fornix in normal ageing and mild cognitive impairment: An MRI tractography study. NeuroImage 130 , pp.35-47. (10.1016/j.neuroimage.2015.12.055)
- Christiansen, K. et al. 2016. Complementary subicular pathways to the anterior thalamic nuclei and mammillary bodies in the rat and macaque monkey brain. European Journal of Neuroscience 43 (8), pp.1044-1061. (10.1111/ejn.13208)
- Christiansen, K. et al. 2016. Topographic separation of fornical fibers associated with the anterior and posterior hippocampus in the human brain: an MRI-diffusion study. Brain and Behavior 7 (1)(10.1002/brb3.604)
- Coad, B. et al. 2020. Precommissural and postcommissural fornix microstructure in healthy aging and cognition. Brain and Neuroscience Advances 4 , pp.1-12. (10.1177/2398212819899316)
- Coad, B. et al. 2022. Apolipoprotein ε4 modifies obesity-related atrophy in the hippocampal formation of cognitively healthy adults. Neurobiology of Aging 113 , pp.39-54. (10.1016/j.neurobiolaging.2022.02.004)
- Craig, E. et al. 2020. Lack of change in CA1 dendritic spine density or clustering in rats following training on a radial-arm maze task [version 2; peer review: 2 approved]. Wellcome Open Research 5 68. (10.12688/wellcomeopenres.15745.2)
- Denby, C. et al., 2008. MRI measurement of fornix pathology: evidence of extensive fornix damage following surgical removal of colloid cysts in the third ventricle. Neuroscience Imaging 2 (3), pp.109-125.
- Denby, C. et al., 2008. Neuroimaging of the fornix: present and future. Neuroscience Imaging 2 (3), pp.135-148.
- Denby, C. E. et al., 2009. The frequency and extent of mammillary body atrophy associated with surgical removal of a colloid cyst. American Journal of Neuroradiology 30 (4), pp.736-743. (10.3174/ajnr.A1424)
- Dillingham, C. M. et al. 2015. Fornical and non-fornical projections from the rat hippocampal formation to the anterior thalamic nuclei. Hippocampus 25 (9), pp.977-992. (10.1002/hipo.22421)
- Dillingham, C. M. et al. 2015. Calcium-binding protein immunoreactivity in Gudden's tegmental nuclei and the hippocampal formation: differential co-localization in neurons projecting to the mammillary bodies. Frontiers in Neuroanatomy 9 103. (10.3389/fnana.2015.00103)
- Dillingham, C. M. et al. 2019. Mammillothalamic disconnection alters hippocampocortical oscillatory activity and microstructure: Implications for diencephalic amnesia. Journal of Neuroscience 39 (34), pp.6696-6713. (10.1523/JNEUROSCI.0827-19.2019)
- Dillingham, C. M. et al. 2021. Time to put the mammillothalamic pathway into context. Neuroscience and Biobehavioral Reviews 121 , pp.60-74. (10.1016/j.neubiorev.2020.11.031)
- Dillingham, C. M. and Vann, S. D. 2019. Why Isn't the head-direction system necessary for direction? Lessons from the lateral mammillary nuclei. Frontiers in Neural Circuits 13 60. (10.3389/fncir.2019.00060)
- Dillingham, C. M. , Wilson, J. J. and Vann, S. 2024. Electrophysiological properties of the medial mammillary bodies across the sleep-wake cycle. eNeuro 11 (4) 0447-23. (10.1523/ENEURO.0447-23.2024)
- Dillingham, C. M. et al. 2015. How do mammillary body inputs contribute to anterior thalamic function?. Neuroscience & Biobehavioral Reviews 54 , pp.108-119. (10.1016/j.neubiorev.2014.07.025)
- Frizzati, A. et al. 2016. Comparable reduction in Zif268 levels and cytochrome oxidase activity in the retrosplenial cortex following mammillothalamic tract lesions. Neuroscience 330 , pp.39-49. (10.1016/j.neuroscience.2016.05.030)
- Hassabis, D. et al., 2007. Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences 104 (5), pp.1726-1731. (10.1073/pnas.0610561104)
