Dr Jonathan Bartley
(he/him)
BSc Hons MSc MRSC CChem
- Available for postgraduate supervision
Teams and roles for Jonathan Bartley
Reader in Physical Chemistry
Overview
Research is focussed on designing and synthesising metal oxides and mixed metal oxides for use as catalysts and supports for applications in the following areas:
- Selective oxidation
- Microwave assisted catalysis
- Photocatalysis
- Environmental catalysis
- Biomass valorisation
- Biofuel production
Links
Research Group: Cardiff Catalysis Institute
Publication
2026
- Ferreira, G. F. et al., 2026. Optimised pyrolysis strategies for energy-dense bio-oil from Chlorella sp. Bioresource Technology 441 133628. (10.1016/j.biortech.2025.133628)
2025
- Chan, C. d. C. et al., 2025. Microwave-assisted degradation of azo dyes using NiO catalysts. Catalysts 15 (8) 702. (10.3390/catal15080702)
- Filipini Ferreira, G. et al. 2025. Ethanol-based transesterification of rapeseed oil with CaO Catalyst: process optimization and validation using microalgal lipids. Catalysis Letters 155 84. (10.1007/s10562-024-04921-6)
- Rabiu, H. S. , Hayward, J. S. and Bartley, J. K. 2025. High surface area perovskite materials as functional catalyst supports for glycerol oxidation. Molecular Catalysis 572 114750. (10.1016/j.mcat.2024.114750)
- Sun, J. et al., 2025. Microwave-assisted selective oxidation of propene over bismuth molybdate catalysts: the importance of catalyst synthesis methodology. Discover Catalysis 2 (1) 11. (10.1007/s44344-025-00014-7)
2024
- Ferreira, G. F. et al. 2024. A comparison of monoglyceride production from microalgaelipids and rapeseed oil catalyzed by metal oxides. Chemistry-Sustainability-Energy-Materials 17 (23) e202400953. (10.1002/cssc.202400953)
- Sun, J. et al. 2024. Designing heterogeneous catalysts for microwave assisted selective oxygenation. ChemCatChem 16 (19) e202301586. (10.1002/cctc.202301586)
- Wallace, W. T. et al. 2024. The antisolvent precipitation of CuZnOx mixed oxide materials using a choline chloride-urea deep eutectic solvent. Molecules 29 (14) 3357. (10.3390/molecules29143357)
2023
- Evans, C. D. et al. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153 , pp.2026-2035. (10.1007/s10562-022-04111-2)
2022
- Douthwaite, M. et al. 2022. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications 164 106430. (10.1016/j.catcom.2022.106430)
- Pudge, G. J. F. et al. 2022. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science & Technology 12 , pp.4552-4560. (10.1039/D2CY00699E)
2021
- Bartley, J. K. et al. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11 (10), pp.5916-5933. (10.1021/acscatal.1c00569)
- Wallace, W. T. et al. 2021. Triethylamine-water as a switchable solvent for the synthesis of Cu/ZnO catalysts for carbon dioxide hydrogenation to methanol. Topics in Catalysis 64 , pp.984-991. (10.1007/s11244-021-01457-6)
2019
- Hirayama, J. et al., 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123 (13), pp.7879-7888. (10.1021/acs.jpcc.8b07108)
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36 , pp.15-24. (10.1016/j.jechem.2019.01.015)
2018
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4 (1), pp.12-23. (10.1080/2055074X.2018.1433598)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317 , pp.12-20. (10.1016/j.cattod.2018.03.046)
2017
- Ishikawa, S. et al., 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19 (1), pp.225-236. (10.1039/C6GC02598F)
- Ivars-Barceló, F. et al., 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354 , pp.236-249. (10.1016/j.jcat.2017.08.020)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197 , pp.287-307. (10.1039/C6FD00202A)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9 (9), pp.1621-1631. (10.1002/cctc.201601603)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8 (3), pp.2436-2447. (10.1039/C6SC04130B)
