Dr Jonathan Bartley
Reader in Physical Chemistry
- Available for postgraduate supervision
Overview
Exploring new methods for synthesising metal oxides and mixed metal oxides for use as catalysts and supports that will give improved catalyst performance. A number of methodologies for preparing catalysts have been developed such as:
- supercritical antisolvent precipitation
- the use of structure directing agents
- high temperature - high pressure synthesis
- microemulsions for utilization of unsupported nanoparticle catalysts
For more information, click on the 'Research' tab above.
Links
Research Group: Cardiff Catalysis Institute
Publication
2024
- Ferreira, G. F., Ríos Pinto, L. F., Filho, R. M., Fregolente, L. V., Hayward, J. S. and Bartley, J. K. 2024. A comparison of monoglyceride production from microalgaelipids and rapeseed oil catalyzed by metal oxides. Chemistry-Sustainability-Energy-Materials, article number: e202400953. (10.1002/cssc.202400953)
- Wallace, W. T., Hayward, J. S., Marsh, A. R. and Bartley, J. K. 2024. The antisolvent precipitation of CuZnOx mixed oxide materials using a choline chloride-urea deep eutectic solvent. Molecules 29(14), article number: 3357. (10.3390/molecules29143357)
- Sun, J., Hayward, J. S., Barter, M., Slocombe, D. R. and Bartley, J. K. 2024. Designing heterogeneous catalysts for microwave assisted selective oxygenation. ChemCatChem, article number: e202301586. (10.1002/cctc.202301586)
2023
- Evans, C. D., Bartley, J. K., Taylor, S. H., Hutchings, G. J. and Kondrat, S. A. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153, pp. 2026-2035. (10.1007/s10562-022-04111-2)
2022
- Pudge, G. J. F., Hutchings, G. J., Kondrat, S. A., Morrison, K., Perkins, E. F., Rushby, A. V. and Bartley, J. K. 2022. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science & Technology 12, pp. 4552-4560. (10.1039/D2CY00699E)
- Douthwaite, M., Zhang, B., Iqbal, S., Miedziak, P. J., Bartley, J. K., Willock, D. J. and Hutchings, G. J. 2022. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications 164, article number: 106430. (10.1016/j.catcom.2022.106430)
2021
- Wallace, W. T., Hayward, J. S., Ho, C., Marsh, A. R., Tariq, A. and Bartley, J. K. 2021. Triethylamine-water as a switchable solvent for the synthesis of Cu/ZnO catalysts for carbon dioxide hydrogenation to methanol. Topics in Catalysis 64, pp. 984-991. (10.1007/s11244-021-01457-6)
- Bartley, J. K., Dimitratos, N., Edwards, J. K., Kiely, C. J. and Taylor, S. H. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11(10), pp. 5916-5933. (10.1021/acscatal.1c00569)
2019
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36, pp. 15-24. (10.1016/j.jechem.2019.01.015)
- Hirayama, J. et al. 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123(13), pp. 7879-7888. (10.1021/acs.jpcc.8b07108)
2018
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317, pp. 12-20. (10.1016/j.cattod.2018.03.046)
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4(1), pp. 12-23. (10.1080/2055074X.2018.1433598)
2017
- Ivars-Barceló, F. et al. 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354, pp. 236-249. (10.1016/j.jcat.2017.08.020)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9(9), pp. 1621-1631. (10.1002/cctc.201601603)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197, pp. 287-307. (10.1039/C6FD00202A)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8(3), pp. 2436-2447. (10.1039/C6SC04130B)
- Ishikawa, S. et al. 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19(1), pp. 225-236. (10.1039/C6GC02598F)
2016
- Iqbal, S. et al. 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275, pp. 35-39. (10.1016/j.cattod.2015.09.041)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188, pp. 427-450. (10.1039/C5FD00187K)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648, pp. 163-169. (10.1016/j.susc.2015.11.010)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6(15), pp. 6022-6030. (10.1039/C6CY00382F)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272, pp. 74-79. (10.1016/j.cattod.2016.04.012)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531, pp. 83-87. (10.1038/nature16935)
2015
- Marin, R. P. et al. 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504, pp. 62-73. (10.1016/j.apcata.2015.02.023)
