Dr Daniel Gallichan
Darlithydd mewn Delweddu Meddygol
- GallichanD@caerdydd.ac.uk
- +44 29208 70045
-
Canolfan Ymchwil Delweddu'r Ymennydd Prifysgol Caerdydd, Heol Maendy, Caerdydd, CF24 4HQ
Adeiladau'r Frenhines - Adeilad y Dwyrain, Ystafell E/3.24, 5 The Parade, Heol Casnewydd, Caerdydd, CF24 3AA
- Sylwebydd y cyfryngau
- Ar gael fel goruchwyliwr ôl-raddedig
Trosolwyg
Ymunais â'r Ysgol Peirianneg fel darlithydd ym mis Tachwedd 2016, ac mae gen i brofiad o weithio ar ymchwil i wahanol agweddau ar ffiseg Delweddu Cyseiniant Magnetig, gyda fy ngwaith diweddaraf yn canolbwyntio ar ddatblygu dulliau ar gyfer cywiro cynnig ar gyfer delweddu cydraniad uchel iawn. Mae fy ymchwil wedi'i leoli yn CUBRIC.
Crëwyd y ddelwedd uchod gan ddefnyddio'r feddalwedd ffynhonnell agored Blender a rhoddais fy ymennydd yn olygfa demo 'ystafell ddosbarth' a grëwyd gan Christophe Seux. Gallwch hefyd ddarllen am sut i gael eich ymennydd eich hun i mewn i Blender trwy ddilyn y cyfarwyddiadau o fy mlog.
Allgymorth - ENGINmakers
Yn ystod y fenter beilot yn 2022, gweithiais gyda myfyrwyr i ddatblygu dau brosiect yn seiliedig ar blatfform micro:bit y BBC , cylchfwrdd bach cost isel y gellir ei raglennu sydd eisoes yn cael ei ddefnyddio'n helaeth mewn ysgolion ledled y DU. Gan weithio gyda chydweithwyr yn yr Ysgol Cyfrifiadureg a Gwybodeg, nod y prosiect hwn yw creu llwybr ar gyfer pontio'r bwlch rhwng ymchwil yn yr Ysgol Peirianneg ac addysg gynradd ac uwchradd yn yr ardal leol. Darllenwch fwy yma: ENGINmakers - ENGINmakers
Allgymorth - Gemau Ymennydd
Rhwng 2017 a 2019 trefnais y sioe 'DIY Brain Surgery' fel rhan o Gemau Ymennydd Prifysgol Caerdydd a gynhaliwyd yn yr Amgueddfa Genedlaethol - mewn cydweithrediad â niwrolawfeddygon o CUBRIC a GIG Cymru.
Roedd y llawfeddygon plant gwirfoddol yn gweithredu'n llwyddiannus ar gleifion ymennydd jeli-ymennydd - gan gael gwared ar y 'darnau drwg' (mefus, mafon, ac ati) yn seiliedig ar y sganiau MRI.
Gallwch ddarllen mwy am sut i wneud eich ymennydd jeli eich hun ar fy mlog.
Mwy o Ymennydd
Gallwch hefyd edrych yn agosach ar fy ymennydd mewn 3D os dymunwch, gyda'r gwyliwr hwn sy'n seiliedig ar borwr:
Cyhoeddiad
2024
- Marchetto, E. and Gallichan, D. 2024. Analysis of the effect of motion on highly accelerated 3D FatNavs in 3D brain images acquired at 3T. PLoS ONE 19(7), article number: e0306078. (10.1371/journal.pone.0306078)
2023
- Marchetto, E., Murphy, K., Glimberg, S. L. and Gallichan, D. 2023. Robust retrospective motion correction of head motion using navigator-based and markerless motion tracking techniques. Magnetic Resonance in Medicine 90(4), pp. 1297-1315. (10.1002/mrm.29705)
2022
- Gallichan, D. and Engström, M. 2022. Image-space navigators. In: van der Kouwe, A. J. and Andre, J. B. eds. Motion Correction in MR Correction of Position, Motion, and Dynamic Field Changes., Vol. 6. Advances in Magnetic Resonance Technology and Applications, pp. 225-236., (10.1016/B978-0-12-824460-9.00015-7)
- Whittaker, J. R., Fasano, F., Venzi, M., Liebig, P., Gallichan, D., Möller, H. E. and Murphy, K. 2022. Measuring arterial pulsatility with dynamic inflow magnitude contrast. Frontiers in Neuroscience 15, article number: 795749. (10.3389/fnins.2021.795749)
2021
- Maier, O. et al. 2021. CG-SENSE revisited: Results from the first ISMRM reproducibility challenge. Magnetic Resonance in Medicine 85(4), pp. 1821-1839. (10.1002/mrm.28569)
2020
- Bazin, P. et al. 2020. Sharpness in motion corrected quantitative imaging at 7T. NeuroImage 222, article number: 117227. (10.1016/j.neuroimage.2020.117227)
- Jorge, J. et al. 2020. Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T. Magnetic Resonance in Medicine 84(3), pp. 1218-1234. (10.1002/mrm.28197)
2019
- Gretsch, F., Mattern, H., Gallichan, D. and Speck, O. 2019. Fat navigators and Moiré phase tracking comparison for motion estimation and retrospective correction. Magnetic Resonance in Medicine 83(1), pp. 83-93. (10.1002/mrm.27908)
