Dr Tim Wells
Reader
School of Biosciences
Overview
Publication
2023
- Roberts, L. D. et al. 2023. The 5:2 diet does not increase adult hippocampal neurogenesis or enhance spatial memory in mice. EMBO Reports 24(12), article number: e57269. (10.15252/embr.202357269)
- Rees, D. et al. 2023. Acyl-ghrelin attenuates neurochemical and motor deficits in the 6-OHDA model of Parkinson’s Disease. Cellular and Molecular Neurobiology 43, pp. 2377-2384. (10.1007/s10571-022-01282-9)
2020
- Hornsby, A. K. et al. 2020. Unacylated-ghrelin impairs hippocampal neurogenesis and memory in mice and is altered in Parkinson's dementia in humans. Cell Reports Medicine 1(7), article number: 100120. (10.1016/j.xcrm.2020.100120)
2019
- Tilston, T. W., Brown, R. D., Wateridge, M. J., Arms-Williams, B., Walker, J. J., Sun, Y. and Wells, T. 2019. A novel automated system yields reproducible temporal feeding patterns in laboratory rodents. Journal of Nutrition 149(9), pp. 1674-1684. (10.1093/jn/nxz116)
- Braxton, T. M. et al. 2019. Thermoneutrality improves skeletal impairment in adult Prader-Willi syndrome mice. Journal of Endocrinology 243(3), pp. 175-186. (10.1530/JOE-19-0279)
- Ratcliff, M. et al. 2019. Calorie restriction activates new adult born olfactory-bulb neurones in a ghrelin-dependent manner but acyl-ghrelin does not enhance subventricular zone neurogenesis. Journal of Neuroendocrinology 31(7), pp. -., article number: e12755. (10.1111/jne.12755)
2018
- Welden, J. R., Zhang, Z., Duncan, M. J., Falaleeva, M., Wells, T. and Stamm, S. 2018. The posterior pituitary expresses the serotonin receptor 2C. Neuroscience Letters 684, pp. 132-139. (10.1016/j.neulet.2018.06.051)
2017
- Hopkins, A. L. et al. 2017. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R1a activity: evidence for target-cell-induced acylation. Scientific Reports 7, article number: 45541. (10.1038/srep45541)
- Golding, D. M. et al. 2017. Paradoxical leanness in the imprinting-centre deletion mouse model for Prader–Willi syndrome. Journal of Endocrinology 232(1), pp. 123-135. (10.1530/JOE-16-0367)
2016
- Navein, A. E. et al. 2016. Disrupted mitochondrial function in the Opa3L122P mouse model for Costeff Syndrome impairs skeletal integrity. Human Molecular Genetics 25(12), pp. 2404-2416. (10.1093/hmg/ddw107)
- Hornsby, A. K. E. et al. 2016. Short-term calorie restriction enhances adult hippocampal neurogenesis and remote fear memory in a Ghsr-dependent manner. Psychoneuroendocrinology 63, pp. 198-207. (10.1016/j.psyneuen.2015.09.023)
2015
- Davies, J. R. et al. 2015. Calorie seeking, but not hedonic response, contributes to hyperphagia in a mouse model for Prader-Willi syndrome. European Journal of Neuroscience 42(4), pp. 2105-2113. (10.1111/ejn.12972)
2014
- Evans, B. A. J. et al. 2014. Preclinical assessment of a new magnetic resonance-based technique for determining bone quality by characterization of trabecular microarchitecture. Calcified Tissue International 95(6), pp. 506-520. (10.1007/s00223-014-9922-z)
- Man, P., Wells, T. and Carter, D. A. 2014. Cellular distribution of Egr1 transcription in the male rat pituitary gland. Journal of Molecular Endocrinology 53(2), pp. 271-280. (10.1530/JME-14-0158)
2012
- El-Kasti, M. M., Wells, T. and Carter, D. A. 2012. A novel long-range enhancer regulates postnatal expression of Zeb2: implications for Mowat-Wilson syndrome phenotypes. Human Molecular Genetics 21(26), pp. 5429-5442. (10.1093/hmg/dds389)
- Wells, T. et al. 2012. Opa3, a novel regulator of mitochondrial function, controls thermogenesis and abdominal fat mass in a mouse model for Costeff syndrome. Human Molecular Genetics 21(22), pp. 4836-4844. (10.1093/hmg/dds315)
2011
- Glad, C. et al. 2011. Reverse feeding suppresses the activity of the GH axis in rats and induces a preobesogenic state. Endocrinology 152(3), pp. 869-882. (10.1210/en.2010-0713)
- Evans, B. A. J. et al. 2011. The influence of leptin on trabecular architecture and marrow adiposity in GH-deficient rats. Journal of Endocrinology 208(1), pp. 69-79. (10.1677/JOE-10-0178)
- Carter, D. A., Rough, K. and Wells, T. 2011. Transcription mapping of embryonic rat brain reveals EGR-1 induction in SOX2+ neural progenitor cells. Frontiers in Molecular Neuroscience 4 (10.3389/fnmol.2011.00006)