- Alhumaimess, M., Lin, Z., Dummer, N., Taylor, S. H., Hutchings, G. J. and Bartley, J. K. 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6, pp. 2910-2917. (10.1039/C5CY01260K)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5(6), pp. 3575-3587. (10.1021/acscatal.5b00480)
- Whiting, G. T. et al. 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5(2), pp. 637-644. (10.1021/cs501728r)
2014
- Whiting, G. T., Bartley, J. K., Dummer, N. F., Hutchings, G. J. and Taylor, S. H. 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485, pp. 51-57. (10.1016/j.apcata.2014.07.029)
- Marin, R. P. et al. 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4(7), pp. 1970-1978. (10.1039/c4cy00044g)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20(6), pp. 1701-1710. (10.1002/chem.201303355)
2013
- Behera, G. C. et al. 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3(6), pp. 1558-64. (10.1039/c3cy20801j)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3(4), pp. 764-772. (10.1021/cs4000359)
- Marin, R. P. et al. 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140, pp. 671-679. (10.1016/j.apcatb.2013.04.076)
2012
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164, pp. 207-213. (10.1016/j.micromeso.2012.05.001)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296, pp. 56-64. (10.1016/j.jcat.2012.09.001)
- Bartley, J. K., Xu, C., Lloyd, R., Enache, D. I., Knight, D. W. and Hutchings, G. J. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128, pp. 31-38. (10.1016/j.apcatb.2012.03.036)
- Bartley, J. K., Taylor, S. H., Hutchings, G. J., Dummer, N. and Lin, Z. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737 [Patent].
- Fan, X., Dummer, N., Taylor, S. H., Bartley, J. K. and Hutchings, G. J. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183(1), pp. 52-57. (10.1016/j.cattod.2011.08.030)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2(1), pp. 105-112. (10.1039/c1cy00299f)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5(1), pp. 125-131. (10.1002/cssc.201100374)
- Pradhan, S., Bartley, J. K., Bethell, D., Golunski, S. E. and Hutchings, G. J. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142(3), pp. 302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4(2), pp. 134-139. (10.1038/nchem.1245)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142(9), pp. 1049-1056. (10.1007/s10562-012-0869-2)
- Pradhan, S., Lloyd, R., Bartley, J. K., Bethell, D., Golunski, S. E., Jenkins, R. L. and Hutchings, G. J. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3(10), pp. 2958-2964. (10.1039/c2sc20683h)
2011
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281(2), pp. 279-289. (10.1016/j.jcat.2011.05.012)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13(7), pp. 2528-2538. (10.1039/c0cp01852j)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283(2), pp. 161-167. (10.1016/j.jcat.2011.08.003)
- Taufiq-Yap, Y. H., Goh, C. K., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141(3), pp. 400-407. (10.1007/s10562-010-0508-8)
- Weng, W. et al. 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21(40), pp. 16136-16146. (10.1039/c1jm12456k)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1(5), pp. 740-746. (10.1039/c1cy00064k)
- Taufiq-Yap, Y., Asrina, S. N., Hutchings, G., Dummer, N. and Bartley, J. 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20(6), pp. 635-638. (10.1016/S1003-9953(10)60251-4)
2010
- Lin, Z., Weng, W., Kiely, C. J., Dummer, N., Bartley, J. K. and Hutchings, G. J. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157(1-4), pp. 211-216. (10.1016/j.cattod.2010.03.013)
- Myakonkaya, O. et al. 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350(2), pp. 443-445. (10.1016/j.jcis.2010.06.064)
- Xu, C., Enache, D., Lloyd, R., Knight, D. W., Bartley, J. K. and Hutchings, G. J. 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138(1-2), pp. 1-7. (10.1007/s10562-010-0365-5)
- Dummer, N., Weng, W., Kiely, C., Carley, A. F., Bartley, J. K., Kiely, C. J. and Hutchings, G. J. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376(1-2), pp. 47-55. (10.1016/j.apcata.2009.10.004)
- Al Otaibi, R., Weng, W., Bartley, J. K., Dummer, N., Kiely, C. J. and Hutchings, G. J. 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2(4), pp. 443-452. (10.1002/cctc.200900274)
- Taufiq-Yap, Y., Theam, K. L., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28(10), pp. 997-1012. (10.1080/10916460903058004)
- Myakonkaya, O. et al. 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3(3), pp. 339-341. (10.1002/cssc.200900280)
