Dr Katja Hill
Cymrawd Ymchwil Ôl-Ddoethurol
- Ar gael fel goruchwyliwr ôl-raddedig
Trosolwyg
Research Theme
Oral and Biomedical Sciences
Research Group
Advanced Therapies Group
Overview
In the last 9 years since becoming an independent researcher, as part of the Advanced Therapeutics Group here in the School of Dentistry, I have had over £2 million in research funding. This has included industrial funding from a long-standing collaboration (over 9 years) with Algipharma AS, and a more recent collaboration with the Life Sciences company, Qbiotics Ltd; both projects involving undertaking translational research into novel antimicrobial compounds. Further research funding has also come from the Norwegian Research Council funding the industrial partnership with Algipharma AS and collaboration with the Paper Research Institute (PFI), Trondheim.
My current anti-biofilm research involves translation of research to clinical practice using a novel oligosaccharide antimicrobial derived from seaweed, OligoG (in conjunction with the biopharmaceutical company Algipharma AS, Norway) which offers the opportunity for new approaches to the management of human chronic diseases such as cystic fibrosis and chronic obstructive pulmonary disease (COPD). This first oligosaccharide nanomedicine to treat multi-drug resistant gram-negative & biofilm-related infection in man has been patented, seeing translation from the laboratory into patients in less than 10 years. OligoG is safe for human use and has recently completed Phase 2b clinical studies in cystic fibrosis patients. Work is ongoing to elucidate the mode of action of OligoG. The Advanced Therapeutics Group recently won the prestigious Cardiff University Innovation and Impact Award in Medicine (2017) for our research in this area.
Further funding from the Norwegian Research council has financed a project involving the development of biocompatible cellulose nanomaterials (derived from wood pulp) for advanced wound healing applications in conjunction with the Paper Research Institute (PFI), Trondheim. The ability of these nanofibres (from renewable sources) to interact with complementary polymers and form novel material structures for use in applications as diverse as wound dressings and graft scaffolds for tissue engineering in a range of human diseases has formed the basis of our on-going research. Furthermore, testing of these prototype dressing materials
More recently, in collaboration with the life sciences company Qbiotics Ltd, Queensland, Australia I have begun a new study looking at a series of natural and semi-synthetic compounds derived from the Queensland rainforest, which have considerably efficacy in wound healing, to characterise their antibacterial/antibiofilm properties.
Research Interests
I have had a keen research interest in Wound Healing for many years. My early research focused on wound microbiology and ecology, and defining the molecular and cellular mechanisms involved in impaired wound healing in chronic, non-healing wounds. In this, I attempted to investigate both the disease association of specific bacterial groups and the relationship between microbial bio-burden and healing in these chronic wounds. This included the use of culture-independent approaches to clinical microbiology and the involvement of uncultivable prokaryotes in wounds. The specific role of antimicrobial resistance and bacterial virulence of MRSA in particular, in these hard-to-treat wounds has also been investigated. More recently, my work has focused on biofilms in wounds, including the use of in vitro tissue models to assess the invasive properties of Candida albicans and antimicrobial testing of in vitro wound biofilms and wound dressing materials.