2016
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188 , pp.427-450. (10.1039/C5FD00187K)
- Iqbal, S. et al., 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275 , pp.35-39. (10.1016/j.cattod.2015.09.041)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272 , pp.74-79. (10.1016/j.cattod.2016.04.012)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6 (15), pp.6022-6030. (10.1039/C6CY00382F)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531 , pp.83-87. (10.1038/nature16935)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648 , pp.163-169. (10.1016/j.susc.2015.11.010)
2015
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- Marin, R. P. et al., 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504 , pp.62-73. (10.1016/j.apcata.2015.02.023)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5 (6), pp.3575-3587. (10.1021/acscatal.5b00480)
- Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
2014
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Marin, R. P. et al., 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4 (7), pp.1970-1978. (10.1039/c4cy00044g)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
2013
- Behera, G. C. et al., 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3 (6), pp.1558-64. (10.1039/c3cy20801j)
- Marin, R. P. et al., 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140 , pp.671-679. (10.1016/j.apcatb.2013.04.076)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3 (4), pp.764-772. (10.1021/cs4000359)
2012
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
- Bartley, J. K. et al. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128 , pp.31-38. (10.1016/j.apcatb.2012.03.036)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2 (1), pp.105-112. (10.1039/c1cy00299f)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164 , pp.207-213. (10.1016/j.micromeso.2012.05.001)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142 (9), pp.1049-1056. (10.1007/s10562-012-0869-2)
- Pradhan, S. et al. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142 (3), pp.302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4 (2), pp.134-139. (10.1038/nchem.1245)
- Pradhan, S. et al. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3 (10), pp.2958-2964. (10.1039/c2sc20683h)
2011
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13 (7), pp.2528-2538. (10.1039/c0cp01852j)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281 (2), pp.279-289. (10.1016/j.jcat.2011.05.012)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283 (2), pp.161-167. (10.1016/j.jcat.2011.08.003)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1 (5), pp.740-746. (10.1039/c1cy00064k)
- Taufiq-Yap, Y. H. et al., 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141 (3), pp.400-407. (10.1007/s10562-010-0508-8)
- Taufiq-Yap, Y. et al., 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20 (6), pp.635-638. (10.1016/S1003-9953(10)60251-4)
- Weng, W. et al., 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21 (40), pp.16136-16146. (10.1039/c1jm12456k)
2010
- Al Otaibi, R. et al., 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2 (4), pp.443-452. (10.1002/cctc.200900274)
- Bartley, J. K. et al. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons(10.1002/0471227617.eoc139.pub2)
- Dummer, N. et al. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376 (1-2), pp.47-55. (10.1016/j.apcata.2009.10.004)
- Lin, Z. et al. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157 (1-4), pp.211-216. (10.1016/j.cattod.2010.03.013)
- Myakonkaya, O. et al., 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3 (3), pp.339-341. (10.1002/cssc.200900280)