2009
- Davies, J. S. et al. 2009. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Molecular Endocrinology 23(6), pp. 914-924. (10.1210/me.2008-0432)
- Stevenson, A. E. et al. 2009. Does adiposity status influence femoral cortical strength in rodent models of growth hormone deficiency?. American Journal of Physiology - Endocrinology and Metabolism 296(1), pp. E147-E156. (10.1152/ajpendo.90689.2008)
- Wells, T. 2009. Ghrelin - Defender of fat. Progress in Lipid Research 48(5), pp. 257-274. (10.1016/j.plipres.2009.04.002)
2008
- El-Kasti, M. M. et al. 2008. The pregnancy-induced increase in baseline circulating growth hormone in rats is not induced by ghrelin. Journal of Neuroendocrinology 20(3), pp. 309-322. (10.1111/j.1365-2826.2008.01650.x)
- Davies, J. S., Kotokorpi, P., Lindahl, U., Oscarsson, J., Wells, T. and Mode, A. 2008. Effects of the synthetic liver X receptor agonist T0901317 on the growth hormone and thyroid hormone axes in male rats. Endocrine 33(2), pp. 196-204. (10.1007/s12020-008-9067-9)
2007
- Mansergh, F. C., Wells, T., Elford, C., Evans, S. L., Evans, M. J., Perry, M. J. and Evans, B. A. J. 2007. Osteopenia in Sparc (osteonectin) deficient mice: characterization of phenotypic determinants of femoral strength and changes in gene expression. Physiological genomics 32(1), pp. 64-73. (10.1152/physiolgenomics.00151.2007)
- Man, P. S., Wells, T. and Carter, D. A. 2007. Egr-1-d2EGFP transgenic rats identify transient populations of neurons and glial cells during postnatal brain development. Gene Expression Patterns 7(8), pp. 872-883. (10.1016/j.modgep.2007.06.006)
- Davies, J. S. et al. 2007. Adiposity profile in the dwarf (dw/dw) rat: an unusually lean model of profound growth hormone deficiency. American Journal of Physiology - Endocrinology and Metabolism 292(5), pp. E1483-E1494. (10.1152/ajpendo.00417.2006)
- Humphries, A. L., Wells, T., Baler, R., Klein, D. C. and Carter, D. A. 2007. Rodent Aanat: intronic E-box sequences control tissue specificity but not rhythmic expression in the pineal gland. Molecular and Cellular Endocrinology 270(1-2), pp. 43-49. (10.1016/j.mce.2007.02.003)
- Holter, J. L., Davies, J. S., Man, P. S., Wells, T. and Carter, D. A. 2007. Transgenic delivery and detection of GFP in neuropeptide neurons. In: Neuropeptide Techniques. Neuromethods Vol. 39. Springer, pp. 31-44., (10.1007/978-1-60327-099-1_5)
2006
- Martini, A. C. et al. 2006. Comparative analysis of the effects of ghrelin and unacylated ghrelin on luteinizing hormone secretion in male rats. Endocrinology 147(5), pp. 2374-2382. (10.1210/en.2005-1422)
- Davies, J. S., Thompson, N. M., Christian, H. C., Pinilla, L., Ebling, F. J. P., Tena-Sempere, M. and Wells, T. 2006. Hypothalamic expression of human growth hormone induces post-pubertal hypergonadotrophism in male transgenic growth retarded rats. Journal of Neuroendocrinology 18(10), pp. 719-731. (10.1111/j.1365-2826.2006.01467.x)
2004
- Davies, J. S., Carter, D. A. and Wells, T. 2004. Photic stimulation inhibits growth hormone secretion in rats: A hypothalamic mechanism for transient entrainment. Endocrinology 145(6), article number: 2950. (10.1210/en.2003-1236)
- Davies, J. . S., Holter, J. L., Knight, D., Beaucourt, S. M., Murphy, D., Carter, D. A. and Wells, T. 2004. Manipulating sorting signals to generate co-expression of somatostatin and eGFP in the regulated secretory pathway from a monocistronic construct. Journal of Molecular Endocrinology 33(2), pp. 523-532. (10.1677/jme.1.01578)
2003
- Evans, B. A. J. et al. 2003. Morphological determinants of femoral strength in growth hormone-deficient transgenic growth-retarded (Tgr) rats. Journal of Bone and Mineral Research 18(7), pp. 1308-1316. (10.1359/jbmr.2003.18.7.1308)
- Thompson, N. M., Davies, J. S., Mode, A., Houston, P. A. and Wells, T. 2003. Pattern-dependent suppression of growth hormone (GH) pulsatility by ghrelin and GH-releasing peptide-6 in moderately GH-deficient rats. Endocrinology 144(11), pp. 4859-4867. (10.1210/en.2003-0423)
2002
- Slade, J. P., Man, P. S., Wells, T. and Carter, D. A. 2002. Stimulus-specific induction of an Egr-I transgene in a rat brain. Neuroreport -Oxford- 13(5), pp. 671-674.