Cyhoeddiad
2024
- Davies-Jones, J., Davies, P. R., Graf, A., Hewes, D., Hill, K. E. and Pascoe, M. 2024. Photoinduced force microscopy as a novel method for the study of microbial nanostructures. Nanoscale 16(1), pp. 223-236. (10.1039/D3NR03499B)
2023
- Sharma, P. et al. 2023. In vitro antibiofilm activity of hexylresorcinol lozenges against oropharyngeal pathogens. Presented at: 2023 ERS International Congress, Milan, Italy, 9-13 September 2023. European Respiratory Society, (10.1183/13993003.congress-2023.PA603)
- Pritchard, M. F. et al. 2023. Structure–activity relationships of low molecular weight alginate oligosaccharide therapy against Pseudomonas aeruginosa. Biomolecules 13(9), article number: 1366. (10.3390/biom13091366)
- Xue, W. et al. 2023. Defining in vitro topical antimicrobial and antibiofilm activity of epoxy-tigliane structures against oral pathogens. Journal of Oral Microbiology 15(1), article number: 2241326. (10.1080/20002297.2023.2241326)
- Powell, L. C. et al. 2023. Alginate oligosaccharides enhance the antifungal activity of nystatin against candidal biofilms. Frontiers in Cellular and Infection Microbiology 13, article number: 1122340. (10.3389/fcimb.2023.1122340)
2022
- Powell, L. C. et al. 2022. Topical, immunomodulatory epoxy-tiglianes induce biofilm disruption and healing in acute and chronic skin wounds. Science Translational Medicine 14(662) (10.1126/scitranslmed.abn3758)
- Stokniene, J., Varache, M., Rye, P. D., Hill, K. E., Thomas, D. W. and Ferguson, E. L. 2022. Alginate oligosaccharides enhance diffusion and activity of colistin in a mucin-rich environment. Scientific Reports 12, article number: 4986. (10.1038/s41598-022-08927-1)
2021
- Oakley, J. L. et al. 2021. Phenotypic and genotypic adaptations in Pseudomonas aeruginosa biofilms following long-term exposure to an alginate oligomer therapy. mSphere 6(1), pp. e01216-20. (10.1128/mSphere.01216-20)
- Powell, L. C. et al. 2021. Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. npj Biofilms and Microbiomes 7, article number: 13. (10.1038/s41522-020-00172-6)
- Incledion, A. et al. 2021. A new look at the purported health benefits of commercial and natural clays. Biomolecules 11(1), article number: 58. (10.3390/biom11010058)
2020
- Stokniene, J. et al. 2020. Bi-functional alginate oligosaccharide–polymyxin conjugates for improved treatment of multidrug-resistant gram-negative bacterial infections. Pharmaceutics 12(11), article number: 1080. (10.3390/pharmaceutics12111080)
2019
- Jack, A. A. et al. 2019. Cellulose nanofibril formulations incorporating a low molecular weight alginate oligosaccharide modify bacterial biofilm development. Biomacromolecules 20(8), pp. 2953-2961. (10.1021/acs.biomac.9b00522)
- Pritchard, M. F. et al. 2019. Mucin structural interactions with an alginate oligomer mucolytic in cystic fibrosis sputum. Vibrational Spectroscopy 103, article number: 102932. (10.1016/j.vibspec.2019.102932)
2018
- Powell, L. C. et al. 2018. Targeted disruption of the extracellular polymeric network of pseudomonas aeruginosa biofilms by alginate oligosaccharides. npj Biofilms and Microbiomes 4, article number: 13. (10.1038/s41522-018-0056-3)
- Jack, A. A. et al. 2018. Alginate Oligosaccharide-Induced Modification of the lasI-lasR and rhlI-rhlR Quorum Sensing Systems in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 62(5), article number: e02318-17. (10.1128/AAC.02318-17)
2017
- Pritchard, M., Jack, A., Powell, L., Sadh, H., Hill, K. E., Thomas, D. W. and Rye, P. D. 2017. Alginate Oligosaccharides modify hyphal infiltration of Candida albicans in an in vitro model of invasive Human Candidosis. Journal of Applied Microbiology 123(3), pp. 625-636. (10.1111/jam.13516)