- Myakonkaya, O. et al., 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350 (2), pp.443-445. (10.1016/j.jcis.2010.06.064)
- Sithamparappillai, U. et al., 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20 (25), pp.5310-5318. (10.1039/c0jm00403k)
- Taufiq-Yap, Y. et al. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28 (10), pp.997-1012. (10.1080/10916460903058004)
- Weng, W. et al., 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1198-1199. (10.1017/S1431927610059805)
- Xu, C. et al., 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138 (1-2), pp.1-7. (10.1007/s10562-010-0365-5)
2009
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19 (45), pp.8619-8627. (10.1039/b911102f)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1 (2), pp.247-251. (10.1002/cctc.200900195)
- Taufiq-Yap, Y. H. et al., 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130 (3-4), pp.327-334. (10.1007/s10562-009-0003-2)
- Weng, W. et al., 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15 (SUPPL.), pp.1412-1413. (10.1017/S1431927609092332)
- Weng, W. et al., 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15 (SUPPL.), pp.1438-1439. (10.1017/S1431927609094203)
2008
- Goh, C. K. et al., 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131 (1-4), pp.408-412. (10.1016/j.cattod.2007.10.059)
- Xu, C. et al., 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49 (15), pp.2454-2456. (10.1016/j.tetlet.2008.02.030)
2007
- Herzing, A. A. et al., 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13 , pp.102-103. (10.1017/S143192760707660X)
- Tang, Z. et al., 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249 (2), pp.208-219. (10.1016/j.jcat.2007.04.016)
2006
- Conte, M. et al., 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313 (5791), pp.1270-1273. (10.1126/science.1130493)
- Song, N. et al., 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106 (3-4), pp.127-131. (10.1007/s10562-005-9619-z)
- Tang, Z. et al., 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162 , pp.219-226. (10.1016/S0167-2991(06)80910-9)
2005
- Song, N. et al., 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236 (2), pp.282-291. (10.1016/j.jcat.2005.10.008)
Articles
- Al Otaibi, R. et al., 2010. Vanadium Phosphate Oxide Seeds and Their Influence on the Formation of Vanadium Phosphate Catalyst Precursors. ChemCatChem 2 (4), pp.443-452. (10.1002/cctc.200900274)
- Alhumaimess, M. et al., 2015. Highly crystalline vanadium phosphate catalysts synthesized using poly(acrylic acid-co-maleic acid) as a structure directing agent. Catalysis Science & Technology 6 , pp.2910-2917. (10.1039/C5CY01260K)
- Alhumaimess, M. et al. 2014. Oxidation of benzyl alcohol and carbon monoxide using gold nanoparticles supported on MnO2 nanowire microspheres. Chemistry - A European Journal 20 (6), pp.1701-1710. (10.1002/chem.201303355)
- Alhumaimess, M. et al. 2012. Oxidation of Benzyl Alcohol by using Gold Nanoparticles Supported on Ceria Foam. ChemSusChem 5 (1), pp.125-131. (10.1002/cssc.201100374)
- Bartley, J. K. et al. 2021. A career in catalysis: Graham J. Hutchings. ACS Catalysis 11 (10), pp.5916-5933. (10.1021/acscatal.1c00569)
- Bartley, J. K. et al. 2012. Simple method to synthesize high surface area magnesium oxide and its use as a heterogeneous base catalyst. Applied Catalysis B: Environmental 128 , pp.31-38. (10.1016/j.apcatb.2012.03.036)
- Behera, G. C. et al., 2013. Tungstate promoted vanadium phosphate catalysts for the gas phase oxidation of methanol to formaldehyde. Catalysis Science & Technology 3 (6), pp.1558-64. (10.1039/c3cy20801j)
- Carley, A. F. et al. 2011. CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics 13 (7), pp.2528-2538. (10.1039/c0cp01852j)