- Sithamparappillai, U., Nuno, J. L., Dummer, N., Weng, W., Kiely, C. J., Bartley, J. K. and Hutchings, G. J. 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20(25), pp. 5310-5318. (10.1039/c0jm00403k)
- Weng, W., Al Otaibi, R., Dummer, N., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16(S2), pp. 1198-1199. (10.1017/S1431927610059805)
- Bartley, J. K., Hargreaves, J. S. J., Hutchings, G. J., Rico, J. L., Taylor, S. H., Wells, R. . P. K. and Willock, D. J. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons, (10.1002/0471227617.eoc139.pub2)
2009
- Taufiq-Yap, Y. H., Goh, C. K., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130(3-4), pp. 327-334. (10.1007/s10562-009-0003-2)
- Weng, W., Dummer, N., Carley, A. F., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15(SUPPL.), pp. 1412-1413. (10.1017/S1431927609092332)
- Weng, W., Lin, Z., Dummer, N., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15(SUPPL.), pp. 1438-1439. (10.1017/S1431927609094203)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19(45), pp. 8619-8627. (10.1039/b911102f)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1(2), pp. 247-251. (10.1002/cctc.200900195)
2008
- Goh, C. K., Taufiq-Yap, Y. H., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131(1-4), pp. 408-412. (10.1016/j.cattod.2007.10.059)
- Xu, C., Bartley, J. K., Enache, D. I., Knight, D. W., Lunn, M., Lok, M. and Hutchings, G. J. 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49(15), pp. 2454-2456. (10.1016/j.tetlet.2008.02.030)
2007
- Tang, Z. et al. 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249(2), pp. 208-219. (10.1016/j.jcat.2007.04.016)
- Herzing, A. A. et al. 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13, pp. 102-103. (10.1017/S143192760707660X)
2006
- Conte, M. et al. 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313(5791), pp. 1270-1273. (10.1126/science.1130493)
- Tang, Z., Bartley, J. K., Taylor, S. H. and Hutchings, G. J. 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162, pp. 219-226. (10.1016/S0167-2991(06)80910-9)
- Song, N., Xuan, Z., Bartley, J. K., Taylor, S. H., Chadwick, D. and Hutchings, G. J. 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106(3-4), pp. 127-131. (10.1007/s10562-005-9619-z)
2005
- Song, N., Rhodes, C., Bartley, J. K., Taylor, S. H., Chadwick, D. and Hutchings, G. J. 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236(2), pp. 282-291. (10.1016/j.jcat.2005.10.008)
Articles
- Ferreira, G. F., Ríos Pinto, L. F., Filho, R. M., Fregolente, L. V., Hayward, J. S. and Bartley, J. K. 2024. A comparison of monoglyceride production from microalgaelipids and rapeseed oil catalyzed by metal oxides. Chemistry-Sustainability-Energy-Materials, article number: e202400953. (10.1002/cssc.202400953)
- Wallace, W. T., Hayward, J. S., Marsh, A. R. and Bartley, J. K. 2024. The antisolvent precipitation of CuZnOx mixed oxide materials using a choline chloride-urea deep eutectic solvent. Molecules 29(14), article number: 3357. (10.3390/molecules29143357)
- Sun, J., Hayward, J. S., Barter, M., Slocombe, D. R. and Bartley, J. K. 2024. Designing heterogeneous catalysts for microwave assisted selective oxygenation. ChemCatChem, article number: e202301586. (10.1002/cctc.202301586)
- Evans, C. D., Bartley, J. K., Taylor, S. H., Hutchings, G. J. and Kondrat, S. A. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153, pp. 2026-2035. (10.1007/s10562-022-04111-2)
- Pudge, G. J. F., Hutchings, G. J., Kondrat, S. A., Morrison, K., Perkins, E. F., Rushby, A. V. and Bartley, J. K. 2022. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science & Technology 12, pp. 4552-4560. (10.1039/D2CY00699E)
- Douthwaite, M., Zhang, B., Iqbal, S., Miedziak, P. J., Bartley, J. K., Willock, D. J. and Hutchings, G. J. 2022. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications 164, article number: 106430. (10.1016/j.catcom.2022.106430)
- Wallace, W. T., Hayward, J. S., Ho, C., Marsh, A. R., Tariq, A. and Bartley, J. K. 2021. Triethylamine-water as a switchable solvent for the synthesis of Cu/ZnO catalysts for carbon dioxide hydrogenation to methanol. Topics in Catalysis 64, pp. 984-991. (10.1007/s11244-021-01457-6)
- Bartley, J. K., Dimitratos, N., Edwards, J. K., Kiely, C. J. and Taylor, S. H. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11(10), pp. 5916-5933. (10.1021/acscatal.1c00569)
