Professor Oliver Williams
(he/him)
- Available for postgraduate supervision
Teams and roles for Oliver Williams
Chair
Condensed Matter and Photonics Group
Overview
Oliver Williams completed his PhD on the electronic properties of diamond at University College London in 2003. He then moved to Argonne National Laboratory where he held the Distinguished Postdoctoral appointment at the Centre for Nanoscale Materials.
In 2004 he joined the Institute for Materials Research in Belgium, an affiliated lab of IMEC vzw. He developed nanocrystalline diamond growth, specialising on the nucleation of ultra-thin diamond films and control of diamond electrical conductivity from intrinsic to superconducting.
He then received the Fraunhofer Attract award to move to the Fraunhofer Institute for Applied Solid State Research in Freiburg and develop Micro Electro-Mechanical Systems from nanocrystalline diamond.
In 2011 he moved to Cardiff as a Reader in Experimental Physics and Marie Curie Fellow. Here he established Cardiff Diamond Foundry, the largest diamond growth group in the UK. His group focuses on MEMS, superconductivity, single photon sources, high frequency filters, thermal management and anything that exploits the extreme materials properties of diamond. He currently holds a Personal Chair in Experimental Physics.
Publication
2025
- Astley, S. et al., 2025. Real time observation of glass-like carbon formation from SU-8 using X-ray and ultraviolet photoelectron spectroscopy. Carbon 245 120728. (10.1016/j.carbon.2025.120728)
- Cuenca, J. A. et al. 2025. Microwave plasma modelling for thick diamond deposition on III-nitrides. Carbon 241 120349. (10.1016/j.carbon.2025.120349)
- Ji, X. et al., 2025. Thermal boundary resistance reduction by interfacial nanopatterning for GaN-on-diamond electronics applications. ACS Applied Electronic Materials 7 (7), pp.2939–2946. (10.1021/acsaelm.5c00119)
- Lindner, S. et al., 2025. Coupling of single nanodiamonds hosting SiV color centers to plasmonic double bowtie microantennas. Nanotechnology 36 (13) 135001. (10.1088/1361-6528/ada9a4)
- Liu, R. et al. 2025. Modulating d33 coefficients through In-Situ AgF and Ag2O growth in PVDF composites for high-performance piezoelectric nanogenerators. Advanced Materials Technologies 2500012. (10.1002/admt.202500012)
- Sow, M. et al., 2025. Millikelvin intracellular nanothermometry with nanodiamonds. Advanced Science 12 (45) e11670. (10.1002/advs.202511670)
2024
- Bennett, J. et al. 2024. Inhomogeneities across boron-doped nanocrystalline diamond films. Carbon Trends 15 100353. (10.1016/j.cartre.2024.100353)
- Cuenca, J. A. et al. 2024. Dielectric properties of diamond using an X-band microwave split dielectric resonator. Carbon 221 118860. (10.1016/j.carbon.2024.118860)
- Liao, S. et al., 2024. Boron-doped diamond decorated with metal-organic framework-derived compounds for high-voltage aqueous asymmetric supercapacitors. Carbon 230 119651. (10.1016/j.carbon.2024.119651)
- Martyanov, A. et al., 2024. Diamond seed dependent luminescence properties of CVD diamond composite. Carbon 222 118975. (10.1016/j.carbon.2024.118975)
- Stritt, J. et al. 2024. Development of long-range conductivity mechanisms in glass-like carbon. Carbon 223 119027. (10.1016/j.carbon.2024.119027)
- Williams, O. A. and Bergonzo, P. 2024. Introduction. In: Mandal, S. and Yang, N. eds. Novel Aspects of Diamond II. Vol. 149, Topics in Applied Physics SPRINGER-VERLAG BERLIN. , pp.1-3. (10.1007/978-3-031-47556-6_1)
- Williams, O. A. , Mandal, S. and Cuenca, J. A. 2024. Heterogeneous integration of diamond. Accounts of Materials Research (10.1021/accountsmr.4c00126)
- Yuan, M. et al., 2024. Generation of GHz surface acoustic waves in (Sc,Al)N thin films grown on free-standing polycrystalline diamond wafers by plasma-assisted molecular beam epitaxy. Journal of Physics D: Applied Physics 57 (49) 495103. (10.1088/1361-6463/ad76ba)
2023
- Cuenca, J. A. et al. 2023. Superconducting boron doped nanocrystalline diamond microwave coplanar resonator. Carbon 201 , pp.251-259. (10.1016/j.carbon.2022.08.084)
- Cuenca, J. A. et al. 2023. Modelling deposition uniformity in microwave plasma cvd diamond over 2" Si wafers. Presented at: 2022 Asia-Pacific Microwave Conference (APMC) Yokohama, Japan 29 November - 02 December 2022. 2022 Asia-Pacific Microwave Conference (APMC). IEEE. (10.23919/APMC55665.2022.9999754)
- Cuenca, J. A. et al. 2023. Microwave conductivity of boron-doped nanodiamond particles. Presented at: 2022 Asia-Pacific Microwave Conference (APMC) Yokohama, Japan 29 November - 02 December 2022. 2022 Asia-Pacific Microwave Conference (APMC). IEEE. (10.23919/APMC55665.2022.9999762)
- Hrabovsky, J. et al., 2023. Laser-patterned boron-doped diamond electrodes with precise control of sp2/sp3 carbon lateral distribution. Applied Surface Science 639 158268. (10.1016/j.apsusc.2023.158268)
- Leigh, W. et al. 2023. Monitoring of the initial stages of diamond growth on aluminum nitride using in situ spectroscopic ellipsometry. ACS Omega 8 (33), pp.30442-30449. (10.1021/acsomega.3c03609)
- Leigh, W. G. et al. 2023. Mapping the effect of substrate temperature inhomogeneity during microwave plasma-enhanced chemical vapour deposition nanocrystalline diamond growth. Carbon 201 , pp.228-337. (10.1016/j.carbon.2022.09.036)
- Mandal, S. et al. 2023. Zeta potential and nanodiamond self assembly assisted diamond growth on lithium niobate and lithium tantalate single crystal. Carbon 212 118160. (10.1016/j.carbon.2023.118160)
- March, J. E. et al., 2023. Long spin coherence and relaxation times in nanodiamonds milled from polycrystalline 12C diamond. Physical Review Applied 20 (4) 044045. (10.1103/PhysRevApplied.20.044045)
- Thomas, E. L. H. et al. 2023. Polycrystalline diamond micro‐hotplates. Small 19 (48) 2303976. (10.1002/smll.202303976)
- Zelenský, M. et al., 2023. Chem-mechanical polishing influenced morphology, spectral and electrochemical characteristics of boron doped diamond. Carbon 203 , pp.363-376. (10.1016/j.carbon.2022.11.069)
2022
- Bose, M. et al., 2022. Low-noise diamond-based D.C. nano-SQUIDs. ACS Applied Electronic Materials 4 (5), pp.2246-2252. (10.1021/acsaelm.2c00048)
- Cuenca, J. A. et al. 2022. Microwave plasma modelling in clamshell chemical vapour deposition diamond reactors. Diamond and Related Materials 124 108917. (10.1016/j.diamond.2022.108917)
- Kuznetsov, S. et al., 2022. Cerium-doped gadolinium-scandium-aluminum garnet powders: synthesis and use in X-ray luminescent diamond composites. Ceramics International 48 (9), pp.12962-12970. (10.1016/j.ceramint.2022.01.169)
- Leigh, W. G. et al. 2022. In-situ monitoring of microwave plasma-enhanced chemical vapour deposition diamond growth on silicon using spectroscopic ellipsometry. Carbon 202 , pp.204-212. (10.1016/j.carbon.2022.10.049)
- Mandal, S. , Shaw, G. and Williams, O. A. 2022. Comparison of nanodiamond coated quartz filter with commercial electropositive filters: Zeta potential and dye retention study. Carbon 199 , pp.439-443. (10.1016/j.carbon.2022.08.021)
- Pascoe, M. J. et al. 2022. Impact of material properties in determining quaternary ammonium compound adsorption and wipe product efficacy against biofilms. Journal of Hospital Infection 126 , pp.37-43. (10.1016/j.jhin.2022.03.013)
- Sinusia Lozano, M. et al., 2022. SAW resonators and filters based on Sc0.43Al0.57N on single crystal and polycrystalline diamond. Micromachines 13 (7) 1061. (10.3390/mi13071061)
- Wood, B. D. et al., 2022. Long spin coherence times of nitrogen vacancy centers in milled nanodiamonds. Physical Review B 105 (20) 205401. (10.1103/PhysRevB.105.205401)
2021
- Bland, H. A. et al. 2021. Electropositive nanodiamond-coated quartz microfiber membranes for virus and dye filtration. ACS Applied Nano Materials 4 (3), pp.3252-3261. (10.1021/acsanm.1c00439)
- Cuenca, J. A. et al. 2021. Thermal stress modelling of diamond on GaN/III-Nitride membranes. Carbon 174 , pp.647-661. (10.1016/j.carbon.2020.11.067)
- Guo, T. et al., 2021. Electrochemistry of nitrogen and boron bi-element incorporated diamond films. Carbon 178 , pp.19-25. (10.1016/j.carbon.2021.02.062)
- Klemencic, G. et al. 2021. Phase slips and metastability in granular boron-doped nanocrystalline diamond microbridges. Carbon 175 , pp.43-49. (10.1016/j.carbon.2020.12.042)
- Mandal, S. et al. 2021. Surface zeta potential and diamond growth on gallium oxide single crystal. Carbon 181 , pp.79-86. (10.1016/j.carbon.2021.04.100)
- Manifold, S. A. et al. 2021. Contact resistance of various metallisation schemes to superconducting boron doped diamond between 1.9 and 300 K. Carbon 179 , pp.13-19. (10.1016/j.carbon.2021.02.079)
- Sedov, V. et al., 2021. CVD synthesis of multi-layered polycrystalline diamond films with reduced roughness using time-limited injections of N2 gas. Diamond and Related Materials 114 108333. (10.1016/j.diamond.2021.108333)
2020
- Cuenca, J. A. et al. 2020. Dielectric spectroscopy of hydrogen treated hexagonal boron nitride ceramics. ACS Applied Electronic Materials 2 (5), pp.1193-1202. (10.1021/acsaelm.9b00767)