- Glessgen, C., Gallichan, D., Moor, M., Hainc, N. and Federau, C. 2019. Evaluation of 3D fat-navigator based retrospective motion correction in the clinical setting of patients with brain tumors. Neuroradiology 61(5), pp. 557-563. (10.1007/s00234-019-02160-w)
- Najdenovska, E. et al. 2019. Comparison of MRI-based automated segmentation methods and functional neurosurgery targeting with direct visualization of the Ventro-intermediate thalamic nucleus at 7T. Scientific Reports 9, article number: 1119. (10.1038/s41598-018-37825-8)
2018
- Gretsch, F., Marques, J. P. and Gallichan, D. 2018. Investigating the accuracy of FatNav-derived estimates of temporal B0 changes and their application to retrospective correction of high-resolution 3D GRE of the human brain at 7T. Magnetic Resonance in Medicine 80(2), pp. 585-597. (10.1002/mrm.27063)
- van der Zwaag, W., Reynaud, O., Narsude, M., Gallichan, D. and Marques, J. P. 2018. High spatio-temporal resolution in functional MRI with 3D echo planar imaging using cylindrical excitation and a CAIPIRINHA undersampling pattern. Magnetic Resonance in Medicine 79(5), pp. 2589-2596. (10.1002/mrm.26906)
- Gallichan, D. 2018. Diffusion MRI of the human brain at ultra-high field (UHF): A review. NeuroImage 168, pp. 172-180. (10.1016/j.neuroimage.2017.04.037)
- Jorge, J., Gretsch, F., Gallichan, D. and Marques, J. P. 2018. Tracking discrete off-resonance markers with three spokes (trackDOTS) for compensation of head motion and B0 perturbations: accuracy and performance in anatomical imaging. Magnetic Resonance in Medicine 79(1), pp. 160-171. (10.1002/mrm.26654)
2017
- Gallichan, D. and Marques, J. P. 2017. Optimizing the acceleration and resolution of three-dimensional fat image navigators for high-resolution motion correction at 7T. Magnetic Resonance in Medicine 77(2), pp. 547-558. (10.1002/mrm.26127)
2016
- Narsude, M., Gallichan, D., van der Zwaag, W., Gruetter, R. and Marques, J. P. 2016. Three-dimensional echo planar imaging with controlled aliasing: A sequence for high temporal resolution functional MRI. Magnetic Resonance in Medicine 75(6), pp. 2350-2361. (10.1002/mrm.25835)
- Eggenschwiler, F., O'Brien, K. R., Gallichan, D., Gruetter, R. and Marques, J. P. 2016. 3D T (2)-weighted imaging at 7T using dynamic k(T)-points on single-transmit MRI systems. Magnetic Resonance Materials in Physics, Biology and Medicine 29(3), pp. 347-358. (10.1007/s10334-016-0545-4)
- Federau, C. and Gallichan, D. 2016. Motion-correction enabled ultra-high resolution In-Vivo 7T-MRI of the brain. PLoS ONE 11(5), article number: e0154974. (10.1371/journal.pone.0154974)
- Gallichan, D., Marques, J. P. and Gruetter, R. 2016. Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magnetic Resonance in Medicine 75(3), pp. 1030-1039. (10.1002/mrm.25670)
2015
- Littin, S. et al. 2015. Monoplanar gradient system for imaging with nonlinear gradients. Magnetic Resonance Materials in Physics, Biology and Medicine 28(5), pp. 447-457. (10.1007/s10334-015-0481-8)
- Zaitsev, M., Schultz, G., Hennig, J., Gruetter, R. and Gallichan, D. 2015. Parallel imaging with phase scrambling. Magnetic Resonance in Medicine 73(4), pp. 1407-1419. (10.1002/mrm.25252)
- Testud, F. et al. 2015. Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction. Magnetic Resonance in Medicine 73(3), pp. 1340-1357. (10.1002/mrm.25235)
- Reynaud, O., Gallichan, D., Schaller, B. and Gruetter, R. 2015. Fast low-specific absorption rate B0-mapping along projections at high field using two-dimensional radiofrequency pulses. Magnetic Resonance in Medicine 73(3), pp. 901-908. (10.1002/mrm.25217)
- Schultz, G., Gallichan, D., Weber, H., Witschey, W. R., Honal, M., Hennig, J. and Zaitsev, M. 2015. Image reconstruction in k-space from MR data encoded with ambiguous gradient fields. Magnetic Resonance in Medicine 73(2), pp. 857-864. (10.1002/mrm.25152)
2014
- Schultz, G., Gallichan, D., Reisert, M., Hennig, J. and Zaitsev, M. 2014. MR image reconstruction from generalized projections. Magnetic Resonance in Medicine 72(2), pp. 546-557.