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36, pp. 15-24. (10.1016/j.jechem.2019.01.015)
- Hirayama, J. et al. 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123(13), pp. 7879-7888. (10.1021/acs.jpcc.8b07108)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317, pp. 12-20. (10.1016/j.cattod.2018.03.046)
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4(1), pp. 12-23. (10.1080/2055074X.2018.1433598)
- Ivars-Barceló, F. et al. 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354, pp. 236-249. (10.1016/j.jcat.2017.08.020)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9(9), pp. 1621-1631. (10.1002/cctc.201601603)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197, pp. 287-307. (10.1039/C6FD00202A)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8(3), pp. 2436-2447. (10.1039/C6SC04130B)
- Ishikawa, S. et al. 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19(1), pp. 225-236. (10.1039/C6GC02598F)
- Iqbal, S. et al. 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275, pp. 35-39. (10.1016/j.cattod.2015.09.041)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188, pp. 427-450. (10.1039/C5FD00187K)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648, pp. 163-169. (10.1016/j.susc.2015.11.010)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6(15), pp. 6022-6030. (10.1039/C6CY00382F)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272, pp. 74-79. (10.1016/j.cattod.2016.04.012)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531, pp. 83-87. (10.1038/nature16935)
- Marin, R. P. et al. 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504, pp. 62-73. (10.1016/j.apcata.2015.02.023)
- Alhumaimess, M., Lin, Z., Dummer, N., Taylor, S. H., Hutchings, G. J. and Bartley, J. K. 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6, pp. 2910-2917. (10.1039/C5CY01260K)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5(6), pp. 3575-3587. (10.1021/acscatal.5b00480)
- Whiting, G. T. et al. 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5(2), pp. 637-644. (10.1021/cs501728r)
- Whiting, G. T., Bartley, J. K., Dummer, N. F., Hutchings, G. J. and Taylor, S. H. 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485, pp. 51-57. (10.1016/j.apcata.2014.07.029)
- Marin, R. P. et al. 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4(7), pp. 1970-1978. (10.1039/c4cy00044g)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20(6), pp. 1701-1710. (10.1002/chem.201303355)
- Behera, G. C. et al. 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3(6), pp. 1558-64. (10.1039/c3cy20801j)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3(4), pp. 764-772. (10.1021/cs4000359)
- Marin, R. P. et al. 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140, pp. 671-679. (10.1016/j.apcatb.2013.04.076)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164, pp. 207-213. (10.1016/j.micromeso.2012.05.001)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296, pp. 56-64. (10.1016/j.jcat.2012.09.001)
- Bartley, J. K., Xu, C., Lloyd, R., Enache, D. I., Knight, D. W. and Hutchings, G. J. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128, pp. 31-38. (10.1016/j.apcatb.2012.03.036)
- Fan, X., Dummer, N., Taylor, S. H., Bartley, J. K. and Hutchings, G. J. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183(1), pp. 52-57. (10.1016/j.cattod.2011.08.030)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2(1), pp. 105-112. (10.1039/c1cy00299f)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5(1), pp. 125-131. (10.1002/cssc.201100374)
- Pradhan, S., Bartley, J. K., Bethell, D., Golunski, S. E. and Hutchings, G. J. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142(3), pp. 302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4(2), pp. 134-139. (10.1038/nchem.1245)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142(9), pp. 1049-1056. (10.1007/s10562-012-0869-2)
- Pradhan, S., Lloyd, R., Bartley, J. K., Bethell, D., Golunski, S. E., Jenkins, R. L. and Hutchings, G. J. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3(10), pp. 2958-2964. (10.1039/c2sc20683h)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281(2), pp. 279-289. (10.1016/j.jcat.2011.05.012)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13(7), pp. 2528-2538. (10.1039/c0cp01852j)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283(2), pp. 161-167. (10.1016/j.jcat.2011.08.003)