- Field, D. E. et al., 2020. Crystalline interlayers for reducing the effective thermal boundary resistance in GaN-on-Diamond. ACS Applied Materials and Interfaces 12 (48), pp.54138-54145. (10.1021/acsami.0c10129)
- Smith, M. D. et al., 2020. GaN-on-diamond technology platform: bonding-free membrane manufacturing process. AIP Advances 10 (3) 035306. (10.1063/1.5129229)
- Sow, M. et al., 2020. High-throughput nitrogen-vacancy center imaging for nanodiamond photophysical characterization and pH nanosensing. Nanoscale 12 (42), pp.21821-21821. (10.1039/D0NR05931E)
2019
- Ahmed, A. et al., 2019. Facile amine termination of nanodiamond particles and their surface reaction dynamics. ACS Omega 4 (16), pp.16715-16723. (10.1021/acsomega.9b00776)
- Bland, H. A. et al. 2019. Superconducting diamond on silicon nitride for device applications. Scientific Reports 9 2911. (10.1038/s41598-019-39707-z)
- Cuenca, J. A. et al. 2019. Microwave cavity perturbation of nitrogen doped nano-crystalline diamond films. Carbon 145 , pp.-. (10.1016/j.carbon.2018.12.025)
- Klemencic, G. M. et al. 2019. Observation of a superconducting glass state in granular superconducting diamond. Scientific Reports 9 4578. (10.1038/s41598-019-40306-1)
- Mandal, S. et al. 2019. Superconducting boron doped nanocrystalline diamond on boron nitride ceramics. Nanoscale 11 (21), pp.10266-10272. (10.1039/C9NR02729G)
- Mandal, S. et al. 2019. Chemical mechanical polishing of nanocrystalline diamond. In: Yang, N. ed. Novel Aspects of Diamond: From Growth to Applications. Vol. 121, Topics in Applied Physics Chem: Springer. , pp.53-89. (10.1007/978-3-030-12469-4_3)
- Mandal, S. et al. 2019. Thick, adherent diamond films on AlN with low thermal barrier resistance. ACS Applied Materials and Interfaces 11 (43), pp.40826-40834. (10.1021/acsami.9b13869)
- Panduranga, P. et al., 2019. Hybrid diamond/silicon suspended integrated photonic platform using SF6 isotropic etching. Presented at: 2nd IEEE British and Irish Conference on Optics and Photonics (BICOP 2019) London, England 11-13 December 2019. 2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP). IEEE. , pp.1-4. (10.1109/BICOP48819.2019.9059586)
- Salman, M. et al. 2019. Quantitative analysis of the interaction between a dc SQUID and an integrated micromechanical doubly clamped cantilever. Journal of Applied Physics 125 (22) 224503. (10.1063/1.5090958)
- Sinusía Lozano, M. et al., 2019. Giant reflection coefficient on Sc 0.26 Al 0.74 N polycrystalline diamond surface acoustic wave resonators. physica status solidi (a) 216 (20) 1900360. (10.1002/pssa.201900360)
2018
- Abdou, A. et al., 2018. Air-clad suspended nanocrystalline diamond ridge waveguides. Optics Express 26 (11) 13883. (10.1364/OE.26.013883)
- Braunbeck, G. et al., 2018. Effect of ultraprecision polishing techniques on coherence times of shallow nitrogen-vacancy centers in diamond. Diamond and Related Materials 85 , pp.18-22. (10.1016/j.diamond.2018.03.026)
- Cuenca, J. A. et al. 2018. Microwave permittivity of trace sp2 carbon impurities in sub-micron diamond powders. ACS Omega 3 (2), pp.2183-2192. (10.1021/acsomega.7b02000)
- Frangeskou, A. C. et al., 2018. Pure nanodiamonds for levitated optomechanics in vacuum. New Journal of Physics 20 043016. (10.1088/1367-2630/aab700)
- Gines, L. et al. 2018. Production of metal-free diamond nanoparticles. ACS Omega 3 (11), pp.16099-16104. (10.1021/acsomega.8b02067)
- Lindner, S. et al., 2018. Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds. New Journal of Physics 20 (11) 115002. (10.1088/1367-2630/aae93f)
- Mandal, S. et al. 2018. Redox agent enhanced chemical mechanical polishing of thin film diamond. Carbon 130 , pp.25-30. (10.1016/j.carbon.2017.12.077)
- Thomas, E. et al. 2018. A simple, space constrained NIRIM type reactor for chemical vapour deposition of diamond. AIP Advances 8 035325. (10.1063/1.5009182)
- Yu, S. et al., 2018. Battery-like supercapacitors from vertically aligned carbon nanofiber coated diamond: design and demonstrator. Advanced Energy Materials 8 (12) 1702947. (10.1002/aenm.201702947)
2017
- Ayres, Z. J. et al., 2017. Impact of chemical vapour deposition plasma inhomogeneity on the spatial variation of sp 2 carbon in boron doped diamond electrodes. Carbon 121 , pp.434-442. (10.1016/j.carbon.2017.06.008)
- Gines, L. et al. 2017. Positive zeta potential of nanodiamonds. Nanoscale 9 (34), pp.12549-12555. (10.1039/C7NR03200E)
- Klemencic, G. M. et al. 2017. Fluctuation spectroscopy as a probe of granular superconducting diamond films. Physical Review Materials 1 (4) 044801. (10.1103/PhysRevMaterials.1.044801)
- Klemencic, G. M. et al. 2017. Superconductivity in planarised nanocrystalline diamond films. Science and Technology of Advanced Materials 18 (1)(10.1080/14686996.2017.1286223)
- Mandal, S. et al. 2017. Surface zeta potential and diamond seeding on gallium nitride films. ACS Omega 2 (10), pp.7275-7280. (10.1021/acsomega.7b01069)
- Thomas, E. et al. 2017. Spectroscopic ellipsometry of nanocrystalline diamond film growth. ACS Omega 2 (10), pp.6715-6727. (10.1021/acsomega.7b00866)
- Titova, N. et al., 2017. Slow electron-phonon cooling in superconducting diamond films. IEEE Transactions on Applied Superconductivity 27 (4) 7501104. (10.1109/TASC.2016.2638199)
- Werrell, J. et al. 2017. Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Science and Technology of Advanced Materials 18 (1), pp.654-663. (10.1080/14686996.2017.1366815.)
- Yu, S. et al., 2017. Battery-like supercapacitors from diamond networks and water-soluble redox electrolytes. Journal of Materials Chemistry A 5 (4), pp.1778-1785. (10.1039/C6TA08607A)
2016
- Ahmed, A. -. et al., 2016. Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon 110 , pp.438-442. (10.1016/j.carbon.2016.09.019)
- Mandal, S. et al. 2016. Chemical nucleation of diamond films. ACS Applied Materials and Interfaces 8 (39), pp.26220-26225. (10.1021/acsami.6b08286)
- Richter, J. et al., 2016. CO2 laser micromachining of nanocrystalline diamond films grown on doped silicon substrates. Optical Materials Express 6 (12), pp.3916-3926. (10.1364/OME.6.003916)
2015
- Cuenca, J. A. et al. 2015. Investigating the broadband microwave absorption of nanodiamond impurities. IEEE Transactions on Microwave Theory and Techniques 63 (12), pp.4110-4118. (10.1109/TMTT.2015.2495156)
- Cuenca, J. A. et al. 2015. Microwave determination of sp2 carbon fraction in nanodiamond powders. Carbon 81 , pp.174-178. (10.1016/j.carbon.2014.09.046)
- Yu, S. et al., 2015. Electrochemical supercapacitors from diamond. Journal of Physical Chemistry C 119 (33), pp.18918-18926. (10.1021/acs.jpcc.5b04719)
2014
- Bautze, T. et al., 2014. Superconducting nano-mechanical diamond resonators. Carbon 72 , pp.100-105. (10.1016/j.carbon.2014.01.060)
- Cuenca, J. et al. 2014. Broadband microwave measurements of nanodiamond. Presented at: Microwave Conference (APMC), 2014 Asia-Pacific Sendai, Japan 4-7 Nov 2014. Microwave Conference (APMC), 2014 Asia-Pacific. , pp.1-3.
- Pope, I. et al. 2014. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds. Nature Nanotechnology 9 (11), pp.940-946. (10.1038/nnano.2014.210)
- Sumant, A. V. et al., 2014. MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films. MRS Bulletin- Materials Research Society 39 (6), pp.511-516. (10.1557/mrs.2014.98)
- Thomas, E. L. H. et al. 2014. Silica based polishing of {100} and {111} single crystal diamond. Science and Technology of Advanced Materials 15 (3), pp.1-7. 035013. (10.1088/1468-6996/15/3/035013)
- Thomas, E. L. H. et al. 2014. Chemical mechanical polishing of thin film diamond. Carbon 68 , pp.473-479. (10.1016/j.carbon.2013.11.023)
2013
- Hees, J. et al., 2013. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology 24 (2) 025601. (10.1088/0957-4484/24/2/025601)
- Imboden, M. , Williams, O. A. and Mohanty, P. 2013. Nonlinear dissipation in diamond nanoelectromechanical resonators. Applied Physics Letters 102 (10) 103502. (10.1063/1.4794907)
- Imboden, M. , Williams, O. A. and Mohanty, P. 2013. Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing. Nano Letters 13 (9), pp.4014-4019. (10.1021/nl401978p)
- Kummer, K. et al., 2013. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines. Review of Scientific Instruments 84 (3) 035105. (10.1063/1.4794439)
- Lloret, F. et al., 2013. Diamond underlayer microstructure effect on the orientation of AlN piezoelectric layers for high frequency SAW resonators by TEM. Microelectronic Engineering 112 , pp.193-197. (10.1016/j.mee.2013.04.007)
- Reitinger, A. A. et al., 2013. Functional polymer brushes on diamond as a platform for immobilization and electrical wiring of biomolecules. Advanced Functional Materials 23 (23), pp.2979-2986. (10.1002/adfm.201202342)
- Rodríguez-Madrid, J. et al., 2013. High precision pressure sensors based on SAW devices in the GHz range. Sensors and Actuators A: Physical 189 , pp.364-369. (10.1016/j.sna.2012.09.012)
- Slocombe, D. R. et al. 2013. Microwave properties of nanodiamond particles. Applied Physics Letters 102 (24) 244102. (10.1063/1.4809823)
- Szirmai, P. et al., 2013. Observation of conduction electron spin resonance in boron-doped diamond. Physical Review B 87 (19) 195132. (10.1103/PhysRevB.87.195132)
2012