- Chan, C. d. C. et al., 2025. Microwave-assisted degradation of azo dyes using NiO catalysts. Catalysts 15 (8) 702. (10.3390/catal15080702)
- Conte, M. et al., 2006. Chemically Induced Fast Solid-State Transitions of ω-VOPO4 in Vanadium Phosphate Catalysts. Science 313 (5791), pp.1270-1273. (10.1126/science.1130493)
- Conte, M. et al. 2012. Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology 2 (1), pp.105-112. (10.1039/c1cy00299f)
- Conte, M. et al. 2012. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials 164 , pp.207-213. (10.1016/j.micromeso.2012.05.001)
- Douthwaite, M. et al. 2022. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catalysis Communications 164 106430. (10.1016/j.catcom.2022.106430)
- Dummer, N. et al. 2010. Structural evolution and catalytic performance of DuPont V-P-O/SiO2 materials designed for fluidized bed applications. Applied Catalysis A: General 376 (1-2), pp.47-55. (10.1016/j.apcata.2009.10.004)
- Evans, C. D. et al. 2023. Perovskite supported catalysts for the selective oxidation of glycerol to tartronic acid. Catalysis Letters 153 , pp.2026-2035. (10.1007/s10562-022-04111-2)
- Evans, C. D. et al. 2016. The preparation of large surface area lanthanum based perovskite supports for AuPt nanoparticles: tuning the glycerol oxidation reaction pathway by switching the perovskite B site. Faraday Discussions 188 , pp.427-450. (10.1039/C5FD00187K)
- Fan, X. et al. 2012. Preparation of vanadium phosphate catalyst precursors for the selective oxidation of butane using α,ω-alkanediols. Catalysis Today 183 (1), pp.52-57. (10.1016/j.cattod.2011.08.030)
- Ferreira, G. F. et al., 2026. Optimised pyrolysis strategies for energy-dense bio-oil from Chlorella sp. Bioresource Technology 441 133628. (10.1016/j.biortech.2025.133628)
- Ferreira, G. F. et al. 2024. A comparison of monoglyceride production from microalgaelipids and rapeseed oil catalyzed by metal oxides. Chemistry-Sustainability-Energy-Materials 17 (23) e202400953. (10.1002/cssc.202400953)
- Filipini Ferreira, G. et al. 2025. Ethanol-based transesterification of rapeseed oil with CaO Catalyst: process optimization and validation using microalgal lipids. Catalysis Letters 155 84. (10.1007/s10562-024-04921-6)
- Goh, C. K. et al., 2008. Influence of Bi-Fe additive on properties of vanadium phosphate catalysts for n-butane oxidation to maleic anhydride. Catalysis Today 131 (1-4), pp.408-412. (10.1016/j.cattod.2007.10.059)
- Herzing, A. A. et al., 2007. Characterization of Au-based catalysts using novel cerium oxide supports. Microscopy and Microanalysis 13 , pp.102-103. (10.1017/S143192760707660X)
- Hirayama, J. et al., 2019. The effects of dopants on the Cu-ZrO2 catalysed hydrogenation of levulinic acid. Journal of Physical Chemistry C 123 (13), pp.7879-7888. (10.1021/acs.jpcc.8b07108)
- Iqbal, S. et al., 2016. Fischer Tropsch synthesis using cobalt based carbon catalysts. Catalysis Today 275 , pp.35-39. (10.1016/j.cattod.2015.09.041)
- Iqbal, S. et al. 2016. Fischer Tropsch Synthesis using promoted cobalt-based catalysts. Catalysis Today 272 , pp.74-79. (10.1016/j.cattod.2016.04.012)
- Ishikawa, S. et al., 2017. Identification of the catalytically active component of Cu–Zr–O catalyst for the hydrogenation of levulinic acid to γ-valerolactone. Green Chemistry 19 (1), pp.225-236. (10.1039/C6GC02598F)
- Ivars-Barceló, F. et al., 2017. Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis 354 , pp.236-249. (10.1016/j.jcat.2017.08.020)
- Jin, G. et al. 2012. Fe2(MoO4)3/MoO3 nano-structured catalysts for the oxidation of methanol to formaldehyde. Journal of Catalysis 296 , pp.56-64. (10.1016/j.jcat.2012.09.001)
- Jones, D. et al. 2016. The conversion of levulinic acid into γ-valerolactone using Cu/ZrO2catalysts. Catalysis Science & Technology 6 (15), pp.6022-6030. (10.1039/C6CY00382F)
