Dr Jonathan Bartley
Darllenydd mewn Cemeg Gorfforol
- Ar gael fel goruchwyliwr ôl-raddedig
Trosolwyg
Research Group: Heterogeneous Catalysis See Also: Cardiff Catalysis Institute and http://novacam.eu/ Exploring new methods for synthesising metal oxides and mixed metal oxides for use as catalysts and supports that will give improved catalyst performance. A number of methodologies for preparing catalysts have been developed such as: For more information, click on the 'Research' tab above. CH2118 Energy Resources and Materials CH2310 Catalysis and Electrocatalysis CH3407 Advanced Materials CHT217 Catalysis Design Study CHT219 Preparation and Evaluation of Heterogeneous CatalystsLinks
Research Interests
Teaching
Cyhoeddiad
2024
- Ferreira, G. F., Ríos Pinto, L. F., Filho, R. M., Fregolente, L. V., Hayward, J. S. and Bartley, J. K. 2024. A comparison of monoglyceride production from microalgaelipids and rapeseed oil catalyzed by metal oxides. Chemistry-Sustainability-Energy-Materials, article number: e202400953. (10.1002/cssc.202400953)
- Wallace, W. T., Hayward, J. S., Marsh, A. R. and Bartley, J. K. 2024. The antisolvent precipitation of CuZnOx mixed oxide materials using a choline chloride-urea deep eutectic solvent. Molecules 29(14), article number: 3357. (10.3390/molecules29143357)
- Sun, J., Hayward, J. S., Barter, M., Slocombe, D. R. and Bartley, J. K. 2024. Designing heterogeneous catalysts for microwave assisted selective oxygenation. ChemCatChem, article number: e202301586. (10.1002/cctc.202301586)
2023
- Evans, C. D., Bartley, J. K., Taylor, S. H., Hutchings, G. J. and Kondrat, S. A. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153, pp. 2026-2035. (10.1007/s10562-022-04111-2)
2022
- Pudge, G. J. F., Hutchings, G. J., Kondrat, S. A., Morrison, K., Perkins, E. F., Rushby, A. V. and Bartley, J. K. 2022. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science & Technology 12, pp. 4552-4560. (10.1039/D2CY00699E)
- Douthwaite, M., Zhang, B., Iqbal, S., Miedziak, P. J., Bartley, J. K., Willock, D. J. and Hutchings, G. J. 2022. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications 164, article number: 106430. (10.1016/j.catcom.2022.106430)
2021
- Wallace, W. T., Hayward, J. S., Ho, C., Marsh, A. R., Tariq, A. and Bartley, J. K. 2021. Triethylamine-water as a switchable solvent for the synthesis of Cu/ZnO catalysts for carbon dioxide hydrogenation to methanol. Topics in Catalysis 64, pp. 984-991. (10.1007/s11244-021-01457-6)
- Bartley, J. K., Dimitratos, N., Edwards, J. K., Kiely, C. J. and Taylor, S. H. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11(10), pp. 5916-5933. (10.1021/acscatal.1c00569)
2019
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36, pp. 15-24. (10.1016/j.jechem.2019.01.015)
- Hirayama, J. et al. 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123(13), pp. 7879-7888. (10.1021/acs.jpcc.8b07108)
2018
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317, pp. 12-20. (10.1016/j.cattod.2018.03.046)
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4(1), pp. 12-23. (10.1080/2055074X.2018.1433598)
2017
- Ivars-Barceló, F. et al. 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354, pp. 236-249. (10.1016/j.jcat.2017.08.020)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9(9), pp. 1621-1631. (10.1002/cctc.201601603)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197, pp. 287-307. (10.1039/C6FD00202A)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8(3), pp. 2436-2447. (10.1039/C6SC04130B)
- Ishikawa, S. et al. 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19(1), pp. 225-236. (10.1039/C6GC02598F)
2016
- Iqbal, S. et al. 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275, pp. 35-39. (10.1016/j.cattod.2015.09.041)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188, pp. 427-450. (10.1039/C5FD00187K)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648, pp. 163-169. (10.1016/j.susc.2015.11.010)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6(15), pp. 6022-6030. (10.1039/C6CY00382F)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272, pp. 74-79. (10.1016/j.cattod.2016.04.012)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531, pp. 83-87. (10.1038/nature16935)