- Rodríguez-Madrid, J. G. et al., 2012. Optimization of AlN thin layers on diamond substrates for high frequency SAW resonators. Materials Letters 66 (1), pp.339-342. (10.1016/j.matlet.2011.09.003)
- Rodriguez-Madrid, J. G. et al., 2012. Super-High-Frequency SAW Resonators on AlN/Diamond. IEEE Electron Device Letters 33 (4), pp.495-497. (10.1109/LED.2012.2183851)
- Szirmai, P. et al., 2012. A detailed analysis of the Raman spectra in superconducting boron doped nanocrystalline diamond. Physica Status Solidi B Basic Research 249 (12), pp.2656-2659. (10.1002/pssb.201200461)
2011
- Hees, J. et al., 2011. Nanocrystalline diamond nanoelectrode arrays and ensembles. Acs Nano 5 (4), pp.3339-3346. (10.1021/nn2005409)
- Hees, J. , Kriele, A. and Williams, O. A. 2011. Electrostatic self-assembly of diamond nanoparticles. Chemical Physics Letters 509 (1-3), pp.12-15. (10.1016/j.cplett.2011.04.083)
- Hutter, N. A. et al., 2011. Nanostructured polymer brushes and protein density gradients on diamond by carbon templating. Soft Matter 7 (10), pp.4861-4867. (10.1039/c1sm05082f)
- Kriele, A. et al., 2011. Formation of nano-pores in nano-crystalline diamond films. Chemical Physics Letters 507 (4-6), pp.253-259. (10.1016/j.cplett.2011.03.089)
- Mandal, S. et al. 2011. The Diamond Superconducting Quantum Interference Device. ACS Nano 5 (9), pp.7144-7148. (10.1021/nn2018396)
- Smirnov, W. et al., 2011. Diamond-Modified AFM Probes: From Diamond Nanowires to Atomic Force Microscopy-Integrated Boron-Doped Diamond Electrodes. Analytical Chemistry 83 (12), pp.4936-4941. (10.1021/ac200659e)
- Williams, O. A. 2011. Nanocrystalline diamond. Diamond and Related Materials 20 (5-6), pp.621-640. (10.1016/j.diamond.2011.02.015)
2010
- Dahlem, F. et al., 2010. Nanocrystalline boron-doped diamond films, a mixture of BCS-like and non-BCS-like superconducting grains. Physica Status Solidi a Applications and Materials Science 207 (9), pp.2064-2068. (10.1002/pssa.201000013)
- Dahlem, F. et al., 2010. Spatially correlated microstructure and superconductivity in polycrystalline boron-doped diamond. Physical Review B: Condensed Matter and Materials Physics 82 (3) 033306. (10.1103/PhysRevB.82.033306)
- Hutter, N. A. et al., 2010. Microstructured poly(2-oxazoline) bottle-brush brushes on nanocrystalline diamond. Physical Chemistry Chemical Physics 12 (17), pp.4360-4366. (10.1039/b923789p)
- Kromka, A. et al., 2010. Semiconducting to metallic-like boron doping of nanocrystalline diamond films and its effect on osteoblastic cells. Diamond and Related Materials 19 (2-3), pp.190-195. (10.1016/j.diamond.2009.10.003)
- Mandal, S. et al. 2010. Detailed study of superconductivity in nanostructured nanocrystalline boron doped diamond thin films. Physica Status Solidi a Applications and Materials Science 207 (9), pp.2017-2022. (10.1002/pssa.201000008)
- Mandal, S. et al. 2010. Nanostructures made from superconducting boron-doped diamond. Nanotechnology 21 (19) 195303. (10.1088/0957-4484/21/19/195303)
- Michaelson, S. et al., 2010. Bulk and surface thermal stability of ultra nanocrystalline diamond films with 10-30 nm grain size prepared by chemical vapor deposition. Journal of Applied Physics 107 (9) 093521. (10.1063/1.3359714)
- Smirnov, W. et al., 2010. Anisotropic etching of diamond by molten Ni particles. Applied Physics Letters 97 (7) 073117. (10.1063/1.3480602)
- Williams, O. A. et al. 2010. Size-dependent reactivity of diamond nanoparticles. Acs Nano 4 (8), pp.4824-4830. (10.1021/nn100748k)
- Williams, O. A. et al. 2010. High Young's modulus in ultra thin nanocrystalline diamond. Chemical Physics Letters 495 (1-3), pp.84-89. (10.1016/j.cplett.2010.06.054)
- Wolfer, M. et al., 2010. Doping of single crystalline diamond with nickel. Physica Status Solidi a Applications and Materials Science 207 (9), pp.2054-2057. (10.1002/pssa.201000364)
2009
- Abouzar, M. H. et al., 2009. Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing. Biosensors and Bioelectronics 24 (5), pp.1298-1304. (10.1016/j.bios.2008.07.056)
- Achatz, P. et al., 2009. Metal-insulator transition and superconductivity in highly boron-doped nanocrystalline diamond films. Physica Status Solidi a Applications and Materials Science 206 (9), pp.1978-1985. (10.1002/pssa.200982233)
- Achatz, P. et al., 2009. Low-temperature transport in highly boron-doped nanocrystalline diamond. Physical Review B: Condensed Matter and Materials Physics 79 (20) 201203(R). (10.1103/PhysRevB.79.201203)
- Bijnens, N. et al., 2009. Synthetic diamond films as a platform material for label-free protein sensors. Physica Status Solidi a Applications and Materials Science 206 (3), pp.520-526. (10.1002/pssa.200880485)
- Daenen, M. et al., 2009. Diamond nucleation by carbon transport from buried nanodiamond TiO2Sol-gel composites. Advanced Materials 21 (6), pp.670-673. (10.1002/adma.200802305)
- Gajewski, W. et al., 2009. Electronic and optical properties of boron-doped nanocrystalline diamond films. Physical Review B: Condensed Matter and Materials Physics 79 (4) 045206. (10.1103/PhysRevB.79.045206)
- Kriele, A. et al., 2009. Tuneable optical lenses from diamond thin films. Applied Physics Letters 95 (3) 031905. (10.1063/1.3183534)
- Kulha, P. et al., 2009. Nanocrystalline diamond piezoresistive sensor. Vacuum 84 (1), pp.53-56. (10.1016/j.vacuum.2009.04.023)
- Nebel, C. E. et al., 2009. Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diamond and Related Materials 18 (5-8), pp.910-917. (10.1016/j.diamond.2008.11.024)
- Poghossian, A. et al., 2009. Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure. Electrochimica Acta 54 (25), pp.5981-5985. (10.1016/j.electacta.2009.03.011)
- Sillero, E. et al., 2009. Static and dynamic determination of the mechanical properties of nanocrystalline diamond micromachined structures. Journal of Micromechanics and Microengineering 19 (11) 115016. (10.1088/0960-1317/19/11/115016)
- Smisdom, N. et al., 2009. Chinese hamster ovary cell viability on hydrogen and oxygen terminated nano- and microcrystalline diamond surfaces. Physica Status Solidi a Applications and Materials Science 206 (9), pp.2042-2047. (10.1002/pssa.200982206)
- Villar, M. P. et al., 2009. A microstructural study of superconductive nanocrystalline diamond. Physica Status Solidi a Applications and Materials Science 206 (9), pp.1986-1990. (10.1002/pssa.200982224)
- Willems, B. L. et al., 2009. Intrinsic granularity in nanocrystalline boron-doped diamond films measured by scanning tunneling microscopy. Physical Review B: Condensed Matter and Materials Physics 80 (22) 224518. (10.1103/PhysRevB.80.224518)
- Willems, B. L. et al., 2009. Negative magnetoresistance in boron-doped nanocrystalline diamond films. Journal of Applied Physics 106 (3) 033711. (10.1063/1.3195045)
- Williams, O. A. et al. 2009. The Diamond Nano-Balance. Journal of Nanoscience and Nanotechnology 9 (6), pp.3483-3486. (10.1166/jnn.2009.NS20)
- Wolfer, M. et al., 2009. Nickel doping of nitrogen enriched CVD-diamond for the production of single photon emitters. Physica Status Solidi a Applications and Materials Science 206 (9), pp.2012-2015. (10.1002/pssa.200982231)
- Yang, N. et al., 2009. Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Physica Status Solidi a Applications and Materials Science 206 (9), pp.2048-2056. (10.1002/pssa.200982222)
2008
- Abouzar, M. H. et al., 2008. Penicillin detection with nanocrystalline-diamond field-effect sensor. Physica Status Solidi a Applications and Materials Science 205 (9), pp.2141-2145. (10.1002/pssa.200879713)
- Abouzar, M. et al., 2008. Field effect sensor on nanocristalline diamond base. Presented at: 14th Expert Meeting on Sensors and Measurement Systems Ludwigsburg, Germany 11-12 March 2008. Sensoren und messsysteme. VDI-Berichte Vol. 2011. Düsseldorf: VDI-Verl.. , pp.549-558.
- Arnault, J. C. et al., 2008. Diamond nanoseeding on silicon: stability under H2 MPCVD exposures and early stages of growth. Diamond and Related Materials 17 (7-10), pp.1143-1149. (10.1016/j.diamond.2008.01.008)
- Arnault, J. C. et al., 2008. Surface characterisation of silicon substrates seeded with diamond nanoparticles under UHV annealing. Physica Status Solidi a Applications and Materials Science 205 (9), pp.2108-2113. (10.1002/pssa.200879728)
- Barnard, A. S. and Williams, O. A. 2008. Special Issue on Nanodiamonds [Editorial]. Chemical Vapor Deposition 14 (7-8), pp.141. (10.1002/cvde.200800001)
- Bonnauron, M. et al., 2008. Transparent diamond-on-glass micro-electrode arrays for ex-vivo neuronal study. Physica Status Solidi a Applications and Materials Science 205 (9), pp.2126-2129. (10.1002/pssa.200879733)
- Gupta, S. et al., 2008. Ex situ variable angle spectroscopic ellipsometry studies on chemical vapor deposited boron-doped diamond films: Layered structure and modeling aspects. Journal of Applied Physics 104 (7) 073514. (10.1063/1.2990058)
- Mortet, V. , Williams, O. A. and Haenen, K. 2008. Diamond: a material for acoustic devices. Physica Status Solidi a Applications and Materials Science 205 (5), pp.1009-1020. (10.1002/pssa.200777502)
- Poghossian, A. et al., 2008. Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors. Journal of Contemporary Physics (Armenian Academy of Sciences) 43 (2), pp.77-81.