- Jones, D. et al. 2018. xNi–yCu–ZrO2 catalysts for the hydrogenation of levulinic acid to gamma valorlactone. Catalysis, Structure & Reactivity 4 (1), pp.12-23. (10.1080/2055074X.2018.1433598)
- Kondrat, S. A. et al. 2011. The effect of heat treatment on phase formation of copper manganese oxide: Influence on catalytic activity for ambient temperature carbon monoxide oxidation. Journal of Catalysis 281 (2), pp.279-289. (10.1016/j.jcat.2011.05.012)
- Kondrat, S. A. et al. 2017. The effect of sodium species on methanol synthesis and water-gas shift Cu/ZnO catalysts: utilising high purity zincian georgeite. Faraday Discussions 197 , pp.287-307. (10.1039/C6FD00202A)
- Kondrat, S. A. et al. 2018. Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation. Catalysis Today 317 , pp.12-20. (10.1016/j.cattod.2018.03.046)
- Kondrat, S. A. et al. 2016. Stable amorphous georgeite as a precursor to a high-activity catalyst .. Nature 531 , pp.83-87. (10.1038/nature16935)
- Lin, Z. et al. 2010. The synthesis of highly crystalline vanadium phosphate catalysts using a diblock copolymer as a structure directing agent. Catalysis Today 157 (1-4), pp.211-216. (10.1016/j.cattod.2010.03.013)
- Lloyd, R. et al. 2011. Low-temperature aerobic oxidation of decane using an oxygen-free radical initiator. Journal of Catalysis 283 (2), pp.161-167. (10.1016/j.jcat.2011.08.003)
- Lopez-Sanchez, J. A. et al. 2012. Reactivity of Ga2O3 Clusters on Zeolite ZSM-5 for the Conversion of Methanol to Aromatics. Catalysis Letters 142 (9), pp.1049-1056. (10.1007/s10562-012-0869-2)
- Marin, R. P. et al., 2015. Supercritical antisolvent precipitation of TiO2 with tailored anatase/rutile composition for applications in redox catalysis and Ppotocatalysis. Applied Catalysis A: General 504 , pp.62-73. (10.1016/j.apcata.2015.02.023)
- Marin, R. P. et al., 2014. Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catalysis Science & Technology 4 (7), pp.1970-1978. (10.1039/c4cy00044g)
- Marin, R. P. et al., 2013. Green preparation of transition metal oxide catalysts using supercritical CO2 anti-solvent precipitation for the total oxidation of propane. Applied Catalysis B: Environmental 140 , pp.671-679. (10.1016/j.apcatb.2013.04.076)
- Miedziak, P. J. et al. 2009. Ceria prepared using supercritical antisolvent precipitation: a green support for gold-palladium nanoparticles for the selective catalytic oxidation of alcohols. Journal of Materials Chemistry 19 (45), pp.8619-8627. (10.1039/b911102f)
- Myakonkaya, O. et al., 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3 (3), pp.339-341. (10.1002/cssc.200900280)
- Myakonkaya, O. et al., 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350 (2), pp.443-445. (10.1016/j.jcis.2010.06.064)
- Orlowski, I. et al. 2019. The hydrogenation of levulinic acid to γ-valerolactone over Cu-ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry 36 , pp.15-24. (10.1016/j.jechem.2019.01.015)
- Perea Marin, R. et al. 2013. Preparation of Fischer–Tropsch supported cobalt catalysts using a new gas anti-solvent process. ACS Catalysis 3 (4), pp.764-772. (10.1021/cs4000359)
- Pradhan, S. et al. 2012. An attempt at enhancing the regioselective oxidation of decane using catalysis with reverse micelles. Catalysis Letters 142 (3), pp.302-307. (10.1007/s10562-011-0728-6)
- Pradhan, S. et al. 2012. Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygenated aromatics. Nature Chemistry 4 (2), pp.134-139. (10.1038/nchem.1245)
- Pradhan, S. et al. 2012. Multi-functionality of Ga/ZSM-5 catalysts during anaerobic and aerobic aromatisation of n-decane. Chemical Science 3 (10), pp.2958-2964. (10.1039/c2sc20683h)