2015
- Marin, R. P. et al. 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504, pp. 62-73. (10.1016/j.apcata.2015.02.023)
- Alhumaimess, M., Lin, Z., Dummer, N., Taylor, S. H., Hutchings, G. J. and Bartley, J. K. 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6, pp. 2910-2917. (10.1039/C5CY01260K)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5(6), pp. 3575-3587. (10.1021/acscatal.5b00480)
- Whiting, G. T. et al. 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5(2), pp. 637-644. (10.1021/cs501728r)
2014
- Whiting, G. T., Bartley, J. K., Dummer, N. F., Hutchings, G. J. and Taylor, S. H. 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485, pp. 51-57. (10.1016/j.apcata.2014.07.029)
- Marin, R. P. et al. 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4(7), pp. 1970-1978. (10.1039/c4cy00044g)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20(6), pp. 1701-1710. (10.1002/chem.201303355)
2013
- Behera, G. C. et al. 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3(6), pp. 1558-64. (10.1039/c3cy20801j)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3(4), pp. 764-772. (10.1021/cs4000359)
- Marin, R. P. et al. 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140, pp. 671-679. (10.1016/j.apcatb.2013.04.076)
2012
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164, pp. 207-213. (10.1016/j.micromeso.2012.05.001)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296, pp. 56-64. (10.1016/j.jcat.2012.09.001)
- Bartley, J. K., Xu, C., Lloyd, R., Enache, D. I., Knight, D. W. and Hutchings, G. J. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128, pp. 31-38. (10.1016/j.apcatb.2012.03.036)
- Bartley, J. K., Taylor, S. H., Hutchings, G. J., Dummer, N. and Lin, Z. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737 [Patent].
- Fan, X., Dummer, N., Taylor, S. H., Bartley, J. K. and Hutchings, G. J. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183(1), pp. 52-57. (10.1016/j.cattod.2011.08.030)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2(1), pp. 105-112. (10.1039/c1cy00299f)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5(1), pp. 125-131. (10.1002/cssc.201100374)
- Pradhan, S., Bartley, J. K., Bethell, D., Golunski, S. E. and Hutchings, G. J. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142(3), pp. 302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4(2), pp. 134-139. (10.1038/nchem.1245)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142(9), pp. 1049-1056. (10.1007/s10562-012-0869-2)
- Pradhan, S., Lloyd, R., Bartley, J. K., Bethell, D., Golunski, S. E., Jenkins, R. L. and Hutchings, G. J. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3(10), pp. 2958-2964. (10.1039/c2sc20683h)
2011
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281(2), pp. 279-289. (10.1016/j.jcat.2011.05.012)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13(7), pp. 2528-2538. (10.1039/c0cp01852j)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283(2), pp. 161-167. (10.1016/j.jcat.2011.08.003)
- Taufiq-Yap, Y. H., Goh, C. K., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141(3), pp. 400-407. (10.1007/s10562-010-0508-8)
- Weng, W. et al. 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21(40), pp. 16136-16146. (10.1039/c1jm12456k)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1(5), pp. 740-746. (10.1039/c1cy00064k)
- Taufiq-Yap, Y., Asrina, S. N., Hutchings, G., Dummer, N. and Bartley, J. 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20(6), pp. 635-638. (10.1016/S1003-9953(10)60251-4)
2010
- Lin, Z., Weng, W., Kiely, C. J., Dummer, N., Bartley, J. K. and Hutchings, G. J. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157(1-4), pp. 211-216. (10.1016/j.cattod.2010.03.013)