- Weber, H., Haas, M., Kokorin, D., Gallichan, D., Hennig, J. and Zaitsev, M. 2014. Local shape adaptation for curved slice selection. Magnetic Resonance in Medicine 72(1), pp. 112-123. (10.1002/mrm.24906)
- Weber, H., Schultz, G., Gallichan, D., Hennig, J. and Zaitsev, M. 2014. Local field of view imaging for alias-free undersampling with nonlinear spatial encoding magnetic fields. Magnetic Resonance in Medicine 71(3), pp. 1002-1014.
- Witschey, W. R. T. et al. 2014. Stages: Sub-Fourier dynamic shim updating using nonlinear magnetic field phase preparation. Magnetic Resonance in Medicine 71(1), pp. 57-66. (10.1002/mrm.24625)
2013
- Welz, A. et al. 2013. Development and characterization of an unshielded PatLoc gradient coil for human head imaging. Concepts in Magnetic Resonance Part B Magnetic Resonance Engineering 43(4), pp. 111-125. (10.1002/cmr.b.21244)
- Layton, K. J. et al. 2013. Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields. Magnetic Resonance in Medicine 70(3), pp. 684-696. (10.1002/mrm.24494)
- Weber, H. et al. 2013. Excitation and geometrically matched local encoding of curved slices. Magnetic Resonance in Medicine 69(5), pp. 1317-1325. (10.1002/mrm.24364)
2012
- Gallichan, D., Cocosco, C. A., Schultz, G., Weber, H., Welz, A. M., Hennig, J. and Zaitsev, M. 2012. Practical considerations for in vivo MRI with higher dimensional spatial encoding. Magnetic Resonance Materials in Physics, Biology and Medicine 25(6), pp. 419-431. (10.1007/s10334-012-0314-y)
- Lin, F. et al. 2012. Reconstruction of MRI data encoded by multiple nonbijective curvilinear magnetic fields. Magnetic Resonance in Medicine 68(4), pp. 1145-1156. (10.1002/mrm.24115)
- Knoll, F., Schultz, G., Bredies, K., Gallichan, D., Zaitsev, M., Hennig, J. and Stollberger, R. 2012. Reconstruction of undersampled radial PatLoc imaging using total generalized variation. Magnetic Resonance in Medicine 70(1), pp. 40-52. (10.1002/mrm.24426)
- Witschey, W. R. et al. 2012. Localization by nonlinear phase preparation and k-space trajectory design. Magnetic Resonance in Medicine 67(6), pp. 1620-1632. (10.1002/mrm.23146)
2011
- Schultz, G. et al. 2011. Radial imaging with multipolar magnetic encoding fields. IEEE Transactions on Medical Imaging 30(12), pp. 2134-2145. (10.1109/TMI.2011.2164262)
- Gallichan, D., Cocosco, C. A., Dewdney, A., Schultz, G., Welz, A., Hennig, J. and Zaitsev, M. 2011. Simultaneously driven linear and nonlinear spatial encoding fields in MRI. Magnetic Resonance in Medicine 65(3), pp. 702-714. (10.1002/mrm.22672)
- Nagel, S. et al. 2011. Neuroprotection by dimethyloxalylglycine following permanent and transient focal cerebral ischemia in rats. Journal of Cerebral Blood Flow & Metabolism 31(1), pp. 132-143. (10.1038/jcbfm.2010.60)
2010
- Gallichan, D., Andersson, J. L. R., Jenkinson, M., Robson, M. D. and Miller, K. L. 2010. Reducing distortions in diffusion-weighted echo planar imaging with a dual-echo blip-reversed sequence. Magnetic Resonance in Medicine 64(2), pp. 382-390. (10.1002/mrm.22318)
- Xie, J., Clare, S., Gallichan, D., Gunn, R. N. and Jezzard, P. 2010. Real-time adaptive sequential design for optimal acquisition of arterial spin labeling MRI data. Magnetic Resonance in Medicine 64(1), pp. 203-210. (10.1002/mrm.22398)
- Gallichan, D., Scholz, J., Bartsch, A., Behrens, T. E., Robson, M. D. and Miller, K. L. 2010. Addressing a systematic vibration artifact in diffusion-weighted MRI. Human Brain Mapping 31(2), pp. 193-202. (10.1002/hbm.20856)
- McNab, J. A., Gallichan, D. and Miller, K. L. 2010. 3D steady-state diffusion-weighted imaging with trajectory using radially batched internal navigator echoes (TURBINE). Magnetic Resonance in Medicine 63(1), pp. 235-242. (10.1002/mrm.22183)
2009
- Gallichan, D., Robson, M. D., Bartsch, A. and Miller, K. L. 2009. TREMR: Table-resonance elastography with MR. Magnetic Resonance in Medicine 62(3), pp. 815-821. (10.1002/mrm.22046)