- Pudge, G. J. F. et al. 2022. Iron molybdate catalysts synthesised via dicarboxylate decomposition for the partial oxidation of methanol to formaldehyde. Catalysis Science & Technology 12 , pp.4552-4560. (10.1039/D2CY00699E)
- Rabiu, H. S. , Hayward, J. S. and Bartley, J. K. 2025. High surface area perovskite materials as functional catalyst supports for glycerol oxidation. Molecular Catalysis 572 114750. (10.1016/j.mcat.2024.114750)
- Sithamparappillai, U. et al., 2010. Effect on the structure and morphology of vanadium phosphates of the addition of alkanes during the alcoholreduction of VOPO4·2H2O. Journal of Materials Chemistry 20 (25), pp.5310-5318. (10.1039/c0jm00403k)
- Smith, P. J. et al. 2017. Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient‐pressure water‐gas‐shift copper/zinc oxide catalysts. ChemCatChem 9 (9), pp.1621-1631. (10.1002/cctc.201601603)
- Smith, P. J. et al. 2017. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation. Chemical Science 8 (3), pp.2436-2447. (10.1039/C6SC04130B)
- Song, N. et al., 2005. Oxidation of isobutene to methacrolein using bismuth molybdate catalysts: Comparison of operation in periodic and continuous feed mode. Journal of Catalysis 236 (2), pp.282-291. (10.1016/j.jcat.2005.10.008)
- Song, N. et al., 2006. Oxidation of butane to maleic anhydride using vanadium phosphate catalysts: Comparison of operation in aerobic and anaerobic conditions using a gas-gas periodic flow reactor. Catalysis Letters 106 (3-4), pp.127-131. (10.1007/s10562-005-9619-z)
- Sun, J. et al. 2024. Designing heterogeneous catalysts for microwave assisted selective oxygenation. ChemCatChem 16 (19) e202301586. (10.1002/cctc.202301586)
- Sun, J. et al., 2025. Microwave-assisted selective oxidation of propene over bismuth molybdate catalysts: the importance of catalyst synthesis methodology. Discover Catalysis 2 (1) 11. (10.1007/s44344-025-00014-7)
- Tang, Z. et al., 2006. Preparation of TiO2 using supercritical CO2 antisolvent precipitation (SAS): A support for high activity gold catalysts. Studies in Surface Science and Catalysis 162 , pp.219-226. (10.1016/S0167-2991(06)80910-9)
- Tang, Z. et al., 2007. Nanocrystalline cerium oxide produced by supercritical antisolvent precipitation as a support for high-activity gold catalysts. Journal of Catalysis 249 (2), pp.208-219. (10.1016/j.jcat.2007.04.016)
- Tang, Z. et al. 2009. New nanocrystalline Cu/MnOx catalysts prepared from supercritical antisolvent precipitation. ChemCatChem 1 (2), pp.247-251. (10.1002/cctc.200900195)
- Tang, Z. et al. 2011. Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature. Catalysis Science & Technology 1 (5), pp.740-746. (10.1039/c1cy00064k)
- Taufiq-Yap, Y. H. et al., 2009. Dependence of n-Butane Activation on Active Site of Vanadium Phosphate Catalysts. Catalysis Letters 130 (3-4), pp.327-334. (10.1007/s10562-009-0003-2)
- Taufiq-Yap, Y. H. et al., 2011. Influence of Milling Media on the Physicochemicals and Catalytic Properties of Mechanochemical Treated Vanadium Phosphate Catalysts. Catalysis Letters 141 (3), pp.400-407. (10.1007/s10562-010-0508-8)
- Taufiq-Yap, Y. et al., 2011. Effect of tellurium promoter on vanadium phosphate catalyst for partial oxidation of n-butane. Journal of Natural Gas Chemistry 20 (6), pp.635-638. (10.1016/S1003-9953(10)60251-4)
- Taufiq-Yap, Y. et al. 2010. The Effect of Cr, Ni, Fe, and Mn Dopants on the Performance of Hydrothermal Synthesized Vanadium Phosphate Catalysts for n-Butane Oxidation. Petroleum Science and Technology 28 (10), pp.997-1012. (10.1080/10916460903058004)
- Wallace, W. T. et al. 2021. Triethylamine-water as a switchable solvent for the synthesis of Cu/ZnO catalysts for carbon dioxide hydrogenation to methanol. Topics in Catalysis 64 , pp.984-991. (10.1007/s11244-021-01457-6)