2001
- Wells, T. and Houston, P. A. 2001. Skeletal growth acceleration with growth hormone secretagogues in transgenic growth retarded rats: pattern-dependent effects and mechanisms of desensitization. Journal of Neuroendocrinology 13(6), pp. 496-504. (10.1046/j.1365-2826.2001.00661.x)
- Wells, T. and Carter, D. A. 2001. Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy?. Journal of Neuroscience Methods 108(2), pp. 111-130. (10.1016/S0165-0270(01)00391-0)
- Smith, M., Burke, Z., Humphries, A., Wells, T., Klein, D., Carter, D. A. and Baler, R. 2001. Tissue-specific transgenic knockdown of Fos-related antigen 2 (Fra-2) expression mediated by dominant negative Fra-2. Molecular and Cellular Biology 21(11), pp. 3704-3713. (10.1128/MCB.21.11.3704-3713.2001)
2000
- Warner, J. T., Wells, T., Elford, C., Evans, B. A. J., Evans, S. L. and Gregory, J. W. 2000. Undermineralisation and reduced bone strength in growth hormone (GH) deficient transgenic (Tgr) rats. Journal of Bone and Mineral Research (JBMR) 15(6), pp. 1219-1219.
Articles
- Roberts, L. D. et al. 2023. The 5:2 diet does not increase adult hippocampal neurogenesis or enhance spatial memory in mice. EMBO Reports 24(12), article number: e57269. (10.15252/embr.202357269)
- Rees, D. et al. 2023. Acyl-ghrelin attenuates neurochemical and motor deficits in the 6-OHDA model of Parkinson’s Disease. Cellular and Molecular Neurobiology 43, pp. 2377-2384. (10.1007/s10571-022-01282-9)
- Hornsby, A. K. et al. 2020. Unacylated-ghrelin impairs hippocampal neurogenesis and memory in mice and is altered in Parkinson's dementia in humans. Cell Reports Medicine 1(7), article number: 100120. (10.1016/j.xcrm.2020.100120)
- Tilston, T. W., Brown, R. D., Wateridge, M. J., Arms-Williams, B., Walker, J. J., Sun, Y. and Wells, T. 2019. A novel automated system yields reproducible temporal feeding patterns in laboratory rodents. Journal of Nutrition 149(9), pp. 1674-1684. (10.1093/jn/nxz116)
- Braxton, T. M. et al. 2019. Thermoneutrality improves skeletal impairment in adult Prader-Willi syndrome mice. Journal of Endocrinology 243(3), pp. 175-186. (10.1530/JOE-19-0279)
- Ratcliff, M. et al. 2019. Calorie restriction activates new adult born olfactory-bulb neurones in a ghrelin-dependent manner but acyl-ghrelin does not enhance subventricular zone neurogenesis. Journal of Neuroendocrinology 31(7), pp. -., article number: e12755. (10.1111/jne.12755)
- Welden, J. R., Zhang, Z., Duncan, M. J., Falaleeva, M., Wells, T. and Stamm, S. 2018. The posterior pituitary expresses the serotonin receptor 2C. Neuroscience Letters 684, pp. 132-139. (10.1016/j.neulet.2018.06.051)
- Hopkins, A. L. et al. 2017. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R1a activity: evidence for target-cell-induced acylation. Scientific Reports 7, article number: 45541. (10.1038/srep45541)
- Golding, D. M. et al. 2017. Paradoxical leanness in the imprinting-centre deletion mouse model for Prader–Willi syndrome. Journal of Endocrinology 232(1), pp. 123-135. (10.1530/JOE-16-0367)
- Navein, A. E. et al. 2016. Disrupted mitochondrial function in the Opa3L122P mouse model for Costeff Syndrome impairs skeletal integrity. Human Molecular Genetics 25(12), pp. 2404-2416. (10.1093/hmg/ddw107)
- Hornsby, A. K. E. et al. 2016. Short-term calorie restriction enhances adult hippocampal neurogenesis and remote fear memory in a Ghsr-dependent manner. Psychoneuroendocrinology 63, pp. 198-207. (10.1016/j.psyneuen.2015.09.023)