- Gallichan, D. and Jezzard, P. 2009. Variation in the shape of pulsed arterial spin labeling kinetic curves across the healthy human brain and its implications for CBF quantification. Magnetic Resonance in Medicine 61(3), pp. 686-695. (10.1002/mrm.21886)
2008
- Gallichan, D. and Jezzard, P. 2008. Modeling the effects of dispersion and pulsatility of blood flow in pulsed arterial spin labeling. Magnetic Resonance in Medicine 60(1), pp. 53-63. (10.1002/mrm.21654)
- Xie, J., Gallichan, D., Gunn, R. N. and Jezzard, P. 2008. Optimal design of pulsed arterial spin labeling MRI experiments. Magnetic Resonance in Medicine 59(4), pp. 826-834. (10.1002/mrm.21549)
- MacIntosh, B. J. et al. 2008. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. Journal of Cerebral Blood Flow and Metabolism 28(8), pp. 1514-1522. (10.1038/jcbfm.2008.46)
2007
- Chiarelli, P. A., Bulte, D. P., Wise, R. G., Gallichan, D. and Jezzard, P. 2007. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 37(3), pp. 808-820. (10.1016/j.neuroimage.2007.05.033)
- Chiarelli, P. A., Bulte, D. P., Gallichan, D., Piechnik, S. K., Wise, R. G. and Jezzard, P. 2007. Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magnetic Resonance in Medicine 57(3), pp. 538-547. (10.1002/mrm.21171)
2006
- Woolrich, M. W., Chiarelli, P., Gallichan, D., Perthen, J. and Liu, T. T. 2006. Bayesian inference of hemodynamic changes in functional arterial spin labeling data. Magnetic Resonance in Medicine 56(4), pp. 891-906. (10.1002/mrm.21039)
Articles
- Marchetto, E. and Gallichan, D. 2024. Analysis of the effect of motion on highly accelerated 3D FatNavs in 3D brain images acquired at 3T. PLoS ONE 19(7), article number: e0306078. (10.1371/journal.pone.0306078)
- Marchetto, E., Murphy, K., Glimberg, S. L. and Gallichan, D. 2023. Robust retrospective motion correction of head motion using navigator-based and markerless motion tracking techniques. Magnetic Resonance in Medicine 90(4), pp. 1297-1315. (10.1002/mrm.29705)
- Whittaker, J. R., Fasano, F., Venzi, M., Liebig, P., Gallichan, D., Möller, H. E. and Murphy, K. 2022. Measuring arterial pulsatility with dynamic inflow magnitude contrast. Frontiers in Neuroscience 15, article number: 795749. (10.3389/fnins.2021.795749)
- Maier, O. et al. 2021. CG-SENSE revisited: Results from the first ISMRM reproducibility challenge. Magnetic Resonance in Medicine 85(4), pp. 1821-1839. (10.1002/mrm.28569)
- Bazin, P. et al. 2020. Sharpness in motion corrected quantitative imaging at 7T. NeuroImage 222, article number: 117227. (10.1016/j.neuroimage.2020.117227)
- Jorge, J. et al. 2020. Improved susceptibility-weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T. Magnetic Resonance in Medicine 84(3), pp. 1218-1234. (10.1002/mrm.28197)
- Gretsch, F., Mattern, H., Gallichan, D. and Speck, O. 2019. Fat navigators and Moiré phase tracking comparison for motion estimation and retrospective correction. Magnetic Resonance in Medicine 83(1), pp. 83-93. (10.1002/mrm.27908)
- Glessgen, C., Gallichan, D., Moor, M., Hainc, N. and Federau, C. 2019. Evaluation of 3D fat-navigator based retrospective motion correction in the clinical setting of patients with brain tumors. Neuroradiology 61(5), pp. 557-563. (10.1007/s00234-019-02160-w)
- Najdenovska, E. et al. 2019. Comparison of MRI-based automated segmentation methods and functional neurosurgery targeting with direct visualization of the Ventro-intermediate thalamic nucleus at 7T. Scientific Reports 9, article number: 1119. (10.1038/s41598-018-37825-8)
- Gretsch, F., Marques, J. P. and Gallichan, D. 2018. Investigating the accuracy of FatNav-derived estimates of temporal B0 changes and their application to retrospective correction of high-resolution 3D GRE of the human brain at 7T. Magnetic Resonance in Medicine 80(2), pp. 585-597. (10.1002/mrm.27063)