- Vermeeren, V. et al., 2008. Topographical and functional characterization of the ssDNA probe layer generated through EDC-mediated covalent attachment to nanocrystalline diamond using fluorescence microscopy. Langmuir 24 (16), pp.9125-9134. (10.1021/la800946v)
- Wenmackers, S. et al., 2008. Structural and optical properties of DNA layers covalently attached to diamond surfaces. Langmuir 24 (14), pp.7269-7277. (10.1021/la800464p)
- Williams, O. A. et al. 2008. Growth, electronic properties and applications of nanodiamond. Diamond and Related Materials 17 (7-10), pp.1080-1088. (10.1016/j.diamond.2008.01.103)
- Zimmer, A. et al., 2008. Optical properties of heavily boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry. Applied Physics Letters 93 (13) 131910. (10.1063/1.2990679)
2007
- Achatz, P. et al., 2007. Structural, optical, and electronic properties of nanocrystalline and ultrananocrystalline diamond thin films. physica status solidi (a) 204 (9), pp.2874-2880. (10.1002/pssa.200776337)
- Bennett, A. et al., 2007. Diamond based ion-sensitive field effect transistors for cellular biosensing. Presented at: 2006 MRS Fall Meeting Boston, MA, USA 27 November - 1 December 2006. Symposium J – Diamond Electronics—Fundamentals to Applications. MRS Proceedings Vol. 956. Cambridge: Cambridge University Press. , pp.221-227. (10.1557/PROC-0956-J16-03)
- Christiaens, P. et al., 2007. Nanocrystalline diamond-based field-effect capacitive pH sensor. Presented at: TRANSDUCERS '07 & EUROSENSORS XXI: International Solid-State Sensors, Actuators and Microsystems Conference 2007 Lyon, France 10-14 June 2007. Proceedings: TRANSDUCERS 2007: International Solid-State Sensors, Actuators and Microsystems Conference 2007. Los Alamitos, CA: IEEE. , pp.1891-1894. (10.1109/SENSOR.2007.4300527)
- Christiaens, P. et al., 2007. pH sensitivity of nanocrystalline diamond films. physica status solidi (a) 204 (9), pp.2925-2930. (10.1002/pssa.200776326)
- Gupta, S. , Williams, O. A. and Bohannan, E. 2007. Electrostatic force microscopy studies of boron-doped diamond films. Journal of Materials Research 22 (11), pp.3014-3028. (10.1557/JMR.2007.0229)
- Hernando, J. et al., 2007. Immobilization of horseradish peroxidase via an amino silane on oxidized ultrananocrystalline diamond. Diamond and Related Materials 16 (1), pp.138-143. (10.1016/j.diamond.2006.04.005)
- Hikavyy, A. et al., 2007. Atomic layer deposition of ZnO thin films on boron-doped nanocrystalline diamond. Diamond and Related Materials 16 (4-7), pp.983-986. (10.1016/j.diamond.2006.11.035)
- Michaelson, S. et al., 2007. Hydrogen concentration and bonding configuration in polycrystalline diamond films: From micro-to nanometric grain size. Journal of Applied Physics 102 (11) 113516. (10.1063/1.2818372)
- Michaelson, S. et al., 2007. Hydrogen concentration and bonding in nano-diamond films of varying grain sizes grown by different chemical vapor deposition methods. physica status solidi (a) 204 (9), pp.2860-2867. (10.1002/pssa.200776302)
- Michaelson, S. et al., 2007. Hydrogen bonding at grain surfaces and boundaries of nanodiamond films detected by high resolution electron energy loss spectroscopy. Applied Physics Letters 91 (10) 103104. (10.1063/1.2779848)
- Shames, A. I. et al., 2007. Defects localization and nature in bulk and thin film utrananocrystalline diamond. Diamond and Related Materials 16 (10), pp.1806-1812. (10.1016/j.diamond.2007.08.026)
- Vermeeren, V. et al., 2007. Towards a real-time, label-free, diamond-based DNA sensorle. Langmuir 23 (26), pp.13193-13202. (10.1021/la702143d)
- Williams, O. A. , Daenen, M. and Haenen, K. 2007. Biological applications of nanocrystalline diamond. Presented at: 2006 MRS Fall Meeting Boston, MA, USA 27 November - 1 December 2006. Symposium J – Diamond Electronics—Fundamentals to Applications. MRS Proceedings Vol. 956. Cambridge: Cambridge University Press. , pp.121-125. (10.1557/PROC-0956-J05-01)
- Williams, O. A. et al. 2007. Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chemical Physics Letters 445 (4-6), pp.255-258. (10.1016/j.cplett.2007.07.091)
- Williams, O. A. et al. 2007. Nanocrystalline diamond enhanced thickness shear mode resonator. Applied Physics Letters 90 (6) 063514. (10.1063/1.2471649)
2006
- Achatz, P. et al., 2006. Optical properties of nanocrystalline diamond thin films. Applied Physics Letters 88 (10) 101908. (10.1063/1.2183366)
- Achatz, P. et al., 2006. Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates. Physical Review B Condensed Matter and Materials Physics 74 (15) 155429. (10.1103/PhysRevB.74.155429)
- Daenen, M. et al., 2006. Seeding, growth and characterization of nanocrystalline diamond films on various substrates. physica status solidi (a) 203 (12), pp.3005-3010. (10.1002/pssa.200671122)
- Gupta, S. et al., 2006. Residual stress, intermolecular force, and frictional properties distribution maps of diamond films for micro- and nano-electromechanical (M/NEMS) applications. Journal of Materials Research 21 (12), pp.3037-3046. (10.1557/jmr.2006.0372)
- Hikavyy, A. et al., 2006. An investigation of structural and electrical properties of boron doped and undoped nanocrystalline diamond films. physica status solidi (a) 203 (12), pp.3021-3027. (10.1002/pssa.200671118)
- Kohn, E. et al., 2006. A new diamond based heterostructure diode. Semiconductor Science and Technology 21 (4), pp.L32-L35. (10.1088/0268-1242/21/4/L02)
- Mareš, J. J. et al., 2006. Weak localization in ultrananocrystalline diamond. Applied Physics Letters 88 (9) 092107. (10.1063/1.2176853)
- Nesladek, M. et al., 2006. Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films. Diamond and Related Materials 15 (4-8), pp.607-613. (10.1016/j.diamond.2005.11.001)
- Rovere, M. et al., 2006. Low temperature electron spin resonance investigation of ultrananocrystalline diamond films as a function of nitrogen content. Diamond and Related Materials 15 (11-12), pp.1913-1916. (10.1016/j.diamond.2006.07.013)
- Williams, O. A. 2006. Ultrananocrystalline diamond for electronic applications. Semiconductor Science and Technology 21 (8), pp.R49-R56. (10.1088/0268-1242/21/8/R01)
- Williams, O. A. et al. 2006. Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diamond and Related Materials 15 (4-8), pp.654-658. (10.1016/j.diamond.2005.12.009)
- Williams, O. A. and Nesladek, M. 2006. Growth and properties of nanocrystalline diamond films. physica status solidi (a) 203 (13), pp.3375-3386. (10.1002/pssa.200671406)
2005
- Garrido, J. A. et al., 2005. pH sensors based on hydrogenated diamond surfaces. Applied Physics Letters 86 (7) 073504. (10.1063/1.1866632)
- Specht, C. G. et al., 2005. Erratum to ‘Ordered growth of neurons on diamond’: [Biomaterials 25 (2004) 4073–4078] [Erratum]. Biomaterials 26 (7), pp.828. (10.1016/j.biomaterials.2004.06.022)
- Williams, O. A. et al. 2005. Electronic properties and applications of ultrananocrystalline diamond. Presented at: NATO Advanced Research Workshop on Synthesis, Properties and Applications of Ultrananocrystalline Diamond St. Petersburg, Russia 7-10 June 2004. Published in: Gruen, D. M. , Shenderova, O. A. and Vul’, A. Y. eds. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. NATO Science Series Vol. 192/IV. Dordrecht: Springer. , pp.373-382. (10.1007/1-4020-3322-2_31)
- Zimmermann, T. et al., 2005. Ultra-nano-crystalline/single crystal diamond heterostructure diode. Diamond and Related Materials 14 (3-7), pp.416-420. (10.1016/j.diamond.2004.12.049)
2004
- Mer, C. et al., 2004. An insight into neutron detection from polycrystalline CVD diamond films. Diamond and Related Materials 13 (4-8), pp.791-795. (10.1016/j.diamond.2003.11.024)
- Specht, C. G. et al., 2004. Ordered growth of neurons on diamond. Biomaterials 25 (18), pp.4073-4078. (10.1016/j.biomaterials.2003.11.006)
- Williams, O. A. et al. 2004. n-type conductivity in ultrananocrystalline diamond films. Applied Physics Letters 85 (10), pp.1680-1682. (10.1063/1.1785288)
- Williams, O. A. et al. 2004. Publisher’s Note: “n-type conductivity in ultrananocrystalline diamond films” [Appl. Phys. Lett. 85, 1680 (2004)] [Erratum]. Applied Physics Letters 85 (21), pp.5106. (10.1063/1.1829716)
- Williams, O. A. and Jackman, R. B. 2004. Diamond growth on hot-filament chemically vapour-deposited diamond for surface conductive device applications. Diamond and Related Materials 13 (1), pp.166-169. (10.1016/j.diamond.2003.10.033)
- Williams, O. A. and Jackman, R. B. 2004. High growth rate MWPECVD of single crystal diamond. Diamond and Related Materials 13 (4-8), pp.557-560. (10.1016/j.diamond.2004.01.023)
- Williams, O. A. and Jackman, R. B. 2004. Homoepitaxial diamond growth for the control of surface conductive carrier transport properties. Journal of Applied Physics 96 (7), pp.3742-3747. (10.1063/1.1789275)
- Williams, O. A. and Jackman, R. B. 2004. Homoepitaxial growth for surface conductive device applications. Diamond and Related Materials 13 (2), pp.325-328. (10.1016/j.diamond.2003.11.004)
2003
- Garrido, J. A. et al., 2003. Novel in-plane gate devices on hydrogenated diamond surfaces. physica status solidi (a) 199 (1), pp.56-63. (10.1002/pssa.200303823)
- Snidero, E. et al., 2003. Influence of the postplasma process conditions on the surface conductivity of hydrogenated diamond surfaces. Journal of Applied Physics 93 (5), pp.2700-2704. (10.1063/1.1539922)
- Williams, O. A. and Jackman, R. B. 2003. Surface conductivity on hydrogen terminated diamond. Semiconductor Science and Technology 18 (3), pp.S34-S40. (10.1088/0268-1242/18/3/305)
- Williams, O. A. et al. 2003. High carrier mobilities in black diamond. Semiconductor Science and Technology 18 (3), pp.S77-S80. (10.1088/0268-1242/18/3/311)
2002
- Lansley, S. P. et al., 2002. Diamond-based 1-D imaging arrays. physica status solidi (a) 193 (3), pp.476-481. (10.1002/1521-396X(200210)193:3<476::AID-PSSA476>3.0.CO;2-1)
- Nebel, C. E. et al., 2002. Low temperature properties of the p-type surface conductivity of diamond. Diamond and Related Materials 11 (3-6), pp.351-354. (10.1016/S0925-9635(01)00586-6)
- Williams, O. A. et al. 2002. Black diamond: a new material for active electronic devices. Diamond and Related Materials 11 (3-6), pp.396-399. (10.1016/S0925-9635(02)00024-9)
- Williams, O. A. , Jackman, R. B. and Nebel, C. E. 2002. Hydrogenated black diamond: An electrical study. physica status solidi (a) 193 (3), pp.577-584. (10.1002/1521-396X(200210)193:3<577::AID-PSSA577>3.0.CO;2-U)