- Taufiq-Yap, Y. H., Goh, C. K., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141(3), pp. 400-407. (10.1007/s10562-010-0508-8)
- Weng, W. et al. 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21(40), pp. 16136-16146. (10.1039/c1jm12456k)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1(5), pp. 740-746. (10.1039/c1cy00064k)
- Taufiq-Yap, Y., Asrina, S. N., Hutchings, G., Dummer, N. and Bartley, J. 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20(6), pp. 635-638. (10.1016/S1003-9953(10)60251-4)
- Lin, Z., Weng, W., Kiely, C. J., Dummer, N., Bartley, J. K. and Hutchings, G. J. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157(1-4), pp. 211-216. (10.1016/j.cattod.2010.03.013)
- Myakonkaya, O. et al. 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350(2), pp. 443-445. (10.1016/j.jcis.2010.06.064)
- Xu, C., Enache, D., Lloyd, R., Knight, D. W., Bartley, J. K. and Hutchings, G. J. 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138(1-2), pp. 1-7. (10.1007/s10562-010-0365-5)
- Dummer, N., Weng, W., Kiely, C., Carley, A. F., Bartley, J. K., Kiely, C. J. and Hutchings, G. J. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376(1-2), pp. 47-55. (10.1016/j.apcata.2009.10.004)
- Al Otaibi, R., Weng, W., Bartley, J. K., Dummer, N., Kiely, C. J. and Hutchings, G. J. 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2(4), pp. 443-452. (10.1002/cctc.200900274)
- Taufiq-Yap, Y., Theam, K. L., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28(10), pp. 997-1012. (10.1080/10916460903058004)
- Myakonkaya, O. et al. 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3(3), pp. 339-341. (10.1002/cssc.200900280)
- Sithamparappillai, U., Nuno, J. L., Dummer, N., Weng, W., Kiely, C. J., Bartley, J. K. and Hutchings, G. J. 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20(25), pp. 5310-5318. (10.1039/c0jm00403k)
- Weng, W., Al Otaibi, R., Dummer, N., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16(S2), pp. 1198-1199. (10.1017/S1431927610059805)
- Taufiq-Yap, Y. H., Goh, C. K., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130(3-4), pp. 327-334. (10.1007/s10562-009-0003-2)
- Weng, W., Dummer, N., Carley, A. F., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15(SUPPL.), pp. 1412-1413. (10.1017/S1431927609092332)
- Weng, W., Lin, Z., Dummer, N., Bartley, J. K., Hutchings, G. J. and Kiely, C. J. 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15(SUPPL.), pp. 1438-1439. (10.1017/S1431927609094203)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19(45), pp. 8619-8627. (10.1039/b911102f)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1(2), pp. 247-251. (10.1002/cctc.200900195)
- Goh, C. K., Taufiq-Yap, Y. H., Hutchings, G. J., Dummer, N. and Bartley, J. K. 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131(1-4), pp. 408-412. (10.1016/j.cattod.2007.10.059)
- Xu, C., Bartley, J. K., Enache, D. I., Knight, D. W., Lunn, M., Lok, M. and Hutchings, G. J. 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49(15), pp. 2454-2456. (10.1016/j.tetlet.2008.02.030)
- Tang, Z. et al. 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249(2), pp. 208-219. (10.1016/j.jcat.2007.04.016)
- Herzing, A. A. et al. 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13, pp. 102-103. (10.1017/S143192760707660X)
- Conte, M. et al. 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313(5791), pp. 1270-1273. (10.1126/science.1130493)
- Tang, Z., Bartley, J. K., Taylor, S. H. and Hutchings, G. J. 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162, pp. 219-226. (10.1016/S0167-2991(06)80910-9)
- Song, N., Xuan, Z., Bartley, J. K., Taylor, S. H., Chadwick, D. and Hutchings, G. J. 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106(3-4), pp. 127-131. (10.1007/s10562-005-9619-z)
- Song, N., Rhodes, C., Bartley, J. K., Taylor, S. H., Chadwick, D. and Hutchings, G. J. 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236(2), pp. 282-291. (10.1016/j.jcat.2005.10.008)
Book sections
- Bartley, J. K., Hargreaves, J. S. J., Hutchings, G. J., Rico, J. L., Taylor, S. H., Wells, R. . P. K. and Willock, D. J. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons, (10.1002/0471227617.eoc139.pub2)
Patents
- Bartley, J. K., Taylor, S. H., Hutchings, G. J., Dummer, N. and Lin, Z. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737 [Patent].