- Davies, J. R. et al. 2015. Calorie seeking, but not hedonic response, contributes to hyperphagia in a mouse model for Prader-Willi syndrome. European Journal of Neuroscience 42(4), pp. 2105-2113. (10.1111/ejn.12972)
- Evans, B. A. J. et al. 2014. Preclinical assessment of a new magnetic resonance-based technique for determining bone quality by characterization of trabecular microarchitecture. Calcified Tissue International 95(6), pp. 506-520. (10.1007/s00223-014-9922-z)
- Man, P., Wells, T. and Carter, D. A. 2014. Cellular distribution of Egr1 transcription in the male rat pituitary gland. Journal of Molecular Endocrinology 53(2), pp. 271-280. (10.1530/JME-14-0158)
- El-Kasti, M. M., Wells, T. and Carter, D. A. 2012. A novel long-range enhancer regulates postnatal expression of Zeb2: implications for Mowat-Wilson syndrome phenotypes. Human Molecular Genetics 21(26), pp. 5429-5442. (10.1093/hmg/dds389)
- Wells, T. et al. 2012. Opa3, a novel regulator of mitochondrial function, controls thermogenesis and abdominal fat mass in a mouse model for Costeff syndrome. Human Molecular Genetics 21(22), pp. 4836-4844. (10.1093/hmg/dds315)
- Glad, C. et al. 2011. Reverse feeding suppresses the activity of the GH axis in rats and induces a preobesogenic state. Endocrinology 152(3), pp. 869-882. (10.1210/en.2010-0713)
- Evans, B. A. J. et al. 2011. The influence of leptin on trabecular architecture and marrow adiposity in GH-deficient rats. Journal of Endocrinology 208(1), pp. 69-79. (10.1677/JOE-10-0178)
- Carter, D. A., Rough, K. and Wells, T. 2011. Transcription mapping of embryonic rat brain reveals EGR-1 induction in SOX2+ neural progenitor cells. Frontiers in Molecular Neuroscience 4 (10.3389/fnmol.2011.00006)
- Davies, J. S. et al. 2009. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Molecular Endocrinology 23(6), pp. 914-924. (10.1210/me.2008-0432)
- Stevenson, A. E. et al. 2009. Does adiposity status influence femoral cortical strength in rodent models of growth hormone deficiency?. American Journal of Physiology - Endocrinology and Metabolism 296(1), pp. E147-E156. (10.1152/ajpendo.90689.2008)
- Wells, T. 2009. Ghrelin - Defender of fat. Progress in Lipid Research 48(5), pp. 257-274. (10.1016/j.plipres.2009.04.002)
- El-Kasti, M. M. et al. 2008. The pregnancy-induced increase in baseline circulating growth hormone in rats is not induced by ghrelin. Journal of Neuroendocrinology 20(3), pp. 309-322. (10.1111/j.1365-2826.2008.01650.x)
- Davies, J. S., Kotokorpi, P., Lindahl, U., Oscarsson, J., Wells, T. and Mode, A. 2008. Effects of the synthetic liver X receptor agonist T0901317 on the growth hormone and thyroid hormone axes in male rats. Endocrine 33(2), pp. 196-204. (10.1007/s12020-008-9067-9)
- Mansergh, F. C., Wells, T., Elford, C., Evans, S. L., Evans, M. J., Perry, M. J. and Evans, B. A. J. 2007. Osteopenia in Sparc (osteonectin) deficient mice: characterization of phenotypic determinants of femoral strength and changes in gene expression. Physiological genomics 32(1), pp. 64-73. (10.1152/physiolgenomics.00151.2007)
- Man, P. S., Wells, T. and Carter, D. A. 2007. Egr-1-d2EGFP transgenic rats identify transient populations of neurons and glial cells during postnatal brain development. Gene Expression Patterns 7(8), pp. 872-883. (10.1016/j.modgep.2007.06.006)