- Ye, H. et al., 2002. Electrical conduction in polycrystalline CVD diamond: Temperature dependent impedance measurements. physica status solidi (a) 193 (3), pp.462-469. (10.1002/1521-396X(200210)193:3<462::AID-PSSA462>3.0.CO;2-L)
- Ye, H. T. , Williams, O. A. and Jackman, R. B. 2002. Measurement of electrical activation energy in black CVD diamond using impedance spectroscopy. International Journal of Modern Physics B 16 (28-29), pp.4487-4492. (10.1142/S0217979202015674)
2001
- Nebel, C. E. et al., 2001. Hydrogen-induced transport properties of holes in diamond surface layers. Applied Physics Letters 79 (27), pp.4541-4543. (10.1063/1.1429756)
- Sauerer, C. et al., 2001. Low temperature surface conductivity of hydrogenated diamond. physica status solidi (a) 186 (2), pp.241-247. (10.1002/1521-396X(200108)186:2<241::AID-PSSA241>3.0.CO;2-1)
- Williams, O. A. et al. 2001. Carrier generation within the surface region of hydrogenated thin film polycrystalline diamond. Diamond and Related Materials 10 (3-7), pp.423-428. (10.1016/S0925-9635(00)00556-2)
- Williams, O. A. et al. 2001. Formation of shallow acceptor states in the surface region of thin film diamond. Applied Physics Letters 78 (22), pp.3460-3462. (10.1063/1.1345806)
Articles
- Abdou, A. et al., 2018. Air-clad suspended nanocrystalline diamond ridge waveguides. Optics Express 26 (11) 13883. (10.1364/OE.26.013883)
- Abouzar, M. H. et al., 2009. Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing. Biosensors and Bioelectronics 24 (5), pp.1298-1304. (10.1016/j.bios.2008.07.056)
- Abouzar, M. H. et al., 2008. Penicillin detection with nanocrystalline-diamond field-effect sensor. Physica Status Solidi a Applications and Materials Science 205 (9), pp.2141-2145. (10.1002/pssa.200879713)
- Achatz, P. et al., 2009. Metal-insulator transition and superconductivity in highly boron-doped nanocrystalline diamond films. Physica Status Solidi a Applications and Materials Science 206 (9), pp.1978-1985. (10.1002/pssa.200982233)
- Achatz, P. et al., 2009. Low-temperature transport in highly boron-doped nanocrystalline diamond. Physical Review B: Condensed Matter and Materials Physics 79 (20) 201203(R). (10.1103/PhysRevB.79.201203)
- Achatz, P. et al., 2006. Optical properties of nanocrystalline diamond thin films. Applied Physics Letters 88 (10) 101908. (10.1063/1.2183366)
- Achatz, P. et al., 2007. Structural, optical, and electronic properties of nanocrystalline and ultrananocrystalline diamond thin films. physica status solidi (a) 204 (9), pp.2874-2880. (10.1002/pssa.200776337)
- Achatz, P. et al., 2006. Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates. Physical Review B Condensed Matter and Materials Physics 74 (15) 155429. (10.1103/PhysRevB.74.155429)
- Ahmed, A. -. et al., 2016. Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon 110 , pp.438-442. (10.1016/j.carbon.2016.09.019)
- Ahmed, A. et al., 2019. Facile amine termination of nanodiamond particles and their surface reaction dynamics. ACS Omega 4 (16), pp.16715-16723. (10.1021/acsomega.9b00776)
- Arnault, J. C. et al., 2008. Diamond nanoseeding on silicon: stability under H2 MPCVD exposures and early stages of growth. Diamond and Related Materials 17 (7-10), pp.1143-1149. (10.1016/j.diamond.2008.01.008)
- Arnault, J. C. et al., 2008. Surface characterisation of silicon substrates seeded with diamond nanoparticles under UHV annealing. Physica Status Solidi a Applications and Materials Science 205 (9), pp.2108-2113. (10.1002/pssa.200879728)
- Astley, S. et al., 2025. Real time observation of glass-like carbon formation from SU-8 using X-ray and ultraviolet photoelectron spectroscopy. Carbon 245 120728. (10.1016/j.carbon.2025.120728)
- Ayres, Z. J. et al., 2017. Impact of chemical vapour deposition plasma inhomogeneity on the spatial variation of sp 2 carbon in boron doped diamond electrodes. Carbon 121 , pp.434-442. (10.1016/j.carbon.2017.06.008)
- Barnard, A. S. and Williams, O. A. 2008. Special Issue on Nanodiamonds [Editorial]. Chemical Vapor Deposition 14 (7-8), pp.141. (10.1002/cvde.200800001)
- Bautze, T. et al., 2014. Superconducting nano-mechanical diamond resonators. Carbon 72 , pp.100-105. (10.1016/j.carbon.2014.01.060)
- Bennett, J. et al. 2024. Inhomogeneities across boron-doped nanocrystalline diamond films. Carbon Trends 15 100353. (10.1016/j.cartre.2024.100353)
- Bijnens, N. et al., 2009. Synthetic diamond films as a platform material for label-free protein sensors. Physica Status Solidi a Applications and Materials Science 206 (3), pp.520-526. (10.1002/pssa.200880485)
- Bland, H. A. et al. 2021. Electropositive nanodiamond-coated quartz microfiber membranes for virus and dye filtration. ACS Applied Nano Materials 4 (3), pp.3252-3261. (10.1021/acsanm.1c00439)
- Bland, H. A. et al. 2019. Superconducting diamond on silicon nitride for device applications. Scientific Reports 9 2911. (10.1038/s41598-019-39707-z)
- Bonnauron, M. et al., 2008. Transparent diamond-on-glass micro-electrode arrays for ex-vivo neuronal study. Physica Status Solidi a Applications and Materials Science 205 (9), pp.2126-2129. (10.1002/pssa.200879733)
- Bose, M. et al., 2022. Low-noise diamond-based D.C. nano-SQUIDs. ACS Applied Electronic Materials 4 (5), pp.2246-2252. (10.1021/acsaelm.2c00048)
- Braunbeck, G. et al., 2018. Effect of ultraprecision polishing techniques on coherence times of shallow nitrogen-vacancy centers in diamond. Diamond and Related Materials 85 , pp.18-22. (10.1016/j.diamond.2018.03.026)
- Christiaens, P. et al., 2007. pH sensitivity of nanocrystalline diamond films. physica status solidi (a) 204 (9), pp.2925-2930. (10.1002/pssa.200776326)
- Cuenca, J. A. et al. 2025. Microwave plasma modelling for thick diamond deposition on III-nitrides. Carbon 241 120349. (10.1016/j.carbon.2025.120349)
- Cuenca, J. A. et al. 2023. Superconducting boron doped nanocrystalline diamond microwave coplanar resonator. Carbon 201 , pp.251-259. (10.1016/j.carbon.2022.08.084)
- Cuenca, J. A. et al. 2020. Dielectric spectroscopy of hydrogen treated hexagonal boron nitride ceramics. ACS Applied Electronic Materials 2 (5), pp.1193-1202. (10.1021/acsaelm.9b00767)
- Cuenca, J. A. et al. 2024. Dielectric properties of diamond using an X-band microwave split dielectric resonator. Carbon 221 118860. (10.1016/j.carbon.2024.118860)
- Cuenca, J. A. et al. 2022. Microwave plasma modelling in clamshell chemical vapour deposition diamond reactors. Diamond and Related Materials 124 108917. (10.1016/j.diamond.2022.108917)
- Cuenca, J. A. et al. 2019. Microwave cavity perturbation of nitrogen doped nano-crystalline diamond films. Carbon 145 , pp.-. (10.1016/j.carbon.2018.12.025)
- Cuenca, J. A. et al. 2021. Thermal stress modelling of diamond on GaN/III-Nitride membranes. Carbon 174 , pp.647-661. (10.1016/j.carbon.2020.11.067)
- Cuenca, J. A. et al. 2015. Investigating the broadband microwave absorption of nanodiamond impurities. IEEE Transactions on Microwave Theory and Techniques 63 (12), pp.4110-4118. (10.1109/TMTT.2015.2495156)
- Cuenca, J. A. et al. 2015. Microwave determination of sp2 carbon fraction in nanodiamond powders. Carbon 81 , pp.174-178. (10.1016/j.carbon.2014.09.046)
- Cuenca, J. A. et al. 2018. Microwave permittivity of trace sp2 carbon impurities in sub-micron diamond powders. ACS Omega 3 (2), pp.2183-2192. (10.1021/acsomega.7b02000)
- Daenen, M. et al., 2006. Seeding, growth and characterization of nanocrystalline diamond films on various substrates. physica status solidi (a) 203 (12), pp.3005-3010. (10.1002/pssa.200671122)
- Daenen, M. et al., 2009. Diamond nucleation by carbon transport from buried nanodiamond TiO2Sol-gel composites. Advanced Materials 21 (6), pp.670-673. (10.1002/adma.200802305)
- Dahlem, F. et al., 2010. Nanocrystalline boron-doped diamond films, a mixture of BCS-like and non-BCS-like superconducting grains. Physica Status Solidi a Applications and Materials Science 207 (9), pp.2064-2068. (10.1002/pssa.201000013)
- Dahlem, F. et al., 2010. Spatially correlated microstructure and superconductivity in polycrystalline boron-doped diamond. Physical Review B: Condensed Matter and Materials Physics 82 (3) 033306. (10.1103/PhysRevB.82.033306)
- Field, D. E. et al., 2020. Crystalline interlayers for reducing the effective thermal boundary resistance in GaN-on-Diamond. ACS Applied Materials and Interfaces 12 (48), pp.54138-54145. (10.1021/acsami.0c10129)
- Frangeskou, A. C. et al., 2018. Pure nanodiamonds for levitated optomechanics in vacuum. New Journal of Physics 20 043016. (10.1088/1367-2630/aab700)
- Gajewski, W. et al., 2009. Electronic and optical properties of boron-doped nanocrystalline diamond films. Physical Review B: Condensed Matter and Materials Physics 79 (4) 045206. (10.1103/PhysRevB.79.045206)
- Garrido, J. A. et al., 2005. pH sensors based on hydrogenated diamond surfaces. Applied Physics Letters 86 (7) 073504. (10.1063/1.1866632)
- Garrido, J. A. et al., 2003. Novel in-plane gate devices on hydrogenated diamond surfaces. physica status solidi (a) 199 (1), pp.56-63. (10.1002/pssa.200303823)
- Gines, L. et al. 2017. Positive zeta potential of nanodiamonds. Nanoscale 9 (34), pp.12549-12555. (10.1039/C7NR03200E)
- Gines, L. et al. 2018. Production of metal-free diamond nanoparticles. ACS Omega 3 (11), pp.16099-16104. (10.1021/acsomega.8b02067)
- Guo, T. et al., 2021. Electrochemistry of nitrogen and boron bi-element incorporated diamond films. Carbon 178 , pp.19-25. (10.1016/j.carbon.2021.02.062)
- Gupta, S. et al., 2008. Ex situ variable angle spectroscopic ellipsometry studies on chemical vapor deposited boron-doped diamond films: Layered structure and modeling aspects. Journal of Applied Physics 104 (7) 073514. (10.1063/1.2990058)
- Gupta, S. , Williams, O. A. and Bohannan, E. 2007. Electrostatic force microscopy studies of boron-doped diamond films. Journal of Materials Research 22 (11), pp.3014-3028. (10.1557/JMR.2007.0229)
- Gupta, S. et al., 2006. Residual stress, intermolecular force, and frictional properties distribution maps of diamond films for micro- and nano-electromechanical (M/NEMS) applications. Journal of Materials Research 21 (12), pp.3037-3046. (10.1557/jmr.2006.0372)
- Hees, J. et al., 2013. Piezoelectric actuated micro-resonators based on the growth of diamond on aluminum nitride thin films. Nanotechnology 24 (2) 025601. (10.1088/0957-4484/24/2/025601)
- Hees, J. et al., 2011. Nanocrystalline diamond nanoelectrode arrays and ensembles. Acs Nano 5 (4), pp.3339-3346. (10.1021/nn2005409)
- Hees, J. , Kriele, A. and Williams, O. A. 2011. Electrostatic self-assembly of diamond nanoparticles. Chemical Physics Letters 509 (1-3), pp.12-15. (10.1016/j.cplett.2011.04.083)
