Publication
2025
- Li, D. et al. 2025. Regulation of coordinated nitrogen species for atomically dispersed Fe-N5 catalyst to boost electrocatalytic CO2-to-CO conversion. Applied Catalysis B: Environment and Energy 365, article number: 124824. (10.1016/j.apcatb.2024.124824)
2024
- Wang, K., Wang, Y. and Pera-Titus, M. 2024. Liquid–liquid and gas–liquid dispersions in electrochemistry: concepts, applications and perspectives †. Chemical Society Reviews 53(24), pp. 11701-11724. (10.1039/d3cs00535f)
- Zhang, G. et al. 2024. Scale-up study of electrochemical carbon dioxide reduction process through data-driven modelling. Fuel 373, article number: 132400. (10.1016/j.fuel.2024.132400)
2023
- Wang, Y., Wu, Y., Zheng, X. and Lu, S. 2023. Ice-templated method to promote electrochemical energy storage and conversion: a review. Energies 16(9), article number: 3865. (10.3390/en16093865)
2022
- Chang, Z., Ren, W., Wang, Y., Zhang, J., Liu, X. and Xu, C. 2022. A highly co-tolerant anode pt/ti3c2tx-cnt hybrid catalysts for pemfc. Electrocatalysis 14, pp. 1-8. (10.1007/s12678-022-00768-w)
- Wang, Y., Lei, H., Lu, S., Yang, Z., Xu, B. B., Xing, L. and Liu, T. X. 2022. Cu2O nano-flowers/graphene enabled scaffolding structure catalyst layer for enhanced CO2 electrochemical reduction. Applied Catalysis B: Environmental 305, article number: 121022. (10.1016/j.apcatb.2021.121022)
- Lu, S. et al. 2022. Mass transfer effect to electrochemical reduction of CO2: Electrode, electrocatalyst and electrolyte. Journal of Energy Storage 52, article number: 104764. (10.1016/j.est.2022.104764)
- Fang, Z. et al. 2022. MXene (Ti3C2Tx)-Supported Binary Co-, Zn-Doped Carbonas Oxygen Reduction Reaction Catalyst for Anion Exchange Membrane Fuel Cells. Energy Technology 10(5), article number: 2101168. (10.1002/ente.202101168)
- Zhu, Z. et al. 2022. The high performance NiFe layered double hydroxides@ Ti3C2Tx/reduced graphene oxide hybrid catalyst for oxygen evolution reaction. Journal of Alloys and Compounds 894, article number: 162393. (10.1016/j.jallcom.2021.162393)
- Selvakumar, K. et al. 2022. Development of α-mno2 nanowire with ni- and (ni, co)-cation doping as an efficient bifunctional oxygen evolution and oxygen reduction reaction catalyst. ChemElectroChem 9(2), article number: e202101303. (10.1002/celc.202101303)
2021
- Wang, Y. et al. 2021. Porous bilayer electrode-guided gas diffusion for enhanced CO2 electrochemical reduction. Advanced Energy & Sustainability Research 2(11), article number: 2100083. (10.1002/aesr.202100083)
- Lu, S. et al. 2021. Highly efficient urea oxidation via nesting nano-nickel oxide in eggshell membrane-derived carbon. ACS Sustainable Chemistry and Engineering 9(4), pp. 1703–1713. (10.1021/acssuschemeng.0c07614)
2020
- Luo, Z. et al. 2020. A Ga-Sn liquid metal-mediated structural cathode for Li-O2 batteries. Materials Today Energy 18, article number: 100559. (10.1016/j.mtener.2020.100559)
- Lu, S. et al. 2020. Nickel oxide immobilized on the carbonized eggshell membrane for electrochemical detection of urea. Journal of The Electrochemical Society 167(10), article number: 106509. (10.1149/1945-7111/ab9c80)
- Ren, B. et al. 2020. Half-sphere shell supported Pt catalyst for electrochemical methanol xxidation. Journal of The Electrochemical Society 167(8), article number: 84510. (10.1149/1945-7111/ab8dde)
2018
- Liu, X. et al. 2018. A high-performance direct methanol fuel cell technology enabled by mediating high-concentration methanol through a graphene aerogel. small methods 2(10), pp. 1-6. (10.1002/smtd.201800138)