- Myakonkaya, O. et al. 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350(2), pp. 443-445. (10.1016/j.jcis.2010.06.064)
- Xu, C., Enache, D., Lloyd, R., Knight, D. W., Bartley, J. K. and Hutchings, G. J. 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138(1-2), pp. 1-7. (10.1007/s10562-010-0365-5)
- Dummer, N., Weng, W., Kiely, C., Carley, A. F., Bartley, J. K., Kiely, C. J. and Hutchings, G. J. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376(1-2), pp. 47-55. (10.1016/j.apcata.2009.10.004)
- Al Otaibi, R., Weng, W., Bartley, J. K., Dummer, N., Kiely, C. J. and Hutchings, G. J. 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2(4), pp. 443-452. (10.1002/cctc.200900274)
- Taufiq-Yap, Y., Theam, K. L., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28(10), pp. 997-1012. (10.1080/10916460903058004)
- Myakonkaya, O. et al. 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3(3), pp. 339-341. (10.1002/cssc.200900280)
- Sithamparappillai, U., Nuno, J. L., Dummer, N., Weng, W., Kiely, C. J., Bartley, J. K. and Hutchings, G. J. 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20(25), pp. 5310-5318. (10.1039/c0jm00403k)
- Weng, W., Al Otaibi, R., Dummer, N., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16(S2), pp. 1198-1199. (10.1017/S1431927610059805)
- Bartley, J. K., Hargreaves, J. S. J., Hutchings, G. J., Rico, J. L., Taylor, S. H., Wells, R. . P. K. and Willock, D. J. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons, (10.1002/0471227617.eoc139.pub2)
2009
- Taufiq-Yap, Y. H., Goh, C. K., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130(3-4), pp. 327-334. (10.1007/s10562-009-0003-2)
- Weng, W., Dummer, N., Carley, A. F., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15(SUPPL.), pp. 1412-1413. (10.1017/S1431927609092332)
- Weng, W., Lin, Z., Dummer, N., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15(SUPPL.), pp. 1438-1439. (10.1017/S1431927609094203)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19(45), pp. 8619-8627. (10.1039/b911102f)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1(2), pp. 247-251. (10.1002/cctc.200900195)
2008
- Goh, C. K., Taufiq-Yap, Y. H., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131(1-4), pp. 408-412. (10.1016/j.cattod.2007.10.059)
- Xu, C., Bartley, J. K., Enache, D. I., Knight, D. W., Lunn, M., Lok, M. and Hutchings, G. J. 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49(15), pp. 2454-2456. (10.1016/j.tetlet.2008.02.030)
2007
- Tang, Z. et al. 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249(2), pp. 208-219. (10.1016/j.jcat.2007.04.016)
- Herzing, A. A. et al. 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13, pp. 102-103. (10.1017/S143192760707660X)
2006
- Conte, M. et al. 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313(5791), pp. 1270-1273. (10.1126/science.1130493)
- Tang, Z., Bartley, J. K., Taylor, S. H. and Hutchings, G. J. 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162, pp. 219-226. (10.1016/S0167-2991(06)80910-9)
- Song, N., Xuan, Z., Bartley, J. K., Taylor, S. H., Chadwick, D. and Hutchings, G. J. 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106(3-4), pp. 127-131. (10.1007/s10562-005-9619-z)
2005
- Song, N., Rhodes, C., Bartley, J. K., Taylor, S. H., Chadwick, D. and Hutchings, G. J. 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236(2), pp. 282-291. (10.1016/j.jcat.2005.10.008)
Adrannau llyfrau
- Bartley, J. K., Hargreaves, J. S. J., Hutchings, G. J., Rico, J. L., Taylor, S. H., Wells, R. . P. K. and Willock, D. J. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons, (10.1002/0471227617.eoc139.pub2)
Erthyglau
- Ferreira, G. F., Ríos Pinto, L. F., Filho, R. M., Fregolente, L. V., Hayward, J. S. and Bartley, J. K. 2024. A comparison of monoglyceride production from microalgaelipids and rapeseed oil catalyzed by metal oxides. Chemistry-Sustainability-Energy-Materials, article number: e202400953. (10.1002/cssc.202400953)