- Pritchard, M. F. et al. 2017. A low-molecular-weight alginate oligosaccharide disrupts pseudomonal microcolony formation and enhances antibiotic effectiveness. Antimicrobial Agents and Chemotherapy 61(9), article number: e00762-17. (10.1128/AAC.00762-17)
- Pritchard, M. F. et al. 2017. The antimicrobial effects of the alginate oligomer OligoG CF-5/20 are independent of direct bacterial cell membrane disruption. Scientific Reports 7, article number: 44731. (10.1038/srep44731)
- Jack, A. A. et al. 2017. The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa. Carbohydrate Polymers 157, pp. 1955-1962. (10.1016/j.carbpol.2016.11.080)
2016
- Pritchard, M. F. et al. 2016. A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory disease. Molecular Pharmaceutics 13(3), pp. 863-872. (10.1021/acs.molpharmaceut.5b00794)
- Powell, L. C., Khan, S., Chinga-Carrasco, G., Wright, C. J., Hill, K. E. and Thomas, D. W. 2016. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fiber dressings. Carbohydrate Polymers 137, pp. 191-197. (10.1016/j.carbpol.2015.10.024)
2015
- Rees, A., Powell, L. C., Chinga-Carrasco, G., Gethin, D. T., Syverud, K., Hill, K. E. and Thomas, D. W. 2015. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMedical Research International 2015, pp. 1-7., article number: 925757. (10.1155/2015/925757)
2014
- Tondervik, A. et al. 2014. Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of anti-fungals against Candida and Aspergillus spp. PLoS ONE, article number: e112518. (10.1371/journal.pone.0112518)
- Powell, L. C. et al. 2014. A nanoscale characterization of the interaction of a novel alginate oligomer with the cell surface and motility of pseudomonas aeruginosa. American Journal of Respiratory Cell and Molecular Biology 50(3), pp. 483-492. (10.1165/rcmb.2013-0287OC)
- McInnes, R. L. et al. 2014. Contrasting host immuno-inflammatory responses to bacterial challenge within venous and diabetic ulcers. Wound Repair and Regeneration 22(1), pp. 58-69. (10.1111/wrr.12133)
- Gethin, D. T. et al. 2014. Studies on the 3D printing of nanocellulose structures. Advances in Printing and Media Technology XLI(1 A2), pp. 91-95.
2013
- Roberts, J. L. et al. 2013. An in vitro study of alginate oligomer therapies on oral biofilms. Journal of Dentistry 41(10), pp. 892-899. (10.1016/j.jdent.2013.07.011)
- Powell, L. C. et al. 2013. The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms. Biofouling 29(4), pp. 413-421. (10.1080/08927014.2013.777954)
2012
- Hooper, S. J., Percival, S. L., Hill, K. E., Thomas, D. W., Hayes, A. J. and Williams, D. W. 2012. The visualisation and speed of kill of wound isolates on a silver alginate dressing. International Wound Journal 9(6), pp. 633-642. (10.1111/j.1742-481X.2012.00927.x)
- Khan, S. et al. 2012. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrobial Agents and Chemotherapy 56(10), pp. 5134-5141. (10.1128/AAC.00525-12)
- Percival, S. L., Hill, K. E., Williams, D. W., Hooper, S. J., Thomas, D. W. and Costerton, J. W. 2012. A review of the scientific evidence for biofilms in wounds. Wound Repair and Regeneration 20(5), pp. 647-657. (10.1111/j.1524-475X.2012.00836.x)
- Wildeboer, D. et al. 2012. Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds. European Journal of Clinical Microbiology & Infectious Diseases 31(9), pp. 2183-2189. (10.1007/s10096-012-1553-6)
- Wagstaffe, S. J., Hill, K. E., Williams, D. W., Randle, B. J., Thomas, D. W., Stephens, P. and Riley, D. J. 2012. Bispecific antibody-mediated detection of the staphylococcus aureus thermonuclease. Analytical Chemistry 84(14), pp. 5876-5884. (10.1021/ac203403d)
- Hooper, S. J., Williams, D. W., Thomas, D. W., Hill, K. E. and Percival, S. L. 2012. An in vitro comparison of two silver- containing antimicrobial wound dressings. Ostomy Wound Management 58(1), pp. 16-22.