- van der Zwaag, W., Reynaud, O., Narsude, M., Gallichan, D. and Marques, J. P. 2018. High spatio-temporal resolution in functional MRI with 3D echo planar imaging using cylindrical excitation and a CAIPIRINHA undersampling pattern. Magnetic Resonance in Medicine 79(5), pp. 2589-2596. (10.1002/mrm.26906)
- Gallichan, D. 2018. Diffusion MRI of the human brain at ultra-high field (UHF): A review. NeuroImage 168, pp. 172-180. (10.1016/j.neuroimage.2017.04.037)
- Jorge, J., Gretsch, F., Gallichan, D. and Marques, J. P. 2018. Tracking discrete off-resonance markers with three spokes (trackDOTS) for compensation of head motion and B0 perturbations: accuracy and performance in anatomical imaging. Magnetic Resonance in Medicine 79(1), pp. 160-171. (10.1002/mrm.26654)
- Gallichan, D. and Marques, J. P. 2017. Optimizing the acceleration and resolution of three-dimensional fat image navigators for high-resolution motion correction at 7T. Magnetic Resonance in Medicine 77(2), pp. 547-558. (10.1002/mrm.26127)
- Narsude, M., Gallichan, D., van der Zwaag, W., Gruetter, R. and Marques, J. P. 2016. Three-dimensional echo planar imaging with controlled aliasing: A sequence for high temporal resolution functional MRI. Magnetic Resonance in Medicine 75(6), pp. 2350-2361. (10.1002/mrm.25835)
- Eggenschwiler, F., O'Brien, K. R., Gallichan, D., Gruetter, R. and Marques, J. P. 2016. 3D T (2)-weighted imaging at 7T using dynamic k(T)-points on single-transmit MRI systems. Magnetic Resonance Materials in Physics, Biology and Medicine 29(3), pp. 347-358. (10.1007/s10334-016-0545-4)
- Federau, C. and Gallichan, D. 2016. Motion-correction enabled ultra-high resolution In-Vivo 7T-MRI of the brain. PLoS ONE 11(5), article number: e0154974. (10.1371/journal.pone.0154974)
- Gallichan, D., Marques, J. P. and Gruetter, R. 2016. Retrospective correction of involuntary microscopic head movement using highly accelerated fat image navigators (3D FatNavs) at 7T. Magnetic Resonance in Medicine 75(3), pp. 1030-1039. (10.1002/mrm.25670)
- Littin, S. et al. 2015. Monoplanar gradient system for imaging with nonlinear gradients. Magnetic Resonance Materials in Physics, Biology and Medicine 28(5), pp. 447-457. (10.1007/s10334-015-0481-8)
- Zaitsev, M., Schultz, G., Hennig, J., Gruetter, R. and Gallichan, D. 2015. Parallel imaging with phase scrambling. Magnetic Resonance in Medicine 73(4), pp. 1407-1419. (10.1002/mrm.25252)
- Testud, F. et al. 2015. Single-shot imaging with higher-dimensional encoding using magnetic field monitoring and concomitant field correction. Magnetic Resonance in Medicine 73(3), pp. 1340-1357. (10.1002/mrm.25235)
- Reynaud, O., Gallichan, D., Schaller, B. and Gruetter, R. 2015. Fast low-specific absorption rate B0-mapping along projections at high field using two-dimensional radiofrequency pulses. Magnetic Resonance in Medicine 73(3), pp. 901-908. (10.1002/mrm.25217)
- Schultz, G., Gallichan, D., Weber, H., Witschey, W. R., Honal, M., Hennig, J. and Zaitsev, M. 2015. Image reconstruction in k-space from MR data encoded with ambiguous gradient fields. Magnetic Resonance in Medicine 73(2), pp. 857-864. (10.1002/mrm.25152)
- Schultz, G., Gallichan, D., Reisert, M., Hennig, J. and Zaitsev, M. 2014. MR image reconstruction from generalized projections. Magnetic Resonance in Medicine 72(2), pp. 546-557.
- Weber, H., Haas, M., Kokorin, D., Gallichan, D., Hennig, J. and Zaitsev, M. 2014. Local shape adaptation for curved slice selection. Magnetic Resonance in Medicine 72(1), pp. 112-123. (10.1002/mrm.24906)
- Weber, H., Schultz, G., Gallichan, D., Hennig, J. and Zaitsev, M. 2014. Local field of view imaging for alias-free undersampling with nonlinear spatial encoding magnetic fields. Magnetic Resonance in Medicine 71(3), pp. 1002-1014.