- Hernando, J. et al., 2007. Immobilization of horseradish peroxidase via an amino silane on oxidized ultrananocrystalline diamond. Diamond and Related Materials 16 (1), pp.138-143. (10.1016/j.diamond.2006.04.005)
- Hikavyy, A. et al., 2006. An investigation of structural and electrical properties of boron doped and undoped nanocrystalline diamond films. physica status solidi (a) 203 (12), pp.3021-3027. (10.1002/pssa.200671118)
- Hikavyy, A. et al., 2007. Atomic layer deposition of ZnO thin films on boron-doped nanocrystalline diamond. Diamond and Related Materials 16 (4-7), pp.983-986. (10.1016/j.diamond.2006.11.035)
- Hrabovsky, J. et al., 2023. Laser-patterned boron-doped diamond electrodes with precise control of sp2/sp3 carbon lateral distribution. Applied Surface Science 639 158268. (10.1016/j.apsusc.2023.158268)
- Hutter, N. A. et al., 2010. Microstructured poly(2-oxazoline) bottle-brush brushes on nanocrystalline diamond. Physical Chemistry Chemical Physics 12 (17), pp.4360-4366. (10.1039/b923789p)
- Hutter, N. A. et al., 2011. Nanostructured polymer brushes and protein density gradients on diamond by carbon templating. Soft Matter 7 (10), pp.4861-4867. (10.1039/c1sm05082f)
- Imboden, M. , Williams, O. A. and Mohanty, P. 2013. Nonlinear dissipation in diamond nanoelectromechanical resonators. Applied Physics Letters 102 (10) 103502. (10.1063/1.4794907)
- Imboden, M. , Williams, O. A. and Mohanty, P. 2013. Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing. Nano Letters 13 (9), pp.4014-4019. (10.1021/nl401978p)
- Ji, X. et al., 2025. Thermal boundary resistance reduction by interfacial nanopatterning for GaN-on-diamond electronics applications. ACS Applied Electronic Materials 7 (7), pp.2939–2946. (10.1021/acsaelm.5c00119)
- Klemencic, G. M. et al. 2017. Fluctuation spectroscopy as a probe of granular superconducting diamond films. Physical Review Materials 1 (4) 044801. (10.1103/PhysRevMaterials.1.044801)
- Klemencic, G. M. et al. 2019. Observation of a superconducting glass state in granular superconducting diamond. Scientific Reports 9 4578. (10.1038/s41598-019-40306-1)
- Klemencic, G. M. et al. 2017. Superconductivity in planarised nanocrystalline diamond films. Science and Technology of Advanced Materials 18 (1)(10.1080/14686996.2017.1286223)
- Klemencic, G. et al. 2021. Phase slips and metastability in granular boron-doped nanocrystalline diamond microbridges. Carbon 175 , pp.43-49. (10.1016/j.carbon.2020.12.042)
- Kohn, E. et al., 2006. A new diamond based heterostructure diode. Semiconductor Science and Technology 21 (4), pp.L32-L35. (10.1088/0268-1242/21/4/L02)
- Kriele, A. et al., 2009. Tuneable optical lenses from diamond thin films. Applied Physics Letters 95 (3) 031905. (10.1063/1.3183534)
- Kriele, A. et al., 2011. Formation of nano-pores in nano-crystalline diamond films. Chemical Physics Letters 507 (4-6), pp.253-259. (10.1016/j.cplett.2011.03.089)
- Kromka, A. et al., 2010. Semiconducting to metallic-like boron doping of nanocrystalline diamond films and its effect on osteoblastic cells. Diamond and Related Materials 19 (2-3), pp.190-195. (10.1016/j.diamond.2009.10.003)
- Kulha, P. et al., 2009. Nanocrystalline diamond piezoresistive sensor. Vacuum 84 (1), pp.53-56. (10.1016/j.vacuum.2009.04.023)
- Kummer, K. et al., 2013. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines. Review of Scientific Instruments 84 (3) 035105. (10.1063/1.4794439)
- Kuznetsov, S. et al., 2022. Cerium-doped gadolinium-scandium-aluminum garnet powders: synthesis and use in X-ray luminescent diamond composites. Ceramics International 48 (9), pp.12962-12970. (10.1016/j.ceramint.2022.01.169)
- Lansley, S. P. et al., 2002. Diamond-based 1-D imaging arrays. physica status solidi (a) 193 (3), pp.476-481. (10.1002/1521-396X(200210)193:3<476::AID-PSSA476>3.0.CO;2-1)
- Leigh, W. et al. 2023. Monitoring of the initial stages of diamond growth on aluminum nitride using in situ spectroscopic ellipsometry. ACS Omega 8 (33), pp.30442-30449. (10.1021/acsomega.3c03609)
- Leigh, W. G. et al. 2023. Mapping the effect of substrate temperature inhomogeneity during microwave plasma-enhanced chemical vapour deposition nanocrystalline diamond growth. Carbon 201 , pp.228-337. (10.1016/j.carbon.2022.09.036)
- Leigh, W. G. et al. 2022. In-situ monitoring of microwave plasma-enhanced chemical vapour deposition diamond growth on silicon using spectroscopic ellipsometry. Carbon 202 , pp.204-212. (10.1016/j.carbon.2022.10.049)
- Liao, S. et al., 2024. Boron-doped diamond decorated with metal-organic framework-derived compounds for high-voltage aqueous asymmetric supercapacitors. Carbon 230 119651. (10.1016/j.carbon.2024.119651)
- Lindner, S. et al., 2018. Strongly inhomogeneous distribution of spectral properties of silicon-vacancy color centers in nanodiamonds. New Journal of Physics 20 (11) 115002. (10.1088/1367-2630/aae93f)
- Lindner, S. et al., 2025. Coupling of single nanodiamonds hosting SiV color centers to plasmonic double bowtie microantennas. Nanotechnology 36 (13) 135001. (10.1088/1361-6528/ada9a4)
- Liu, R. et al. 2025. Modulating d33 coefficients through In-Situ AgF and Ag2O growth in PVDF composites for high-performance piezoelectric nanogenerators. Advanced Materials Technologies 2500012. (10.1002/admt.202500012)
- Lloret, F. et al., 2013. Diamond underlayer microstructure effect on the orientation of AlN piezoelectric layers for high frequency SAW resonators by TEM. Microelectronic Engineering 112 , pp.193-197. (10.1016/j.mee.2013.04.007)
- Mandal, S. et al. 2021. Surface zeta potential and diamond growth on gallium oxide single crystal. Carbon 181 , pp.79-86. (10.1016/j.carbon.2021.04.100)
- Mandal, S. et al. 2023. Zeta potential and nanodiamond self assembly assisted diamond growth on lithium niobate and lithium tantalate single crystal. Carbon 212 118160. (10.1016/j.carbon.2023.118160)
- Mandal, S. et al. 2011. The Diamond Superconducting Quantum Interference Device. ACS Nano 5 (9), pp.7144-7148. (10.1021/nn2018396)
- Mandal, S. et al. 2019. Superconducting boron doped nanocrystalline diamond on boron nitride ceramics. Nanoscale 11 (21), pp.10266-10272. (10.1039/C9NR02729G)
- Mandal, S. et al. 2010. Detailed study of superconductivity in nanostructured nanocrystalline boron doped diamond thin films. Physica Status Solidi a Applications and Materials Science 207 (9), pp.2017-2022. (10.1002/pssa.201000008)
- Mandal, S. et al. 2010. Nanostructures made from superconducting boron-doped diamond. Nanotechnology 21 (19) 195303. (10.1088/0957-4484/21/19/195303)
- Mandal, S. , Shaw, G. and Williams, O. A. 2022. Comparison of nanodiamond coated quartz filter with commercial electropositive filters: Zeta potential and dye retention study. Carbon 199 , pp.439-443. (10.1016/j.carbon.2022.08.021)
- Mandal, S. et al. 2018. Redox agent enhanced chemical mechanical polishing of thin film diamond. Carbon 130 , pp.25-30. (10.1016/j.carbon.2017.12.077)
- Mandal, S. et al. 2016. Chemical nucleation of diamond films. ACS Applied Materials and Interfaces 8 (39), pp.26220-26225. (10.1021/acsami.6b08286)
- Mandal, S. et al. 2017. Surface zeta potential and diamond seeding on gallium nitride films. ACS Omega 2 (10), pp.7275-7280. (10.1021/acsomega.7b01069)
- Mandal, S. et al. 2019. Thick, adherent diamond films on AlN with low thermal barrier resistance. ACS Applied Materials and Interfaces 11 (43), pp.40826-40834. (10.1021/acsami.9b13869)
- Manifold, S. A. et al. 2021. Contact resistance of various metallisation schemes to superconducting boron doped diamond between 1.9 and 300 K. Carbon 179 , pp.13-19. (10.1016/j.carbon.2021.02.079)
- March, J. E. et al., 2023. Long spin coherence and relaxation times in nanodiamonds milled from polycrystalline 12C diamond. Physical Review Applied 20 (4) 044045. (10.1103/PhysRevApplied.20.044045)
- Mareš, J. J. et al., 2006. Weak localization in ultrananocrystalline diamond. Applied Physics Letters 88 (9) 092107. (10.1063/1.2176853)
- Martyanov, A. et al., 2024. Diamond seed dependent luminescence properties of CVD diamond composite. Carbon 222 118975. (10.1016/j.carbon.2024.118975)
- Mer, C. et al., 2004. An insight into neutron detection from polycrystalline CVD diamond films. Diamond and Related Materials 13 (4-8), pp.791-795. (10.1016/j.diamond.2003.11.024)
- Michaelson, S. et al., 2007. Hydrogen concentration and bonding configuration in polycrystalline diamond films: From micro-to nanometric grain size. Journal of Applied Physics 102 (11) 113516. (10.1063/1.2818372)
- Michaelson, S. et al., 2007. Hydrogen concentration and bonding in nano-diamond films of varying grain sizes grown by different chemical vapor deposition methods. physica status solidi (a) 204 (9), pp.2860-2867. (10.1002/pssa.200776302)
- Michaelson, S. et al., 2007. Hydrogen bonding at grain surfaces and boundaries of nanodiamond films detected by high resolution electron energy loss spectroscopy. Applied Physics Letters 91 (10) 103104. (10.1063/1.2779848)
- Michaelson, S. et al., 2010. Bulk and surface thermal stability of ultra nanocrystalline diamond films with 10-30 nm grain size prepared by chemical vapor deposition. Journal of Applied Physics 107 (9) 093521. (10.1063/1.3359714)
- Mortet, V. , Williams, O. A. and Haenen, K. 2008. Diamond: a material for acoustic devices. Physica Status Solidi a Applications and Materials Science 205 (5), pp.1009-1020. (10.1002/pssa.200777502)
- Nebel, C. E. et al., 2002. Low temperature properties of the p-type surface conductivity of diamond. Diamond and Related Materials 11 (3-6), pp.351-354. (10.1016/S0925-9635(01)00586-6)
- Nebel, C. E. et al., 2001. Hydrogen-induced transport properties of holes in diamond surface layers. Applied Physics Letters 79 (27), pp.4541-4543. (10.1063/1.1429756)
- Nebel, C. E. et al., 2009. Diamond nano-wires, a new approach towards next generation electrochemical gene sensor platforms. Diamond and Related Materials 18 (5-8), pp.910-917. (10.1016/j.diamond.2008.11.024)
- Nesladek, M. et al., 2006. Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films. Diamond and Related Materials 15 (4-8), pp.607-613. (10.1016/j.diamond.2005.11.001)
- Pascoe, M. J. et al. 2022. Impact of material properties in determining quaternary ammonium compound adsorption and wipe product efficacy against biofilms. Journal of Hospital Infection 126 , pp.37-43. (10.1016/j.jhin.2022.03.013)
- Poghossian, A. et al., 2008. Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors. Journal of Contemporary Physics (Armenian Academy of Sciences) 43 (2), pp.77-81.