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296, pp. 56-64. (10.1016/j.jcat.2012.09.001)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5(1), pp. 125-131. (10.1002/cssc.201100374)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4(2), pp. 134-139. (10.1038/nchem.1245)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1(5), pp. 740-746. (10.1039/c1cy00064k)
- Lin, Z., Weng, W., Kiely, C. J., Dummer, N., Bartley, J. K. and Hutchings, G. J. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157(1-4), pp. 211-216. (10.1016/j.cattod.2010.03.013)
- Myakonkaya, O. et al. 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3(3), pp. 339-341. (10.1002/cssc.200900280)
Research
The methodology for preparing mixed metal oxide catalysts has changed little over the last 60 years. Typically metal nitrate solutions are co-precipitated using a base to yield precursors that are then calcined to form the oxide catalysts. Due to the crude preparation methodology, catalysts prepared in this way are a complex mixture of mixed oxide and single oxide phases. This leads to a waste of the active metals which can be present either as inactive phases or as unselective phases which reduce the activity and selectivity of the final catalyst.
We are interested in exploring new methods for synthesizing metal oxides and mixed metal oxides for use as catalysts and supports that will give improved catalyst performance and have developed a number of methodologies for preparing catalysts such as: supercritical antisolvent precipitation, the use of structure directing agents, high temperature high pressure synthesis and the use of microemulsions to prepare unsupported metal nanoparticle catalysts.
Hopcalite is a copper manganese oxide that is used for low temperature CO oxidation. The traditional co-precipitated catalyst contains the mixed metal oxide active catalyst but also copper oxide and manganese oxide. This can be seen from chemical analysis of the material using scanning transmission electron microscopy (STEM) X-ray energy-dispersive spectrometry (EDS) .
We have developed an alternative method for preparing catalysts using supercritical antisolvent precipitation. Copper and manganese acetates are dissolved in DMSO and pumped into a vessel containing supercritical (sc) CO2. The solvent and scCO2 diffuse into each other, causing the DMSO to expand, reducing its solvent power and the acetates are precipitated. This fast precipitation results in a homogeneous distribution of the components in the material that after calcination gives phase pure copper manganese oxide which has improved performance over the co-precipitated catalyst that also contains the single oxide phases.
Vanadium phosphate catalysts are used commercially for the selective oxidation of butane to maleic anhydride. The precursor (VOHPO4*0.5H2O) is prepared by reacting vanadium V oxide (V2O5) and phosphoric acid (H3PO4) in the presence of an alcohol which acts as a reducing agent and the solvent. By adding small amounts of 2-poly(styrene-alt-maleic acid) (PSMA) into the preparation the crystallinity of the precursors can be increased. This leads to very regular rhomboidal crystals, rather than the lozenge shaped crystals obtained from standard preparations. This increase in crystallinity enables the activation of the precursor to the final catalyst to occur much quicker. The surface area of the catalyst is also increased as the addition of PSMA leads to thinner plates being formed.
For more information on specific projects available with Dr Jonathan Bartley please review the Catalysis and interfacial science section of our research project themes.
Teaching
CH3310 Heterogeneous Catalysis
CH3407 Advanced Materials
CHT217 Catalysis Design Study
CHT219 Preparation and Evaluation of Heterogeneous Catalysts
CHT225 Practical Catalytic Chemistry
Biography
MSc (1995) and PhD (1999, preparation of heterogeneous selective oxidation catalysts), Leverhulme Centre for Innovative Catalysis, University of Liverpool. Appointed Postdoctoral Research Fellow, Cardiff University (1999), Senior Research Fellow, Cardiff University (2004), Assistant Director, Cardiff Catalysis Institute (2009).