- Witschey, W. R. T. et al. 2014. Stages: Sub-Fourier dynamic shim updating using nonlinear magnetic field phase preparation. Magnetic Resonance in Medicine 71(1), pp. 57-66. (10.1002/mrm.24625)
- Welz, A. et al. 2013. Development and characterization of an unshielded PatLoc gradient coil for human head imaging. Concepts in Magnetic Resonance Part B Magnetic Resonance Engineering 43(4), pp. 111-125. (10.1002/cmr.b.21244)
- Layton, K. J. et al. 2013. Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields. Magnetic Resonance in Medicine 70(3), pp. 684-696. (10.1002/mrm.24494)
- Weber, H. et al. 2013. Excitation and geometrically matched local encoding of curved slices. Magnetic Resonance in Medicine 69(5), pp. 1317-1325. (10.1002/mrm.24364)
- Gallichan, D., Cocosco, C. A., Schultz, G., Weber, H., Welz, A. M., Hennig, J. and Zaitsev, M. 2012. Practical considerations for in vivo MRI with higher dimensional spatial encoding. Magnetic Resonance Materials in Physics, Biology and Medicine 25(6), pp. 419-431. (10.1007/s10334-012-0314-y)
- Lin, F. et al. 2012. Reconstruction of MRI data encoded by multiple nonbijective curvilinear magnetic fields. Magnetic Resonance in Medicine 68(4), pp. 1145-1156. (10.1002/mrm.24115)
- Knoll, F., Schultz, G., Bredies, K., Gallichan, D., Zaitsev, M., Hennig, J. and Stollberger, R. 2012. Reconstruction of undersampled radial PatLoc imaging using total generalized variation. Magnetic Resonance in Medicine 70(1), pp. 40-52. (10.1002/mrm.24426)
- Witschey, W. R. et al. 2012. Localization by nonlinear phase preparation and k-space trajectory design. Magnetic Resonance in Medicine 67(6), pp. 1620-1632. (10.1002/mrm.23146)
- Schultz, G. et al. 2011. Radial imaging with multipolar magnetic encoding fields. IEEE Transactions on Medical Imaging 30(12), pp. 2134-2145. (10.1109/TMI.2011.2164262)
- Gallichan, D., Cocosco, C. A., Dewdney, A., Schultz, G., Welz, A., Hennig, J. and Zaitsev, M. 2011. Simultaneously driven linear and nonlinear spatial encoding fields in MRI. Magnetic Resonance in Medicine 65(3), pp. 702-714. (10.1002/mrm.22672)
- Nagel, S. et al. 2011. Neuroprotection by dimethyloxalylglycine following permanent and transient focal cerebral ischemia in rats. Journal of Cerebral Blood Flow & Metabolism 31(1), pp. 132-143. (10.1038/jcbfm.2010.60)
- Gallichan, D., Andersson, J. L. R., Jenkinson, M., Robson, M. D. and Miller, K. L. 2010. Reducing distortions in diffusion-weighted echo planar imaging with a dual-echo blip-reversed sequence. Magnetic Resonance in Medicine 64(2), pp. 382-390. (10.1002/mrm.22318)
- Xie, J., Clare, S., Gallichan, D., Gunn, R. N. and Jezzard, P. 2010. Real-time adaptive sequential design for optimal acquisition of arterial spin labeling MRI data. Magnetic Resonance in Medicine 64(1), pp. 203-210. (10.1002/mrm.22398)
- Gallichan, D., Scholz, J., Bartsch, A., Behrens, T. E., Robson, M. D. and Miller, K. L. 2010. Addressing a systematic vibration artifact in diffusion-weighted MRI. Human Brain Mapping 31(2), pp. 193-202. (10.1002/hbm.20856)
- McNab, J. A., Gallichan, D. and Miller, K. L. 2010. 3D steady-state diffusion-weighted imaging with trajectory using radially batched internal navigator echoes (TURBINE). Magnetic Resonance in Medicine 63(1), pp. 235-242. (10.1002/mrm.22183)
- Gallichan, D., Robson, M. D., Bartsch, A. and Miller, K. L. 2009. TREMR: Table-resonance elastography with MR. Magnetic Resonance in Medicine 62(3), pp. 815-821. (10.1002/mrm.22046)
- Gallichan, D. and Jezzard, P. 2009. Variation in the shape of pulsed arterial spin labeling kinetic curves across the healthy human brain and its implications for CBF quantification. Magnetic Resonance in Medicine 61(3), pp. 686-695. (10.1002/mrm.21886)
- Gallichan, D. and Jezzard, P. 2008. Modeling the effects of dispersion and pulsatility of blood flow in pulsed arterial spin labeling. Magnetic Resonance in Medicine 60(1), pp. 53-63. (10.1002/mrm.21654)
- Xie, J., Gallichan, D., Gunn, R. N. and Jezzard, P. 2008. Optimal design of pulsed arterial spin labeling MRI experiments. Magnetic Resonance in Medicine 59(4), pp. 826-834. (10.1002/mrm.21549)