- Davies, J. S. et al. 2007. Adiposity profile in the dwarf (dw/dw) rat: an unusually lean model of profound growth hormone deficiency. American Journal of Physiology - Endocrinology and Metabolism 292(5), pp. E1483-E1494. (10.1152/ajpendo.00417.2006)
- Humphries, A. L., Wells, T., Baler, R., Klein, D. C. and Carter, D. A. 2007. Rodent Aanat: intronic E-box sequences control tissue specificity but not rhythmic expression in the pineal gland. Molecular and Cellular Endocrinology 270(1-2), pp. 43-49. (10.1016/j.mce.2007.02.003)
- Martini, A. C. et al. 2006. Comparative analysis of the effects of ghrelin and unacylated ghrelin on luteinizing hormone secretion in male rats. Endocrinology 147(5), pp. 2374-2382. (10.1210/en.2005-1422)
- Davies, J. S., Thompson, N. M., Christian, H. C., Pinilla, L., Ebling, F. J. P., Tena-Sempere, M. and Wells, T. 2006. Hypothalamic expression of human growth hormone induces post-pubertal hypergonadotrophism in male transgenic growth retarded rats. Journal of Neuroendocrinology 18(10), pp. 719-731. (10.1111/j.1365-2826.2006.01467.x)
- Davies, J. S., Carter, D. A. and Wells, T. 2004. Photic stimulation inhibits growth hormone secretion in rats: A hypothalamic mechanism for transient entrainment. Endocrinology 145(6), article number: 2950. (10.1210/en.2003-1236)
- Davies, J. . S., Holter, J. L., Knight, D., Beaucourt, S. M., Murphy, D., Carter, D. A. and Wells, T. 2004. Manipulating sorting signals to generate co-expression of somatostatin and eGFP in the regulated secretory pathway from a monocistronic construct. Journal of Molecular Endocrinology 33(2), pp. 523-532. (10.1677/jme.1.01578)
- Evans, B. A. J. et al. 2003. Morphological determinants of femoral strength in growth hormone-deficient transgenic growth-retarded (Tgr) rats. Journal of Bone and Mineral Research 18(7), pp. 1308-1316. (10.1359/jbmr.2003.18.7.1308)
- Thompson, N. M., Davies, J. S., Mode, A., Houston, P. A. and Wells, T. 2003. Pattern-dependent suppression of growth hormone (GH) pulsatility by ghrelin and GH-releasing peptide-6 in moderately GH-deficient rats. Endocrinology 144(11), pp. 4859-4867. (10.1210/en.2003-0423)
- Slade, J. P., Man, P. S., Wells, T. and Carter, D. A. 2002. Stimulus-specific induction of an Egr-I transgene in a rat brain. Neuroreport -Oxford- 13(5), pp. 671-674.
- Wells, T. and Houston, P. A. 2001. Skeletal growth acceleration with growth hormone secretagogues in transgenic growth retarded rats: pattern-dependent effects and mechanisms of desensitization. Journal of Neuroendocrinology 13(6), pp. 496-504. (10.1046/j.1365-2826.2001.00661.x)
- Wells, T. and Carter, D. A. 2001. Genetic engineering of neural function in transgenic rodents: towards a comprehensive strategy?. Journal of Neuroscience Methods 108(2), pp. 111-130. (10.1016/S0165-0270(01)00391-0)
- Smith, M., Burke, Z., Humphries, A., Wells, T., Klein, D., Carter, D. A. and Baler, R. 2001. Tissue-specific transgenic knockdown of Fos-related antigen 2 (Fra-2) expression mediated by dominant negative Fra-2. Molecular and Cellular Biology 21(11), pp. 3704-3713. (10.1128/MCB.21.11.3704-3713.2001)
- Warner, J. T., Wells, T., Elford, C., Evans, B. A. J., Evans, S. L. and Gregory, J. W. 2000. Undermineralisation and reduced bone strength in growth hormone (GH) deficient transgenic (Tgr) rats. Journal of Bone and Mineral Research (JBMR) 15(6), pp. 1219-1219.