- Hindley, E. et al. 2014. The rat retrosplenial cortex is required when visual cues are used flexibly to determine location. Behavioural Brain Research 263 , pp.98-107. (10.1016/j.bbr.2014.01.028)
- Hindley, E. L. et al. 2014. Dysgranular retrosplenial cortex lesions in rats disrupt cross-modal object recognition. Learning and Memory 21 (3), pp.171-179. (10.1101/lm.032516.113)
- Jankowski, M. M. et al., 2014. Nucleus reuniens of the thalamus contains head direction cells. eLife 3 e03075. (10.7554/eLife.03075)
- Jankowski, M. M. et al., 2015. Evidence for spatially-responsive neurons in the rostral thalamus. Frontiers in Behavioral Neuroscience 9 256. (10.3389/fnbeh.2015.00256)
- Jankowski, M. M. et al., 2013. The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation. Frontiers in Systems Neuroscience 7 45. (10.3389/fnsys.2013.00045)
- Jenkins, T. A. et al., 2004. Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats?. European Journal of Neuroscience 19 (12), pp.3291-3304. (10.1111/j.0953-816X.2004.03421.x)
- Kinnavane, L. et al. 2018. Collateral projections innervate the mammillary bodies and retrosplenial cortex: A new category of hippocampal cells. eNeuro 5 (1) e0383-17.2018. (10.1523/ENEURO.0383-17.2018)
- Kumaran, D. et al., 2007. Impaired spatial and non-spatial configural learning in patients with hippocampal pathology. Neuropsychologia 45 (12), pp.2699-2711. (10.1016/j.neuropsychologia.2007.04.007)
- Lequin, M. et al., 2025. Mammillary body and hippocampal injury after acute perinatal arterial ischemic stroke. Neurology Open Access 1 (1) e0004. (10.1212/wn9.0000000000000004)
- Lequin, M. H. et al., 2022. Mammillary body injury in neonatal encephalopathy: a multicentre, retrospective study. Pediatric Research 92 , pp.174-179. (10.1038/s41390-021-01436-3)
- Machin, P. et al., 2002. Neurotoxic lesions of the rat perirhinal cortex fail to disrupt the acquisition of performance of tests of allocentric spatial memory. Behavioral Neuroscience 116 (2), pp.232-240. (10.1037//0735-7044.116.2.232)
- McNaughton, N. and Vann, S. D. 2022. Construction of complex memories via parallel distributed cortical-subcortical iterative integration. Trends in Neurosciences 45 (7), pp.550-562. (10.1016/j.tins.2022.04.006)
- Meys, K. M. et al., 2022. The mammillary bodies: a review of causes of injury in infants and children. American Journal of Neuroradiology 43 (6), pp.802-812. (10.3174/ajnr.A7463)
- Milczarek, M. M. et al. 2023. Reduced mammillary body volume in individuals with a schizophrenia diagnosis: an analysis of the COBRE data set. npj Schizophrenia 9 48. (10.1038/s41537-023-00376-7)
- Milczarek, M. M. et al. 2024. Impairments in the early consolidation of spatial memories via group II mGluR agonism in the mammillary bodies. Scientific Reports 14 5977. (10.1038/s41598-024-56015-3)
- Milczarek, M. M. and Vann, S. D. 2020. The retrosplenial cortex and long-term spatial memory: from the cell to the network. Current Opinion in Behavioral Sciences 32 , pp.50-56. (10.1016/j.cobeha.2020.01.014)
- Milczarek, M. M. , Vann, S. D. and Sengpiel, F. 2018. Spatial memory engram in the mouse retrosplenial cortex. Current Biology 28 (12), pp.1975-1980.e6. (10.1016/j.cub.2018.05.002)
- Molavi, M. et al., 2019. Signal change in the mammillary bodies after perinatal asphyxia. American Journal of Neuroradiology 40 (11), pp.1829-1834. (10.3174/ajnr.A6232)
- Nelson, A. et al. 2018. When is the rat retrosplenial cortex required for stimulus integration?. Behavioral Neuroscience 132 (5), pp.366-377. (10.1037/bne0000267)
- Nelson, A. J. D. et al. 2014. A novel role for the rat retrosplenial cortex in cognitive control. Learning and Memory 21 (2), pp.90-97. (10.1101/lm.032136.113)
- Nelson, A. J. D. and Vann, S. D. 2014. Mammilliothalamic tract lesions disrupt tests of visuo-spatial memory. Behavioral Neuroscience 128 (4), pp.494-503. (10.1037/bne0000001)