- Wallace, W. T., Hayward, J. S., Marsh, A. R. and Bartley, J. K. 2024. The antisolvent precipitation of CuZnOx mixed oxide materials using a choline chloride-urea deep eutectic solvent. Molecules 29(14), article number: 3357. (10.3390/molecules29143357)
- Sun, J., Hayward, J. S., Barter, M., Slocombe, D. R. and Bartley, J. K. 2024. Designing heterogeneous catalysts for microwave assisted selective oxygenation. ChemCatChem, article number: e202301586. (10.1002/cctc.202301586)
- Evans, C. D., Bartley, J. K., Taylor, S. H., Hutchings, G. J. and Kondrat, S. A. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153, pp. 2026-2035. (10.1007/s10562-022-04111-2)
- Pudge, G. J. F., Hutchings, G. J., Kondrat, S. A., Morrison, K., Perkins, E. F., Rushby, A. V. and Bartley, J. K. 2022. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science & Technology 12, pp. 4552-4560. (10.1039/D2CY00699E)
- Douthwaite, M., Zhang, B., Iqbal, S., Miedziak, P. J., Bartley, J. K., Willock, D. J. and Hutchings, G. J. 2022. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications 164, article number: 106430. (10.1016/j.catcom.2022.106430)
- Wallace, W. T., Hayward, J. S., Ho, C., Marsh, A. R., Tariq, A. and Bartley, J. K. 2021. Triethylamine-water as a switchable solvent for the synthesis of Cu/ZnO catalysts for carbon dioxide hydrogenation to methanol. Topics in Catalysis 64, pp. 984-991. (10.1007/s11244-021-01457-6)
- Bartley, J. K., Dimitratos, N., Edwards, J. K., Kiely, C. J. and Taylor, S. H. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11(10), pp. 5916-5933. (10.1021/acscatal.1c00569)
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36, pp. 15-24. (10.1016/j.jechem.2019.01.015)
- Hirayama, J. et al. 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123(13), pp. 7879-7888. (10.1021/acs.jpcc.8b07108)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317, pp. 12-20. (10.1016/j.cattod.2018.03.046)
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4(1), pp. 12-23. (10.1080/2055074X.2018.1433598)
- Ivars-Barceló, F. et al. 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354, pp. 236-249. (10.1016/j.jcat.2017.08.020)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9(9), pp. 1621-1631. (10.1002/cctc.201601603)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197, pp. 287-307. (10.1039/C6FD00202A)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8(3), pp. 2436-2447. (10.1039/C6SC04130B)
- Ishikawa, S. et al. 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19(1), pp. 225-236. (10.1039/C6GC02598F)
- Iqbal, S. et al. 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275, pp. 35-39. (10.1016/j.cattod.2015.09.041)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188, pp. 427-450. (10.1039/C5FD00187K)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648, pp. 163-169. (10.1016/j.susc.2015.11.010)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6(15), pp. 6022-6030. (10.1039/C6CY00382F)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272, pp. 74-79. (10.1016/j.cattod.2016.04.012)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531, pp. 83-87. (10.1038/nature16935)
- Marin, R. P. et al. 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504, pp. 62-73. (10.1016/j.apcata.2015.02.023)
- Alhumaimess, M., Lin, Z., Dummer, N., Taylor, S. H., Hutchings, G. J. and Bartley, J. K. 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6, pp. 2910-2917. (10.1039/C5CY01260K)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5(6), pp. 3575-3587. (10.1021/acscatal.5b00480)
- Whiting, G. T. et al. 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5(2), pp. 637-644. (10.1021/cs501728r)
- Whiting, G. T., Bartley, J. K., Dummer, N. F., Hutchings, G. J. and Taylor, S. H. 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485, pp. 51-57. (10.1016/j.apcata.2014.07.029)