- Poghossian, A. et al., 2009. Nanocrystalline-diamond thin films with high pH and penicillin sensitivity prepared on a capacitive Si-SiO2 structure. Electrochimica Acta 54 (25), pp.5981-5985. (10.1016/j.electacta.2009.03.011)
- Pope, I. et al. 2014. Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds. Nature Nanotechnology 9 (11), pp.940-946. (10.1038/nnano.2014.210)
- Reitinger, A. A. et al., 2013. Functional polymer brushes on diamond as a platform for immobilization and electrical wiring of biomolecules. Advanced Functional Materials 23 (23), pp.2979-2986. (10.1002/adfm.201202342)
- Richter, J. et al., 2016. CO2 laser micromachining of nanocrystalline diamond films grown on doped silicon substrates. Optical Materials Express 6 (12), pp.3916-3926. (10.1364/OME.6.003916)
- Rodríguez-Madrid, J. G. et al., 2012. Optimization of AlN thin layers on diamond substrates for high frequency SAW resonators. Materials Letters 66 (1), pp.339-342. (10.1016/j.matlet.2011.09.003)
- Rodriguez-Madrid, J. G. et al., 2012. Super-High-Frequency SAW Resonators on AlN/Diamond. IEEE Electron Device Letters 33 (4), pp.495-497. (10.1109/LED.2012.2183851)
- Rodríguez-Madrid, J. et al., 2013. High precision pressure sensors based on SAW devices in the GHz range. Sensors and Actuators A: Physical 189 , pp.364-369. (10.1016/j.sna.2012.09.012)
- Rovere, M. et al., 2006. Low temperature electron spin resonance investigation of ultrananocrystalline diamond films as a function of nitrogen content. Diamond and Related Materials 15 (11-12), pp.1913-1916. (10.1016/j.diamond.2006.07.013)
- Salman, M. et al. 2019. Quantitative analysis of the interaction between a dc SQUID and an integrated micromechanical doubly clamped cantilever. Journal of Applied Physics 125 (22) 224503. (10.1063/1.5090958)
- Sauerer, C. et al., 2001. Low temperature surface conductivity of hydrogenated diamond. physica status solidi (a) 186 (2), pp.241-247. (10.1002/1521-396X(200108)186:2<241::AID-PSSA241>3.0.CO;2-1)
- Sedov, V. et al., 2021. CVD synthesis of multi-layered polycrystalline diamond films with reduced roughness using time-limited injections of N2 gas. Diamond and Related Materials 114 108333. (10.1016/j.diamond.2021.108333)
- Shames, A. I. et al., 2007. Defects localization and nature in bulk and thin film utrananocrystalline diamond. Diamond and Related Materials 16 (10), pp.1806-1812. (10.1016/j.diamond.2007.08.026)
- Sillero, E. et al., 2009. Static and dynamic determination of the mechanical properties of nanocrystalline diamond micromachined structures. Journal of Micromechanics and Microengineering 19 (11) 115016. (10.1088/0960-1317/19/11/115016)
- Sinusía Lozano, M. et al., 2019. Giant reflection coefficient on Sc 0.26 Al 0.74 N polycrystalline diamond surface acoustic wave resonators. physica status solidi (a) 216 (20) 1900360. (10.1002/pssa.201900360)
- Sinusia Lozano, M. et al., 2022. SAW resonators and filters based on Sc0.43Al0.57N on single crystal and polycrystalline diamond. Micromachines 13 (7) 1061. (10.3390/mi13071061)
- Slocombe, D. R. et al. 2013. Microwave properties of nanodiamond particles. Applied Physics Letters 102 (24) 244102. (10.1063/1.4809823)
- Smirnov, W. et al., 2010. Anisotropic etching of diamond by molten Ni particles. Applied Physics Letters 97 (7) 073117. (10.1063/1.3480602)
- Smirnov, W. et al., 2011. Diamond-Modified AFM Probes: From Diamond Nanowires to Atomic Force Microscopy-Integrated Boron-Doped Diamond Electrodes. Analytical Chemistry 83 (12), pp.4936-4941. (10.1021/ac200659e)
- Smisdom, N. et al., 2009. Chinese hamster ovary cell viability on hydrogen and oxygen terminated nano- and microcrystalline diamond surfaces. Physica Status Solidi a Applications and Materials Science 206 (9), pp.2042-2047. (10.1002/pssa.200982206)
- Smith, M. D. et al., 2020. GaN-on-diamond technology platform: bonding-free membrane manufacturing process. AIP Advances 10 (3) 035306. (10.1063/1.5129229)
- Snidero, E. et al., 2003. Influence of the postplasma process conditions on the surface conductivity of hydrogenated diamond surfaces. Journal of Applied Physics 93 (5), pp.2700-2704. (10.1063/1.1539922)
- Sow, M. et al., 2025. Millikelvin intracellular nanothermometry with nanodiamonds. Advanced Science 12 (45) e11670. (10.1002/advs.202511670)
- Sow, M. et al., 2020. High-throughput nitrogen-vacancy center imaging for nanodiamond photophysical characterization and pH nanosensing. Nanoscale 12 (42), pp.21821-21821. (10.1039/D0NR05931E)
- Specht, C. G. et al., 2005. Erratum to ‘Ordered growth of neurons on diamond’: [Biomaterials 25 (2004) 4073–4078] [Erratum]. Biomaterials 26 (7), pp.828. (10.1016/j.biomaterials.2004.06.022)
- Specht, C. G. et al., 2004. Ordered growth of neurons on diamond. Biomaterials 25 (18), pp.4073-4078. (10.1016/j.biomaterials.2003.11.006)
- Stritt, J. et al. 2024. Development of long-range conductivity mechanisms in glass-like carbon. Carbon 223 119027. (10.1016/j.carbon.2024.119027)
- Sumant, A. V. et al., 2014. MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films. MRS Bulletin- Materials Research Society 39 (6), pp.511-516. (10.1557/mrs.2014.98)
- Szirmai, P. et al., 2013. Observation of conduction electron spin resonance in boron-doped diamond. Physical Review B 87 (19) 195132. (10.1103/PhysRevB.87.195132)
- Szirmai, P. et al., 2012. A detailed analysis of the Raman spectra in superconducting boron doped nanocrystalline diamond. Physica Status Solidi B Basic Research 249 (12), pp.2656-2659. (10.1002/pssb.201200461)
- Thomas, E. et al. 2018. A simple, space constrained NIRIM type reactor for chemical vapour deposition of diamond. AIP Advances 8 035325. (10.1063/1.5009182)
- Thomas, E. et al. 2017. Spectroscopic ellipsometry of nanocrystalline diamond film growth. ACS Omega 2 (10), pp.6715-6727. (10.1021/acsomega.7b00866)
- Thomas, E. L. H. et al. 2014. Silica based polishing of {100} and {111} single crystal diamond. Science and Technology of Advanced Materials 15 (3), pp.1-7. 035013. (10.1088/1468-6996/15/3/035013)
- Thomas, E. L. H. et al. 2014. Chemical mechanical polishing of thin film diamond. Carbon 68 , pp.473-479. (10.1016/j.carbon.2013.11.023)
- Thomas, E. L. H. et al. 2023. Polycrystalline diamond micro‐hotplates. Small 19 (48) 2303976. (10.1002/smll.202303976)
- Titova, N. et al., 2017. Slow electron-phonon cooling in superconducting diamond films. IEEE Transactions on Applied Superconductivity 27 (4) 7501104. (10.1109/TASC.2016.2638199)
- Vermeeren, V. et al., 2007. Towards a real-time, label-free, diamond-based DNA sensorle. Langmuir 23 (26), pp.13193-13202. (10.1021/la702143d)
- Vermeeren, V. et al., 2008. Topographical and functional characterization of the ssDNA probe layer generated through EDC-mediated covalent attachment to nanocrystalline diamond using fluorescence microscopy. Langmuir 24 (16), pp.9125-9134. (10.1021/la800946v)
- Villar, M. P. et al., 2009. A microstructural study of superconductive nanocrystalline diamond. Physica Status Solidi a Applications and Materials Science 206 (9), pp.1986-1990. (10.1002/pssa.200982224)
- Wenmackers, S. et al., 2008. Structural and optical properties of DNA layers covalently attached to diamond surfaces. Langmuir 24 (14), pp.7269-7277. (10.1021/la800464p)
- Werrell, J. et al. 2017. Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Science and Technology of Advanced Materials 18 (1), pp.654-663. (10.1080/14686996.2017.1366815.)