- Nelson, A. J. D. and Vann, S. D. 2017. The importance of mammillary body efferents for recency memory: towards a better understanding of diencephalic amnesia. Brain Structure and Function 222 (5), pp.2143-2156. (10.1007/s00429-016-1330-x)
- Nelson, A. J. D. et al. 2015. The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning. Frontiers in Behavioral Neuroscience 9 11. (10.3389/fnbeh.2015.00011)
- Nelson, A. J. D. et al. 2015. What does spatial alternation tell us about retrosplenial cortex function?. Frontiers in Behavioral Neuroscience 9 126. (10.3389/fnbeh.2015.00126)
- O'Sullivan, M. and Vann, S. D. 2016. Amyloid imaging and Alzheimer's disease: the unsolved cases. Brain: A Journal of Neurology 139 (9), pp.2342-2344. (10.1093/brain/aww166)
- Perry, J. , Pakkenberg, B. and Vann, S. 2019. Striking reduction in neurons and glial cells in anterior thalamic nuclei of older patients with Down's syndrome. Neurobiology of Aging 75 , pp.54-61. (10.1016/j.neurobiolaging.2018.11.009)
- Perry, J. C. and Vann, S. D. 2024. Reduction in neurons immunoreactive for calcium-binding proteins in the anteroventral thalamic 1 nuclei of individuals with Down syndrome.. Neuroscience 557 , pp.56-66. (10.1016/j.neuroscience.2024.08.004)
- Pothuizen, H. H. J. , Aggleton, J. P. and Vann, S. D. 2008. Do rats with retrosplenial cortex lesions lack direction?. European Journal Of Neuroscience 28 (12), pp.2486-2498. (10.1111/j.1460-9568.2008.06550.x)
- Pothuizen, H. H. J. et al. 2010. Effects of selective granular retrosplenial cortex lesions on spatial working memory in rats. Behavioural Brain Research 208 (2), pp.566-575. (10.1016/j.bbr.2010.01.001)
- Pothuizen, H. H. J. et al. 2009. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. European Journal of Neuroscience 30 (5), pp.877-888. (10.1111/j.1460-9568.2009.06881.x)
- Powell, A. et al. 2020. Stable encoding of visual cues in the mouse retrosplenial cortex. Cerebral Cortex 30 (8), pp.4424-4437. (10.1093/cercor/bhaa030)
- Powell, A. et al. 2018. Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat. Brain and Neuroscience Advances 2 , pp.1-15. (10.1177/2398212818811235)
- Powell, A. L. et al., 2017. The rat retrosplenial cortex as a link for frontal functions: a lesion analysis. Behavioural Brain Research 335 , pp.88-102. (10.1016/j.bbr.2017.08.010)
- Powell, A. L. et al. 2017. The retrosplenial cortex and object recency memory in the rat. European Journal of Neuroscience 45 (11), pp.1451-1464. (10.1111/ejn.13577)
- Saunders, R. C. , Vann, S. D. and Aggleton, J. P. 2012. Projections from Gudden's tegmental nuclei to the mammillary body region in the cynomolgus monkey (Macaca fascicularis). Journal of Comparative Neurology 520 (6), pp.1128-1145. (10.1002/cne.22740)
- Tsanov, M. et al., 2014. The irregular firing properties of thalamic head direction cells mediate turn-specific modulation of the directional tuning curve. Journal of Neurophysiology 112 (9), pp.2316-2331. (10.1152/jn.00583.2013)
- Tsanov, M. et al., 2011. Oscillatory entrainment of thalamic neurons by theta rhythm in freely moving rats. Journal of Neurophysiology 105 (1), pp.4-17. (10.1152/jn.00771.2010)
- Tsanov, M. et al., 2011. Hippocampal inputs mediate theta-related plasticity in anterior thalamus. Neuroscience 187 , pp.52-62. (10.1016/j.neuroscience.2011.03.055)
- Tsanov, M. et al., 2011. Theta-modulated head direction cells in the rat anterior thalamus. The Journal of Neuroscience 31 (26), pp.9489-9502. (10.1523/JNEUROSCI.0353-11.2011)
- Tsanov, M. et al., 2011. Differential regulation of synaptic plasticity of the hippocampal and the hypothalamic inputs to the anterior thalamus. Hippocampus 21 (1), pp.1-8. (10.1002/hipo.20749)