- Marin, R. P. et al. 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4(7), pp. 1970-1978. (10.1039/c4cy00044g)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20(6), pp. 1701-1710. (10.1002/chem.201303355)
- Behera, G. C. et al. 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3(6), pp. 1558-64. (10.1039/c3cy20801j)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3(4), pp. 764-772. (10.1021/cs4000359)
- Marin, R. P. et al. 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140, pp. 671-679. (10.1016/j.apcatb.2013.04.076)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164, pp. 207-213. (10.1016/j.micromeso.2012.05.001)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296, pp. 56-64. (10.1016/j.jcat.2012.09.001)
- Bartley, J. K., Xu, C., Lloyd, R., Enache, D. I., Knight, D. W. and Hutchings, G. J. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128, pp. 31-38. (10.1016/j.apcatb.2012.03.036)
- Fan, X., Dummer, N., Taylor, S. H., Bartley, J. K. and Hutchings, G. J. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183(1), pp. 52-57. (10.1016/j.cattod.2011.08.030)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2(1), pp. 105-112. (10.1039/c1cy00299f)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5(1), pp. 125-131. (10.1002/cssc.201100374)
- Pradhan, S., Bartley, J. K., Bethell, D., Golunski, S. E. and Hutchings, G. J. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142(3), pp. 302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4(2), pp. 134-139. (10.1038/nchem.1245)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142(9), pp. 1049-1056. (10.1007/s10562-012-0869-2)
- Pradhan, S., Lloyd, R., Bartley, J. K., Bethell, D., Golunski, S. E., Jenkins, R. L. and Hutchings, G. J. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3(10), pp. 2958-2964. (10.1039/c2sc20683h)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281(2), pp. 279-289. (10.1016/j.jcat.2011.05.012)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13(7), pp. 2528-2538. (10.1039/c0cp01852j)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283(2), pp. 161-167. (10.1016/j.jcat.2011.08.003)
- Taufiq-Yap, Y. H., Goh, C. K., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141(3), pp. 400-407. (10.1007/s10562-010-0508-8)
- Weng, W. et al. 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21(40), pp. 16136-16146. (10.1039/c1jm12456k)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1(5), pp. 740-746. (10.1039/c1cy00064k)
- Taufiq-Yap, Y., Asrina, S. N., Hutchings, G., Dummer, N. and Bartley, J. 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20(6), pp. 635-638. (10.1016/S1003-9953(10)60251-4)
- Lin, Z., Weng, W., Kiely, C. J., Dummer, N., Bartley, J. K. and Hutchings, G. J. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157(1-4), pp. 211-216. (10.1016/j.cattod.2010.03.013)
- Myakonkaya, O. et al. 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350(2), pp. 443-445. (10.1016/j.jcis.2010.06.064)
- Xu, C., Enache, D., Lloyd, R., Knight, D. W., Bartley, J. K. and Hutchings, G. J. 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138(1-2), pp. 1-7. (10.1007/s10562-010-0365-5)
- Dummer, N., Weng, W., Kiely, C., Carley, A. F., Bartley, J. K., Kiely, C. J. and Hutchings, G. J. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376(1-2), pp. 47-55. (10.1016/j.apcata.2009.10.004)
- Al Otaibi, R., Weng, W., Bartley, J. K., Dummer, N., Kiely, C. J. and Hutchings, G. J. 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2(4), pp. 443-452. (10.1002/cctc.200900274)
- Taufiq-Yap, Y., Theam, K. L., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28(10), pp. 997-1012. (10.1080/10916460903058004)
- Myakonkaya, O. et al. 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3(3), pp. 339-341. (10.1002/cssc.200900280)
- Sithamparappillai, U., Nuno, J. L., Dummer, N., Weng, W., Kiely, C. J., Bartley, J. K. and Hutchings, G. J. 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20(25), pp. 5310-5318. (10.1039/c0jm00403k)