- Willems, B. L. et al., 2009. Intrinsic granularity in nanocrystalline boron-doped diamond films measured by scanning tunneling microscopy. Physical Review B: Condensed Matter and Materials Physics 80 (22) 224518. (10.1103/PhysRevB.80.224518)
- Willems, B. L. et al., 2009. Negative magnetoresistance in boron-doped nanocrystalline diamond films. Journal of Applied Physics 106 (3) 033711. (10.1063/1.3195045)
- Williams, O. A. , Mandal, S. and Cuenca, J. A. 2024. Heterogeneous integration of diamond. Accounts of Materials Research (10.1021/accountsmr.4c00126)
- Williams, O. A. 2011. Nanocrystalline diamond. Diamond and Related Materials 20 (5-6), pp.621-640. (10.1016/j.diamond.2011.02.015)
- Williams, O. A. 2006. Ultrananocrystalline diamond for electronic applications. Semiconductor Science and Technology 21 (8), pp.R49-R56. (10.1088/0268-1242/21/8/R01)
- Williams, O. A. et al. 2004. n-type conductivity in ultrananocrystalline diamond films. Applied Physics Letters 85 (10), pp.1680-1682. (10.1063/1.1785288)
- Williams, O. A. et al. 2004. Publisher’s Note: “n-type conductivity in ultrananocrystalline diamond films” [Appl. Phys. Lett. 85, 1680 (2004)] [Erratum]. Applied Physics Letters 85 (21), pp.5106. (10.1063/1.1829716)
- Williams, O. A. et al. 2006. Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diamond and Related Materials 15 (4-8), pp.654-658. (10.1016/j.diamond.2005.12.009)
- Williams, O. A. et al. 2007. Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chemical Physics Letters 445 (4-6), pp.255-258. (10.1016/j.cplett.2007.07.091)
- Williams, O. A. et al. 2010. Size-dependent reactivity of diamond nanoparticles. Acs Nano 4 (8), pp.4824-4830. (10.1021/nn100748k)
- Williams, O. A. and Jackman, R. B. 2004. Diamond growth on hot-filament chemically vapour-deposited diamond for surface conductive device applications. Diamond and Related Materials 13 (1), pp.166-169. (10.1016/j.diamond.2003.10.033)
- Williams, O. A. and Jackman, R. B. 2004. High growth rate MWPECVD of single crystal diamond. Diamond and Related Materials 13 (4-8), pp.557-560. (10.1016/j.diamond.2004.01.023)
- Williams, O. A. and Jackman, R. B. 2004. Homoepitaxial diamond growth for the control of surface conductive carrier transport properties. Journal of Applied Physics 96 (7), pp.3742-3747. (10.1063/1.1789275)
- Williams, O. A. and Jackman, R. B. 2004. Homoepitaxial growth for surface conductive device applications. Diamond and Related Materials 13 (2), pp.325-328. (10.1016/j.diamond.2003.11.004)
- Williams, O. A. and Jackman, R. B. 2003. Surface conductivity on hydrogen terminated diamond. Semiconductor Science and Technology 18 (3), pp.S34-S40. (10.1088/0268-1242/18/3/305)
- Williams, O. A. et al. 2002. Black diamond: a new material for active electronic devices. Diamond and Related Materials 11 (3-6), pp.396-399. (10.1016/S0925-9635(02)00024-9)
- Williams, O. A. et al. 2003. High carrier mobilities in black diamond. Semiconductor Science and Technology 18 (3), pp.S77-S80. (10.1088/0268-1242/18/3/311)
- Williams, O. A. , Jackman, R. B. and Nebel, C. E. 2002. Hydrogenated black diamond: An electrical study. physica status solidi (a) 193 (3), pp.577-584. (10.1002/1521-396X(200210)193:3<577::AID-PSSA577>3.0.CO;2-U)
- Williams, O. A. et al. 2010. High Young's modulus in ultra thin nanocrystalline diamond. Chemical Physics Letters 495 (1-3), pp.84-89. (10.1016/j.cplett.2010.06.054)
- Williams, O. A. et al. 2007. Nanocrystalline diamond enhanced thickness shear mode resonator. Applied Physics Letters 90 (6) 063514. (10.1063/1.2471649)
- Williams, O. A. et al. 2009. The Diamond Nano-Balance. Journal of Nanoscience and Nanotechnology 9 (6), pp.3483-3486. (10.1166/jnn.2009.NS20)
- Williams, O. A. and Nesladek, M. 2006. Growth and properties of nanocrystalline diamond films. physica status solidi (a) 203 (13), pp.3375-3386. (10.1002/pssa.200671406)
- Williams, O. A. et al. 2008. Growth, electronic properties and applications of nanodiamond. Diamond and Related Materials 17 (7-10), pp.1080-1088. (10.1016/j.diamond.2008.01.103)
- Williams, O. A. et al. 2001. Carrier generation within the surface region of hydrogenated thin film polycrystalline diamond. Diamond and Related Materials 10 (3-7), pp.423-428. (10.1016/S0925-9635(00)00556-2)
- Williams, O. A. et al. 2001. Formation of shallow acceptor states in the surface region of thin film diamond. Applied Physics Letters 78 (22), pp.3460-3462. (10.1063/1.1345806)
- Wolfer, M. et al., 2009. Nickel doping of nitrogen enriched CVD-diamond for the production of single photon emitters. Physica Status Solidi a Applications and Materials Science 206 (9), pp.2012-2015. (10.1002/pssa.200982231)
- Wolfer, M. et al., 2010. Doping of single crystalline diamond with nickel. Physica Status Solidi a Applications and Materials Science 207 (9), pp.2054-2057. (10.1002/pssa.201000364)
- Wood, B. D. et al., 2022. Long spin coherence times of nitrogen vacancy centers in milled nanodiamonds. Physical Review B 105 (20) 205401. (10.1103/PhysRevB.105.205401)
- Yang, N. et al., 2009. Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Physica Status Solidi a Applications and Materials Science 206 (9), pp.2048-2056. (10.1002/pssa.200982222)
- Ye, H. et al., 2002. Electrical conduction in polycrystalline CVD diamond: Temperature dependent impedance measurements. physica status solidi (a) 193 (3), pp.462-469. (10.1002/1521-396X(200210)193:3<462::AID-PSSA462>3.0.CO;2-L)
- Ye, H. T. , Williams, O. A. and Jackman, R. B. 2002. Measurement of electrical activation energy in black CVD diamond using impedance spectroscopy. International Journal of Modern Physics B 16 (28-29), pp.4487-4492. (10.1142/S0217979202015674)
- Yu, S. et al., 2018. Battery-like supercapacitors from vertically aligned carbon nanofiber coated diamond: design and demonstrator. Advanced Energy Materials 8 (12) 1702947. (10.1002/aenm.201702947)
- Yu, S. et al., 2017. Battery-like supercapacitors from diamond networks and water-soluble redox electrolytes. Journal of Materials Chemistry A 5 (4), pp.1778-1785. (10.1039/C6TA08607A)
- Yu, S. et al., 2015. Electrochemical supercapacitors from diamond. Journal of Physical Chemistry C 119 (33), pp.18918-18926. (10.1021/acs.jpcc.5b04719)
- Yuan, M. et al., 2024. Generation of GHz surface acoustic waves in (Sc,Al)N thin films grown on free-standing polycrystalline diamond wafers by plasma-assisted molecular beam epitaxy. Journal of Physics D: Applied Physics 57 (49) 495103. (10.1088/1361-6463/ad76ba)
- Zelenský, M. et al., 2023. Chem-mechanical polishing influenced morphology, spectral and electrochemical characteristics of boron doped diamond. Carbon 203 , pp.363-376. (10.1016/j.carbon.2022.11.069)
- Zimmer, A. et al., 2008. Optical properties of heavily boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry. Applied Physics Letters 93 (13) 131910. (10.1063/1.2990679)
- Zimmermann, T. et al., 2005. Ultra-nano-crystalline/single crystal diamond heterostructure diode. Diamond and Related Materials 14 (3-7), pp.416-420. (10.1016/j.diamond.2004.12.049)
Book sections
- Mandal, S. et al. 2019. Chemical mechanical polishing of nanocrystalline diamond. In: Yang, N. ed. Novel Aspects of Diamond: From Growth to Applications. Vol. 121, Topics in Applied Physics Chem: Springer. , pp.53-89. (10.1007/978-3-030-12469-4_3)
- Williams, O. A. and Bergonzo, P. 2024. Introduction. In: Mandal, S. and Yang, N. eds. Novel Aspects of Diamond II. Vol. 149, Topics in Applied Physics SPRINGER-VERLAG BERLIN. , pp.1-3. (10.1007/978-3-031-47556-6_1)
Conferences
- Abouzar, M. et al., 2008. Field effect sensor on nanocristalline diamond base. Presented at: 14th Expert Meeting on Sensors and Measurement Systems Ludwigsburg, Germany 11-12 March 2008. Sensoren und messsysteme. VDI-Berichte Vol. 2011. Düsseldorf: VDI-Verl.. , pp.549-558.
- Bennett, A. et al., 2007. Diamond based ion-sensitive field effect transistors for cellular biosensing. Presented at: 2006 MRS Fall Meeting Boston, MA, USA 27 November - 1 December 2006. Symposium J – Diamond Electronics—Fundamentals to Applications. MRS Proceedings Vol. 956. Cambridge: Cambridge University Press. , pp.221-227. (10.1557/PROC-0956-J16-03)
- Christiaens, P. et al., 2007. Nanocrystalline diamond-based field-effect capacitive pH sensor. Presented at: TRANSDUCERS '07 & EUROSENSORS XXI: International Solid-State Sensors, Actuators and Microsystems Conference 2007 Lyon, France 10-14 June 2007. Proceedings: TRANSDUCERS 2007: International Solid-State Sensors, Actuators and Microsystems Conference 2007. Los Alamitos, CA: IEEE. , pp.1891-1894. (10.1109/SENSOR.2007.4300527)
- Cuenca, J. et al. 2014. Broadband microwave measurements of nanodiamond. Presented at: Microwave Conference (APMC), 2014 Asia-Pacific Sendai, Japan 4-7 Nov 2014. Microwave Conference (APMC), 2014 Asia-Pacific. , pp.1-3.
- Cuenca, J. A. et al. 2023. Modelling deposition uniformity in microwave plasma cvd diamond over 2" Si wafers. Presented at: 2022 Asia-Pacific Microwave Conference (APMC) Yokohama, Japan 29 November - 02 December 2022. 2022 Asia-Pacific Microwave Conference (APMC). IEEE. (10.23919/APMC55665.2022.9999754)
- Cuenca, J. A. et al. 2023. Microwave conductivity of boron-doped nanodiamond particles. Presented at: 2022 Asia-Pacific Microwave Conference (APMC) Yokohama, Japan 29 November - 02 December 2022. 2022 Asia-Pacific Microwave Conference (APMC). IEEE. (10.23919/APMC55665.2022.9999762)
- Panduranga, P. et al., 2019. Hybrid diamond/silicon suspended integrated photonic platform using SF6 isotropic etching. Presented at: 2nd IEEE British and Irish Conference on Optics and Photonics (BICOP 2019) London, England 11-13 December 2019. 2019 IEEE 2nd British and Irish Conference on Optics and Photonics (BICOP). IEEE. , pp.1-4. (10.1109/BICOP48819.2019.9059586)
- Williams, O. A. , Daenen, M. and Haenen, K. 2007. Biological applications of nanocrystalline diamond. Presented at: 2006 MRS Fall Meeting Boston, MA, USA 27 November - 1 December 2006. Symposium J – Diamond Electronics—Fundamentals to Applications. MRS Proceedings Vol. 956. Cambridge: Cambridge University Press. , pp.121-125. (10.1557/PROC-0956-J05-01)
- Williams, O. A. et al. 2005. Electronic properties and applications of ultrananocrystalline diamond. Presented at: NATO Advanced Research Workshop on Synthesis, Properties and Applications of Ultrananocrystalline Diamond St. Petersburg, Russia 7-10 June 2004. Published in: Gruen, D. M. , Shenderova, O. A. and Vul’, A. Y. eds. Synthesis, Properties and Applications of Ultrananocrystalline Diamond. NATO Science Series Vol. 192/IV. Dordrecht: Springer. , pp.373-382. (10.1007/1-4020-3322-2_31)
Research
I am interested in all applications of diamond from Microelectromechanical Systems to single photon sources. I focus on the growth and processing technology of diamond to realise these devices for collaborators from Boston University through Institute Neel in Grenoble to the Nanocarbon Research Institute in Japan.
I mostly work on nanodiamond, both films and particles. I have several patents on the growth of nanocrystalline diamond films and the purification of diamond nanoparticles.
Cardiff Diamond Foundry has extensive facilities in these areas, ranging from high power Microwave Plasma Chemical Vapour Deposition systems, through custom high vacuum furnaces to Chemical Mechanical Polishing.
For more information on my current research activities, please visit:
www.cardiffdiamondfoundry.com
Teaching
- PX 3242 - Semiconductor Devices and Applications
- 4th year project supervision
- Module leader of "Devices & Fabrication" DST-CDT Module 7 of the EPSRC Centre for Doctoral Training in Diamond Technology
Biography
Professional memberships
- Fellow of the Institute of Physics
- Associate editor of Elsevier “Diamond and Related Materials”.
- EPSRC Peer Review College Member
- Member of FWO WC&T3 Experts Panel (Belgium Research Council's CMP elected panel)
Supervisions
Current supervision
Jaspa Stritt
Scott Manifold
Contact Details
+44 29208 74978
Queen's Buildings - North Building, Room N/1.33, 5 The Parade, Newport Road, Cardiff, CF24 3AA