- Tsivilis, D. et al., 2008. A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory. Nature Neuroscience 11 (7), pp.834-842. (10.1038/nn.2149)
- Vann, S. and Nelson, A. 2018. Anterior thalamic nuclei lesions have a greater impact than mammillothalamic tract lesions on the extended hippocampal system: a reply. Hippocampus 28 (10), pp.691-693. (10.1002/hipo.22953)
- Vann, S. D. et al. 2022. Normative mammillary body volumes: From the neonatal period to young adult. NeuroImage: Reports 2 (4) 100122. (10.1016/j.ynirp.2022.100122)
- Vann, S. D. 2011. A role for the head-direction system in geometric learning. Behavioural Brain Research 224 (1), pp.201-206. (10.1016/j.bbr.2011.05.033)
- Vann, S. D. 2013. Dismantling the Papez circuit for memory in rats. eLife 2 e00736. (10.7554/eLife.00736)
- Vann, S. D. 2009. Gudden's ventral tegmental nucleus is vital for memory: re-evaluating diencephalic inputs for amnesia. Brain 132 (9), pp.2372-2384. (10.1093/brain/awp175)
- Vann, S. D. 2018. Lesions within the head direction system reduce retrosplenial c-fos expression but do not impair performance on a radial-arm maze task. Behavioural Brain Research 338 , pp.153-158. (10.1016/j.bbr.2017.10.026)
- Vann, S. D. 2010. Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia 48 (8), pp.2316-2327. (10.1016/j.neuropsychologia.2009.10.019)
- Vann, S. D. 2005. Transient spatial deficit associated with bilateral lesions of the lateral mammillary nuclei. European Journal of Neuroscience 21 (3), pp.820-824. (10.1111/j.1460-9568.2005.03896.x)
- Vann, S. D. and Aggleton, J. P. 2003. Evidence of a spatial encoding deficit in rats with lesions of the mammillary bodies or mammillothalamic tract. Journal of Neuroscience 23 (8), pp.3506-3514.
- Vann, S. D. and Aggleton, J. P. 2002. Extensive cytotoxic lesions of the rat retrosplenial cortex revel consistent deficits on tasks that tax allocentric spatial memory. Behavioral Neuroscience 116 (1), pp.85-94. (10.1037//0735-7044.116.1.85)
- Vann, S. D. and Aggleton, J. P. 2005. Selective Dysgranular Retrosplenial Cortex Lesions in Rats Disrupt Allocentric Performance of the Radial-Arm Maze Task. Behavioral Neuroscience 119 (6), pp.1682-1686. (10.1037/0735-7044.119.6.1682)
- Vann, S. D. and Aggleton, J. P. 2004. Testing the importance of the retrosplenial guidance system: effects of different sized retrosplenial cortex lesions on heading direction and spatial working memory. Behavioural Brain Research 155 (1), pp.97-108. (10.1016/j.bbr.2004.04.005)
- Vann, S. D. and Aggleton, J. P. 2004. The mammillary bodies: Two memory systems in one?. Nature reviews neuroscience 5 (1), pp.35-44. (10.1038/nrn1299)
- Vann, S. D. , Aggleton, J. P. and Maguire, E. A. 2009. What does the retrosplenial cortex do?. Nature Reviews Neuroscience 10 (11), pp.792-802. (10.1038/nrn2733)
- Vann, S. D. and Albasser, M. M. 2009. Hippocampal, retrosplenial, and prefrontal hypoactivity in a model of diencephalic amnesia: Evidence towards an interdependent subcortical-cortical memory network. Hippocampus 19 (11), pp.1090-1102. (10.1002/hipo.20574)
- Vann, S. D. and Albasser, M. M. 2011. Hippocampus and neocortex: recognition and spatial memory. Current Opinion in Neurobiology 21 (3), pp.440-445. (10.1016/j.conb.2011.02.002)
- Vann, S. D. , Brown, M. W. and Aggleton, J. P. 2000. Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience 101 (4), pp.983-991. (10.1016/S0306-4522(00)00288-8)
- Vann, S. D. et al. 2000. Fos imaging reveals differential patterns of hippocampal and parahippocampal subfield activation in rats in response to different spatial memory tests. Journal of Neuroscience 20 (7), pp.2711-2718.