- Wallace, W. T. et al. 2024. The antisolvent precipitation of CuZnOx mixed oxide materials using a choline chloride-urea deep eutectic solvent. Molecules 29 (14) 3357. (10.3390/molecules29143357)
- Wang, J. et al. 2015. Au-Pd nanoparticles dispersed on composite titania/graphene oxide-supports as a highly active oxidation catalyst. ACS Catalysis 5 (6), pp.3575-3587. (10.1021/acscatal.5b00480)
- Weng, W. et al., 2009. Evaluation and structural characterization of dupont V-P-O/SiO2 catalysts. Microscopy and Microanalysis 15 (SUPPL.), pp.1412-1413. (10.1017/S1431927609092332)
- Weng, W. et al., 2009. Structural characterization of vanadium phosphate catalysts prepared using a Di-block copolymer template. Microscopy and Microanalysis 15 (SUPPL.), pp.1438-1439. (10.1017/S1431927609094203)
- Weng, W. et al., 2011. Controlling vanadium phosphate catalyst precursor morphology by adding alkane solvents in the reduction step of VOPO4·2H2O to VOHPO4·0.5H2O. Journal of Materials Chemistry 21 (40), pp.16136-16146. (10.1039/c1jm12456k)
- Weng, W. et al., 2010. Electron Microscopy Studies of V-P-O Catalyst Precursors: Defining the Dihydrate to Hemihydrate Phase Transformation [Abstract]. Microscopy and Microanalysis 16 (S2), pp.1198-1199. (10.1017/S1431927610059805)
- Whiting, G. T. et al., 2014. Vanadium promoted molybdenum phosphate catalysts for the vapour phase partial oxidation of methanol to formaldehyde. Applied Catalysis A: General 485 , pp.51-57. (10.1016/j.apcata.2014.07.029)
- Whiting, G. T. et al., 2015. Methyl formate formation from methanol oxidation using supported gold-palladium nanoparticles. ACS Catalysis 5 (2), pp.637-644. (10.1021/cs501728r)
- Xu, C. et al., 2008. On the synthesis of b-keto-1,3-dithianes from conjugated ynones catalyzed by magnesium oxide. Tetrahedron Letters 49 (15), pp.2454-2456. (10.1016/j.tetlet.2008.02.030)
- Xu, C. et al., 2010. Mgo Catalysed Triglyceride Transesterification for Biodiesel Synthesis. Catalysis Letters 138 (1-2), pp.1-7. (10.1007/s10562-010-0365-5)
- Yeo, B. et al. 2016. The surface of iron molybdate catalysts used for the selective oxidation of methanol. Surface Science 648 , pp.163-169. (10.1016/j.susc.2015.11.010)
Book sections
- Bartley, J. K. et al. 2010. Metal oxides. In: Horvath, I. T. ed. Encyclopedia of Catalysis. New York: John Wiley & Sons(10.1002/0471227617.eoc139.pub2)
Patents
- Bartley, J. K. et al. 2012. Catalyst, method of manufacture and use thereof. Patent WO 2012035737[Patent]
Research
Research is focussed on designing and synthesising metal oxides and mixed metal oxides for use as catalysts and supports for applications in the following areas:
- Selective oxidation
- Microwave assisted catalysis
- Photocatalysis
- Environmental catalysis
- Biomass valorisation
- Biofuel production
For more information on specific projects available with Dr Jonathan Bartley please review the Catalysis and interfacial science section of our research project themes.
Teaching
CH2310 Training in Research Methods
CH3310 Heterogeneous Catalysis
Biography
Jonathan studied at the University of Liverpool, obtaining a BSc in Chemistry before completing an MSc in Surface Science and Catalysis and a PhD in Heterogeneous Catalysis from the Leverhulme Centre for Innovative Catalysis. Following his PhD he moved to Cardiff University and is currently a Reader in Physical Chemistry in the School of Chemistry and the Cardiff Catalysis Institute.
Supervisions
Research projects available in the following areas:
- Heterogeneous catalysis
- Synthesis of metal oxide catalysts
- Selective oxidation
- Microwave assisted catalysis
- Photocatalysis
- Environmental catalysis
- Biomass valorisation
- Biofuel production
Current supervision
Mashael Almalki
Lamiaa Alsalem Alsalem