- MacIntosh, B. J. et al. 2008. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. Journal of Cerebral Blood Flow and Metabolism 28(8), pp. 1514-1522. (10.1038/jcbfm.2008.46)
- Chiarelli, P. A., Bulte, D. P., Wise, R. G., Gallichan, D. and Jezzard, P. 2007. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 37(3), pp. 808-820. (10.1016/j.neuroimage.2007.05.033)
- Chiarelli, P. A., Bulte, D. P., Gallichan, D., Piechnik, S. K., Wise, R. G. and Jezzard, P. 2007. Flow-metabolism coupling in human visual, motor, and supplementary motor areas assessed by magnetic resonance imaging. Magnetic Resonance in Medicine 57(3), pp. 538-547. (10.1002/mrm.21171)
- Woolrich, M. W., Chiarelli, P., Gallichan, D., Perthen, J. and Liu, T. T. 2006. Bayesian inference of hemodynamic changes in functional arterial spin labeling data. Magnetic Resonance in Medicine 56(4), pp. 891-906. (10.1002/mrm.21039)
Book sections
- Gallichan, D. and Engström, M. 2022. Image-space navigators. In: van der Kouwe, A. J. and Andre, J. B. eds. Motion Correction in MR Correction of Position, Motion, and Dynamic Field Changes., Vol. 6. Advances in Magnetic Resonance Technology and Applications, pp. 225-236., (10.1016/B978-0-12-824460-9.00015-7)
Ymchwil
Enghraifft Ffilm o FatNavs ar waith Enghraifft o FatNavs 3D go iawn yn ystod sgan lle gwnaeth y pwnc symudiadau bwriadol bach |
Cywiro cynnig gyda 3D FatNavs
Mae diddordeb parhaus mewn gwthio ffiniau'r hyn y gellir ei gyflawni gydag MRI, yn enwedig o ran datrysiad gofodol y delweddau. Yn CUBRIC rydym yn ffodus i gael 4 systemau MR o'r radd flaenaf, gan gynnwys magnet 7T pwerus iawn (mae sganwyr mewn ysbytai fel arfer yn gweithredu ar 1.5T neu 3T). Mae'r pŵer hwn yn ein galluogi i gaffael delweddau 3D llawn o'r ymennydd gyda cydraniad eithriadol o uchel (meintiau voxel < 500 micron) - ac eto mae angen amseroedd sgan hir ar y penderfyniadau uchel hyn o hyd. Mae'n hawdd deall, yn ystod amseroedd sganio hir (hyd at 30 munud neu fwy) y byddwch yn debygol o symud eich pen o filimetr neu ddau, hyd yn oed os ceisiwch aros mor llonydd â phosibl - a gyda'r delweddau cydraniad uchel iawn hyn bydd hyn yn dal i effeithio ar ansawdd y ddelwedd gyraeddadwy.
Dros yr ychydig flynyddoedd diwethaf - yn bennaf wrth weithio yn yr EPFL yn y Swistir - rwyf wedi bod yn datblygu dull i ddefnyddio caffaeliadau cyflym o'r braster yn unig yn y pen (FatNavs 3D) i ganiatáu olrhain symudiadau bach iawn i'r pen - y gellir eu cywiro wedyn trwy ôl-brosesu'r data crai.
Rydym yn awyddus i safleoedd eraill ddechrau rhoi cynnig ar FatNavs 3D - ac mae gennym gydweithwyr eisoes yn profi'r seqeunces ar wahanol safleoedd, ar lwyfannau Siemens a Philips. Os oes gennych ddiddordeb mewn cydweithredu, cysylltwch â mi drwy e-bost.
Gellir hefyd lawrlwytho'r set o offer Matlab a ddatblygwyd i gyflawni'r biblinell gywiro ôl-weithredol gyfan hefyd ynf reely lawrlwytho o'r dudalen RetroMoCoBox Github.
Delweddu'r ymennydd mewn cydraniad uchel iawn
Ym mis Mai 2016, gwnaethom hefyd ddangos defnyddio FatNavs 3D i ganiatáu delweddu cydraniad uchel iawn yn 7T, i lawr i tua 350 o gydraniad isotropig micron o'r ymennydd cyfan. Y papur llawn yw Mynediad Agored ac ar gael gan PLOS ONE - a gallwch hefyd lawrlwytho'r setiau data llawn mewn fformat NIFTI o'r Fframwaith Gwyddoniaeth Agored.
Hippocampus wedi'i segmentu â llaw Mae meddalwedd 3D yn gwneud hippocampus wedi'i segmentu â llaw o sgan MRI cydraniad uchel iawn. Darllenwch fwy yn Federau and Gallichan, PLOS ONE 2016. |
Yr egwyddor y tu ôl i 3D FatNavs
Gallai delwedd MRI nodweddiadol o'r pen ar gydraniad isel (2mm) gymryd tua 30au i'w gaffael:
Ond os ydym yn perfformio'r un sgan ond ar yr amledd sy'n benodol i fraster yn hytrach na dŵr, rydym yn cael y ddelwedd hon:
Mae'r braster o fewn y pen wedi'i leoli'n bennaf i'r croen y pen, sy'n arwain at ddelwedd sy'n brin (h.y. mae'r rhan fwyaf o'r ddelwedd yn sero neu'n agos at sero). Sparsity yn gysyniad pwysig wrth brosesu signalau, gan y gellir cywasgu signalau gwasgarog yn haws heb golli gwybodaeth. Y cysyniad cyfatebol Yn MRI yw, os gallwn gynrychioli ein delwedd mewn ffordd brin, yna dylem hefyd allu caffael y data ar gyfer ein delwedd yn llawer cyflymach (trwy ddelweddu cyfochrog) tra'n dal i gynnal ansawdd delwedd resymol.