- Weng, W., Al Otaibi, R., Dummer, N., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16(S2), pp. 1198-1199. (10.1017/S1431927610059805)
- Taufiq-Yap, Y. H., Goh, C. K., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130(3-4), pp. 327-334. (10.1007/s10562-009-0003-2)
- Weng, W., Dummer, N., Carley, A. F., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15(SUPPL.), pp. 1412-1413. (10.1017/S1431927609092332)
- Weng, W., Lin, Z., Dummer, N., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15(SUPPL.), pp. 1438-1439. (10.1017/S1431927609094203)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19(45), pp. 8619-8627. (10.1039/b911102f)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1(2), pp. 247-251. (10.1002/cctc.200900195)
- Goh, C. K., Taufiq-Yap, Y. H., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131(1-4), pp. 408-412. (10.1016/j.cattod.2007.10.059)
- Xu, C., Bartley, J. K., Enache, D. I., Knight, D. W., Lunn, M., Lok, M. and Hutchings, G. J. 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49(15), pp. 2454-2456. (10.1016/j.tetlet.2008.02.030)
- Tang, Z. et al. 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249(2), pp. 208-219. (10.1016/j.jcat.2007.04.016)
- Herzing, A. A. et al. 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13, pp. 102-103. (10.1017/S143192760707660X)
- Conte, M. et al. 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313(5791), pp. 1270-1273. (10.1126/science.1130493)
- Tang, Z., Bartley, J. K., Taylor, S. H. and Hutchings, G. J. 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162, pp. 219-226. (10.1016/S0167-2991(06)80910-9)
- Song, N., Xuan, Z., Bartley, J. K., Taylor, S. H., Chadwick, D. and Hutchings, G. J. 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106(3-4), pp. 127-131. (10.1007/s10562-005-9619-z)
- Song, N., Rhodes, C., Bartley, J. K., Taylor, S. H., Chadwick, D. and Hutchings, G. J. 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236(2), pp. 282-291. (10.1016/j.jcat.2005.10.008)
Patentau
- Bartley, J. K., Taylor, S. H., Hutchings, G. J., Dummer, N. and Lin, Z. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737 [Patent].
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296, pp. 56-64. (10.1016/j.jcat.2012.09.001)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5(1), pp. 125-131. (10.1002/cssc.201100374)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4(2), pp. 134-139. (10.1038/nchem.1245)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1(5), pp. 740-746. (10.1039/c1cy00064k)
- Lin, Z., Weng, W., Kiely, C. J., Dummer, N., Bartley, J. K. and Hutchings, G. J. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157(1-4), pp. 211-216. (10.1016/j.cattod.2010.03.013)
- Myakonkaya, O. et al. 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3(3), pp. 339-341. (10.1002/cssc.200900280)
Ymchwil
Nid yw'r fethodoleg ar gyfer paratoi catalyddion ocsid metel cymysg wedi newid fawr ddim dros y 60 mlynedd diwethaf. Fel arfer mae atebion nitrad metel yn cael eu cyd-ddyodiad gan ddefnyddio sylfaen i gynhyrchu rhagflaenwyr sydd wedyn yn cael eu calcined i ffurfio'r catalyddion ocsid. Oherwydd y fethodoleg paratoi amrwd, mae catalyddion a baratowyd fel hyn yn gymysgedd cymhleth o gyfnodau ocsid cymysg ac ocsid sengl. Mae hyn yn arwain at wastraff o'r metelau gweithredol a all fod yn bresennol naill ai fel cyfnodau anweithgar neu fel cyfnodau dethol sy'n lleihau gweithgaredd a detholusrwydd y catalydd terfynol.
Mae gennym ddiddordeb mewn archwilio dulliau newydd ar gyfer syntheseiddio ocsidau metel ac ocsidau metel cymysg i'w defnyddio fel catalyddion a chymorth a fydd yn rhoi gwell perfformiad catalydd ac wedi datblygu nifer o fethodolegau ar gyfer paratoi catalyddion fel: dyddodiad gwrthsolvent supercritical, y defnydd o asiantau cyfeirio strwythur, tymheredd uchel synthesis pwysedd uchel a defnyddio microemylsiynau i baratoi catalyddion nanoronynnau metel heb gefnogaeth.