Articles
- Li, D. et al. 2025. Regulation of coordinated nitrogen species for atomically dispersed Fe-N5 catalyst to boost electrocatalytic CO2-to-CO conversion. Applied Catalysis B: Environment and Energy 365, article number: 124824. (10.1016/j.apcatb.2024.124824)
- Wang, K., Wang, Y. and Pera-Titus, M. 2024. Liquid–liquid and gas–liquid dispersions in electrochemistry: concepts, applications and perspectives †. Chemical Society Reviews 53(24), pp. 11701-11724. (10.1039/d3cs00535f)
- Zhang, G. et al. 2024. Scale-up study of electrochemical carbon dioxide reduction process through data-driven modelling. Fuel 373, article number: 132400. (10.1016/j.fuel.2024.132400)
- Wang, Y., Wu, Y., Zheng, X. and Lu, S. 2023. Ice-templated method to promote electrochemical energy storage and conversion: a review. Energies 16(9), article number: 3865. (10.3390/en16093865)
- Chang, Z., Ren, W., Wang, Y., Zhang, J., Liu, X. and Xu, C. 2022. A highly co-tolerant anode pt/ti3c2tx-cnt hybrid catalysts for pemfc. Electrocatalysis 14, pp. 1-8. (10.1007/s12678-022-00768-w)
- Wang, Y., Lei, H., Lu, S., Yang, Z., Xu, B. B., Xing, L. and Liu, T. X. 2022. Cu2O nano-flowers/graphene enabled scaffolding structure catalyst layer for enhanced CO2 electrochemical reduction. Applied Catalysis B: Environmental 305, article number: 121022. (10.1016/j.apcatb.2021.121022)
- Lu, S. et al. 2022. Mass transfer effect to electrochemical reduction of CO2: Electrode, electrocatalyst and electrolyte. Journal of Energy Storage 52, article number: 104764. (10.1016/j.est.2022.104764)
- Fang, Z. et al. 2022. MXene (Ti3C2Tx)-Supported Binary Co-, Zn-Doped Carbonas Oxygen Reduction Reaction Catalyst for Anion Exchange Membrane Fuel Cells. Energy Technology 10(5), article number: 2101168. (10.1002/ente.202101168)
- Zhu, Z. et al. 2022. The high performance NiFe layered double hydroxides@ Ti3C2Tx/reduced graphene oxide hybrid catalyst for oxygen evolution reaction. Journal of Alloys and Compounds 894, article number: 162393. (10.1016/j.jallcom.2021.162393)
- Selvakumar, K. et al. 2022. Development of α-mno2 nanowire with ni- and (ni, co)-cation doping as an efficient bifunctional oxygen evolution and oxygen reduction reaction catalyst. ChemElectroChem 9(2), article number: e202101303. (10.1002/celc.202101303)
- Wang, Y. et al. 2021. Porous bilayer electrode-guided gas diffusion for enhanced CO2 electrochemical reduction. Advanced Energy & Sustainability Research 2(11), article number: 2100083. (10.1002/aesr.202100083)
- Lu, S. et al. 2021. Highly efficient urea oxidation via nesting nano-nickel oxide in eggshell membrane-derived carbon. ACS Sustainable Chemistry and Engineering 9(4), pp. 1703–1713. (10.1021/acssuschemeng.0c07614)
- Luo, Z. et al. 2020. A Ga-Sn liquid metal-mediated structural cathode for Li-O2 batteries. Materials Today Energy 18, article number: 100559. (10.1016/j.mtener.2020.100559)
- Lu, S. et al. 2020. Nickel oxide immobilized on the carbonized eggshell membrane for electrochemical detection of urea. Journal of The Electrochemical Society 167(10), article number: 106509. (10.1149/1945-7111/ab9c80)
- Ren, B. et al. 2020. Half-sphere shell supported Pt catalyst for electrochemical methanol xxidation. Journal of The Electrochemical Society 167(8), article number: 84510. (10.1149/1945-7111/ab8dde)
- Liu, X. et al. 2018. A high-performance direct methanol fuel cell technology enabled by mediating high-concentration methanol through a graphene aerogel. small methods 2(10), pp. 1-6. (10.1002/smtd.201800138)