- Vann, S. D. et al. 2000. Using Fos imaging in the rat to reveal the anatomical extent of the disruptive effects of fornix lesions. Journal of Neuroscience 20 (21), pp.8144-8152.
- Vann, S. D. et al. 2008. Memory loss resulting from fornix and septal damage: Impaired supra-span recall but preserved recognition over a 24-hour delay. Neuropsychology 22 (5), pp.658-668. (10.1037/a0012542)
- Vann, S. D. et al. 2011. Selective disconnection of the hippocampal formation projections to the mammillary bodies produces only mild deficits on spatial memory tasks: Implications for fornix function. Hippocampus 21 (9), pp.945-957. (10.1002/hipo.20796)
- Vann, S. D. , Honey, R. C. and Aggleton, J. P. 2003. Lesions of the mammillothalamic tract impair the acquisition of spatial but not nonspatial contextual conditional discriminations. European Journal of Neuroscience 18 (8), pp.2413-2416. (10.1046/j.1460-9568.2003.02959.x)
- Vann, S. D. , Saunders, R. C. and Aggleton, J. P. 2007. Distinct, parallel pathways link the medial mammillary bodies to the anterior thalamus in macaque monkeys. European Journal of Neuroscience 26 (6), pp.1575-1586. (10.1111/j.1460-9568.2007.05773.x)
- Vann, S. D. et al. 2009. Impaired recollection but spared familiarity in patients with extended hippocampal system damage revealed by 3 convergent methods. Proceedings of the National Academy of Sciences 106 (13), pp.5442-5447. (10.1073/pnas.0812097106)
- Vann, S. D. et al. 2003. Testing the importance of the caudal retrosplenial cortex for spatial memory in rats. Behavioural Brain Research 140 (1-2), pp.107-118. (10.1016/S0166-4328(02)00274-7)
- Ward-Robinson, J. et al. 2002. Sensory preconditioning in rats with lesions of the anterior thalamic nuclei: evidence for intact nonspatial 'relational' processing. Behavioural Brain Research 133 (2), pp.125-133. (10.1016/S0166-4328(01)00465-X)
- Wolff, M. and Vann, S. D. 2019. The Cognitive Thalamus as a gateway to mental representations. Journal of Neuroscience 39 (1), pp.3-14. 0479-18. (10.1523/JNEUROSCI.0479-18.2018)
- Wright, N. F. et al. 2010. Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat. The Journal of Comparative Neurology 518 (12), pp.2334-2354. (10.1002/cne.22336)
- Wright, N. F. et al. 2013. Segregation of parallel inputs to the anteromedial and anteroventral thalamic nuclei of the rat. Journal of Comparative Neurology 521 (13), pp.2966-2986. (10.1002/cne.23325)
- Wright, N. F. et al. 2015. A critical role for the anterior thalamus in directing attention to task-relevant stimuli. Journal of Neuroscience 35 (14), pp.5480-5488. (10.1523/JNEUROSCI.4945-14.2015)
- Zheng, Y. et al., 2003. Using Idiothetic Cues to Swim a Path With a Fixed Trajectory and Distance: Necessary Involvement of the Hippocampus, but Not the Retrosplenial Cortex. Behavioral Neuroscience 117 (6), pp.1363-1377. (10.1037/0735-7044.117.6.1363)
Book sections