Dyma'r un ddelwedd, ond caffaelwyd mewn ychydig dros 1 eiliad (cyflawnir ffactor cyflymu effeithiol o 28 trwy gyfuno cyflymiad 4x4 GRAPPA gyda 6/8 rhannol Fourier yn y ddau gyfeiriad amgodio cam):
Felly, cysyniad y FatNav 3D yw caffael cyfrolau fel yr hyn a ddangosir uchod yn rheolaidd (er enghraifft, gellid caffael delwedd 'llywiwr braster' bob 6 eiliad yn ystod sgan strwythurol MP2RAGE) ac olrhain symudiadau bach y pen a ddigwyddodd yn ystod y sgan cyfan trwy alinio'r delweddau braster hyn. Yna gellir defnyddio'r wybodaeth am gynnig i gywiro'r data crai o'r sgan strwythurol sylfaenol trwy ôl-brosesu.
Fersiynau animeiddiedig o ffigurau o bapur 3D FatNavs
Ffigur 4 o Gallichan et al
Rhan chwyddedig o'r cyfaint MP2RAGE llawn a gafwyd ar 0.33x0.33x1.00 mm, gan ddangos y gwelliannau yn dilyn cywiro cynnig ôl-weithredol gan ddefnyddio'r FatNavs 3D
Ffigur 5 o Gallichan et al
Rhan chwyddedig o gyfaintGRE TI2 o'r un set ddata MP2RAGE 0.33x1.00mm, gyda rhagamcaniad dwysedd lleiaf a gymerwyd dros slab 10 mm yn y cyfeiriad z, gan ddangos y gwelliannau yn dilyn cywiro cynnig ôl-weithredol gan ddefnyddio'r FatNavs 3D
Ffigur 6 o Gallichan et al
Ffigur 6 o Gallichan et al
Mae rhan chwyddo o gyfaintGRE TI2 o'r un set ddata 0.33x1.00mm MP2RAGE, gydag amcanestyniad dwyster uchaf a gymerwyd dros y slab 80 mm llawn yn y cyfeiriad z, gan ddangos y gwelliannau yn dilyn cywiro cynnig ôl-weithredol gan ddefnyddio'r FatNavs 3D
Ffigur 8 o Gallichan et al
Ffigur 8 o Gallichan et al
Rhan chwyddedig o gyfaint TSE 0.6x0.6x0.6mm sy'n dangos y gwelliant yn dilyn cywiro cynnig ôl-weithredol gan ddefnyddio'r FatNavs 3D
Addysgu
Ar hyn o bryd rwy'n dysgu ar y modiwlau canlynol:
- EN1211 Mathemateg a Chyfrifiant (Cyfrifiannu ar gyfer myfyrwyr MMM)
- EN2106 - Cyfrifiadura 1 - MATLAB
- EN3461 - Electroneg Feddygol
- EN4505 - Prosesu Delwedd Feddygol
- EN4506 - Peirianneg Glinigol 2
Bywgraffiad
Education and qualifications
- 2007: DPhil in Medical Phyics. University of Oxford. Measuring Cerebral Blood Flow using ASL in MRI.
- 2003: Life Sciences Interface Doctoral Training Year. University of Oxford.
- 2002: MSci Physics with a European Language (German), University of Nottingham (exchange year at LMU Munich)
Career overview
- 2016 - present: Lecturer in Engineering with research at CUBRIC, Cardiff University
- 2011 - 2016: Senior Research Scientist, EPFL Lausanne, Switzerland
- 2009 - 2011: Post-doctoral Research Scientist, University Medical Center Freiburg, Germany
- 2007 - 2008: Post-doctoral Research Scientist, FMRIB Centre, University of Oxford
Meysydd goruchwyliaeth
Mae gen i ddiddordeb mewn goruchwylio myfyrwyr PhD ym meysydd:
- Cywiro cynnig ar gyfer MRI
- Datblygiad dilyniant pwls MRI newydd
- Dulliau ailadeiladu MRI Uwch
- Unrhyw brosiect diddorol yn 'MR Physics'!
Goruchwyliaeth gyfredol
Elisa Marchetto
Myfyriwr ymchwil
Mehmet Yildirim
Arddangoswr Graddedig
Themâu ymchwil
Arbenigeddau
- Delweddu biofeddygol
- Prosesu delweddau
- Delweddu cyfrifiadurol
- Ffiseg feddygol
- Dyfeisiau meddygol