Mae hopcalite yn ocsid manganîs copr a ddefnyddir ar gyfer ocsidiad CO tymheredd isel. Mae'r catalydd traddodiadol ar y cyd yn cynnwys y catalydd gweithredol ocsid metel cymysg ond hefyd ocsid copr ac ocsid manganîs. Gellir gweld hyn o ddadansoddiad cemegol o'r deunydd gan ddefnyddio microsgopeg electronau trosglwyddo sganio (STEM) sbectrometreg sy'n gwasgaru egni pelydr-X (EDS).
Rydym wedi datblygu dull amgen ar gyfer paratoi catalyddion gan ddefnyddio dyddodiad gwrthsolvent supercritical. Mae asetad copr a manganîs yn cael eu toddi yn DMSO a'u pwmpio i mewn i long sy'n cynnwys supercritical (sc) CO2. Mae'r toddyddion a'r scCO2 yn gwasgaru i'w gilydd, gan achosi i'r DMSO ehangu, gan leihau ei bŵer toddyddion a'r asetad yn wlyb. Mae'r dyodiad cyflym hwn yn arwain at ddosbarthiad homogenaidd o'r cydrannau yn y deunydd sydd, ar ôl calcination, yn rhoi ocsid manganîs copr pur cam sydd wedi gwella perfformiad dros y catalydd a gyd-ddyodiad sydd hefyd yn cynnwys y cyfnodau ocsid sengl.
Defnyddir catalyddion ffosffad vanadium yn fasnachol ar gyfer ocsidiad dewisol bwtan i anhydrid maleig. Mae'r rhagflaenydd (VOHPO4 * 0.5H2O) yn cael ei baratoi trwy adweithio vanadium V ocsid (V2O5) ac asid ffosfforig (H3PO4) ym mhresenoldeb alcohol sy'n gweithredu fel asiant lleihau a'r toddydd. Trwy ychwanegu symiau bach o 2-poly (asid styrene-alt-maleig) (PSMA) i mewn i'r paratoi gellir cynyddu crisialogrwydd y rhagflaenwyr. Mae hyn yn arwain at grisialau rhomboidal rheolaidd iawn, yn hytrach na'r crisialau siâp lozenge a gafwyd o baratoadau safonol. Mae'r cynnydd hwn mewn crisialedd yn galluogi actifadu'r rhagflaenydd i'r catalydd terfynol ddigwydd yn llawer cyflymach. Mae arwynebedd arwyneb y catalydd hefyd yn cynyddu wrth i ychwanegu PSMA arwain at ffurfio platiau deneuach.
I gael rhagor o wybodaeth am brosiectau penodol sydd ar gael gyda Dr Jonathan Bartley, adolygwch adran Catalysis a gwyddoniaeth ryngwyneb ein themâu prosiect ymchwil.
Addysgu
CH3310 Catalysis Heterogenaidd
Hyfforddiant CH2310 mewn Dulliau Ymchwil
CH3407 / CHT239 Deunyddiau Uwch
Gellir dod o hyd i fanylion modiwlau yn y darganfyddwr cyrsiau.
Bywgraffiad
Astudiodd Jonathan ym Mhrifysgol Lerpwl, gan ennill BSc mewn Cemeg cyn cwblhau MSc mewn Gwyddor Arwyneb a Chatalysis a PhD mewn Catalysis Heterogenaidd o Ganolfan Catalysis Arloesol Leverhulme. Yn dilyn ei PhD symudodd i Brifysgol Caerdydd ac ar hyn o bryd mae'n Ddarllenydd mewn Cemeg Ffisegol yn yr Ysgol Cemeg a Sefydliad Catalysis Caerdydd.