- Aggleton, J. P. , Saunders, R. C. and Vann, S. D. 2008. Using hippocampal amnesia to understand the neural basis of diencephalic amnesia. In: Dere, E. et al., Handbook of Episodic Memory. Vol. 18, Amsterdam: Elsevier. , pp.503-519. (10.1016/S1569-7339(08)00227-0)
- Vann, S. D. and Nelson, A. J. D. 2015. The mammillary bodies and memory. In: Progress in Brain Research. Vol. 219, Elsevier. , pp.163-185. (10.1016/bs.pbr.2015.03.006)
- Vann, S. D. and Nelson, A. J. D. 2015. The mammillary bodies and memory: more than a hippocampal relay. In: O'Mara, S. and Tsanov, M. eds. Progress in Brain Research. The Connected Hippocampus Elsevier. , pp.163-185.
Books
- Vann, S. D. Grafman, J. H. ed. 2023. Effects of experimental brain lesions on spatial navigation. Reference Module in Neuroscience and Biobehavioral Psychology: Elsevier. (10.1016/b978-0-12-820480-1.00008-5)
Websites
Research
Funding
Cardiff University Incoming Visiting Fellows & International Collaboration Seedcorn 2016-17, (£5,500); Research collaboration in Copenhagen.
Welsh Government Equipment Grant "Miniature microscopes to image neuronal ensembles in models of neuropsychiatric disorders",£210,000, 2015 (Riccardo Brambilla, Vincenzo Crunelli, Frank Sengpiel, Mark Good, Jeremy Hall, John Aggleton, Kerrie Thomas)
BBSRC Research Grant "Stimulus processing and control by the retrosplenial cortex" (John Aggleton and Frank Sengpiel) £443,200; 3 years from 1st October 2014.
Wellcome Trust Senior Research Fellowship "Importance of mammillary body connections for memory", (£1,383,509; January 2011-November 2018).
BBSRC Research Grant "Testing 'translator' versus 'integrator' models of retrosplenial cortex function" (£250,000, 3 years from 1st January 2011)
Wellcome Trust "Cellular substrates supporting the mnemonic functions of Papez' circuit" (John Aggleton, Shane O'Mara, Jonathan Erichsen, £205,032; 3 years from 1st November 2010)
Wellcome Trust Research Grant "Why are there parallel hippocampal – diencephalic pathways for event memory" (John Aggleton, Shane O'Mara, Jonathan Erichsen, £297,015; 3 years from 1st April 2007).
BBSRC Research Grant "Identifying the roles of the granular and dysgranular retrosplenial cortices in spatial memory" (Principal Investigator; £278,845; 3 years from 1st December 2005).
BBSRC David Phillips Fellowship, £377,602 (January 2005-December 2009).
Royal Society Dorothy Hodgkins Fellowship (awarded in 2004 but not taken up).
BBSRC Equipment Grant "Multidisciplinary core facility for microscopic image analysis and three-dimensional stereology" (Dr JT Erichsen, Prof M Boulton, Dr J Guggenheim, Dr J Morgan, Dr A Quantock, Prof T Wess, Prof J Aggleton, Prof S Killcross, Dr S Vann, Prof V Crunelli, Prof K Fox; £69,864, awarded 1/1/06).
Research group
Current researchers based in Cardiff University include:
Dr Beth Coad
Dr Chris Dillingham
Dr Beth Frost
Dr James Perry
Mrs Heather Philliips
Biography
Undergraduate education
BSc University of Sussex, Experimental Psychology
Postgraduate education
PhD Cardiff University, Thesis: Neural Systems Underlying Spatial Memory
Supervisor: Professor John Aggleton
MRC Studentship