Book sections
- Holter, J. L., Davies, J. S., Man, P. S., Wells, T. and Carter, D. A. 2007. Transgenic delivery and detection of GFP in neuropeptide neurons. In: Neuropeptide Techniques. Neuromethods Vol. 39. Springer, pp. 31-44., (10.1007/978-1-60327-099-1_5)
Research
The focus of my laboratory is on the endocrine and neuroendocrine actions of ghrelin. A variety of contemporary technologies are employed to investigate the way in which ghrelin interacts with the brain and peripheral tissues to regulate adiposity and the secretion of pituitary hormones. This research falls into the following areas:
Ghrelin and Obesity
Ghrelin stimulates fat deposition. Following our landmark publication showing that ghrelin has a direct adipogenic (increases the number of fat cells) action in bone marrow (Figure 1), we have established the mechanisms by which ghrelin induces an increase in abdominal adiposity. Using MRI we have shown that this effect of ghrelin increases the volume of adipose tissue locations associated with the development of the metabolic syndrome (Figure 2).
We have shown that this effect is:
- Due to an increase in adipocyte size (Figure 3)
- Probably due to a reduction in lipid export.
- Dependent upon expression of the recognized receptor for ghrelin, GHS-R1a.
- Also seen in liver2.
We have used microarray analysis to investigate why specific adipose tissue depots respond differently to ghrelin exposure. This analysis suggests that depot-specificity arises from differences in signal transduction and lipid handling2. A complete dataset from this microarray analysis is available here.
Coupled with evidence that circulating ghrelin is suppressed by feeding and that ghrelin stimulates food intake (especially the ingestion fat), our data indicates that:
- Ghrelin may restrict lipid loss during food deprivation.
- Interrupting ghrelin signalling may be an essential component of any programme of sustained fat loss.
Ghrelin and Growth Hormone Secretion
Ghrelin was first identified as a hormone that stimulates GH secretion and might therefore be useful in accelerating skeletal growth in a particular group of GH-deficient children. We used the Tgr rat, a model of hypothalamic GH deficiency, to demonstrate that the growth promoting potential of ghrelin is also dependent upon the pattern of treatment. We are currently investigating the effect of continuous exposure to ghrelin and unacylated ghrelin (UAG) on spontaneous GH secretion. Interestingly, although GH-deficiency is usually associated with obesity, the profoundly GH-deficient dw/dw rat is surprisingly lean.
Ghrelin and Reproduction
Ghrelin is now thought to provide a metabolic signal to delay the development of reproductive function. In this context we have shown that:
- Ghrelin (and UAG) suppresses gonadotrophin secretion even in the hypergonadotrophic Tgr rat.
- Circulating ghrelin is not increased consistently during pregnancy and is not responsible for the elevation in baseline GH secretion. Pregnancy is accompanied by a marked polarisation of GH secretory granules towards the vasculature (Figure 4).
Interactions Between Adiposity Status and the Growing Skeleton
Given the interactions of ghrelin, GH and adiposity we are also investigating the influence of these variables on bone formation. We have now used in vitro strength testing and µ-computer tomography (µ-CT) to demonstrate that:
- The impairment of bone strength in the Tgr model of moderate GH-deficiency is more profound than in the severely deficient dw/dw rat.
- The impairment of bone strength and microarchitecture in these models of GH-deficiency is not related to the accompanying adiposity status, or the secretion of leptin.
Grant support
- BBSRC
- The Ipsen Fund
- The Wellcome Trust
Collaborators
- Prof David Carter, School of Biosciences, Cardiff University.
- Dr Helen Christian, Oxford University.
- Dr Karen Coschigano, Ohio University, Ohio, USA.
- Dr Jeffrey Davies, University of Swansea.
- Dr Bronwen Evans, school of Medicine, Cardiff University.
- Dr Sam Evans, School of Engineering, Cardiff University.
- Dr Evelien Gevers, National Institute of Medical Research, London.
- Prof John Kopchick, Ohio University, Ohio, USA.
- Prof Agneta Mode, Karolinska Institute, Stockholm, Sweden.
- Prof Iain Robinson, National Institute of Medical Research, London.
- Dr Manuel Tena-Sempere, University of Cordoba, Spain.
- Dr Jeffrey Zigman, University of Texas Southwestern Medical Center at Dallas, USA.
Contact Details
+44 29208 74977
Sir Martin Evans Building, Room Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Museum Avenue, Cardiff, CF10 3AX