2011
- Percival, S. L., Hill, K. E., Malic, S., Thomas, D. W. and Williams, D. W. 2011. Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms. Wound Repair and Regeneration 19(1), pp. 1-9. (10.1111/j.1524-475X.2010.00651.x)
- Malic, S., Hill, K. E., Playle, R. A., Thomas, D. W. and Williams, D. W. 2011. In vitro interaction of chronic wound bacteria in biofilms. Journal of Wound Care 20(12), pp. 569-577.
2010
- Hill, K. E., Malic, S., McKee, R., Rennison, T., Harding, K. G., Williams, D. W. and Thomas, D. W. 2010. An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. Journal of Antimicrobial Chemotherapy 65(6), pp. 1195-1206. (10.1093/jac/dkq105)
2009
- Malic, S., Hill, K. E., Hayes, A. J., Percival, S. L., Thomas, D. W. and Williams, D. W. 2009. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology-Sgm 155, pp. 2603-2611. (10.1099/mic.0.028712-0)
2007
- Malic, S., Hill, K. E., Ralphs, J. R., Hayes, A. J., Thomas, D. W., Potts, A. J. C. and Williams, D. W. 2007. Characterisation of Candida albicans infection of an in vitro oral epithelial model using confocal laser scanning microscopy. Oral Microbiology And Immunolology 22(3), pp. 188-194. (10.1111/j.1399-302X.2007.00344.x)
- Davies, C. E., Hill, K. E., Newcombe, R. G., Stephens, P., Wilson, M., Harding, K. G. and Thomas, D. W. 2007. A prospective study of the microbiology of chronic venous leg ulcers to re-evaluate the clinical predictive value of tissue biopsies and swabs. Wound Repair and Regeneration 15(1), pp. 17-22. (10.1111/j.1524-475X.2006.00180.x)
- Andersen, A., Hill, K. E., Stephens, P., Thomas, D. W., Jorgensen, B. and Krogfelt, K. A. 2007. Bacterial profiling using skin grafting, standard culture and molecular bacteriological methods. Journal of Wound Care 16(4), pp. 171-175.
2005
- Howell-Jones, R. S., Wilson, M., Hill, K. E., Howard, A. J., Price, P. E. and Thomas, D. W. 2005. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. Journal of Antimicrobial Chemotherapy 55(2), pp. 143-149. (10.1093/jac/dkh513)
2004
- Davies, C. E., Hill, K. E., Wilson, M., Stephens, P., Hill, C. M., Harding, K. G. and Thomas, D. W. 2004. Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and non-healing chronic venous leg ulcers. Journal of Clinical Microbiology 42(8), pp. 3549-3557. (10.1128/JCM.42.8.3549-3557.2004)
2003
- Hill, K. E. and Weightman, A. J. 2003. Horizontal transfer of dehalogenase genes on IncP1[beta] plasmids during bacterial adaptation to degrade [alpha]-halocarboxylic acids. FEMS Microbiology Ecology 45(3), pp. 273-282. (10.1016/S0168-6496(03)00158-2)
- Hill, K. E., Davies, C. E., Wilson, M., Stephens, P., Harding, K. G. and Thomas, D. W. 2003. Molecular analysis of the microflora in chronic venous leg ulceration. Journal of Medical Microbiology 52(4), pp. 365-369. (10.1099/jmm.0.05030-0)
- Stephens, P. et al. 2003. Anaerobic cocci populating the deep tissues of chronic wounds impair cellular wound healing responses in vitro. British Journal Of Dermatology 148(3), pp. 456-466. (10.1046/j.1365-2133.2003.05232.x)
2002
- Weightman, A. J., Topping, A. W., Hill, K. E., Lee, L. L., Sakai, K., Slater, J. H. and Thomas, A. W. 2002. Transposition of DEH, a broad-host-range transposon flanked by ISPpu12, in Pseudomonas putida is associated with genomic rearrangements and dehalogenase gene silencing. Journal of Bacteriology 184(23), pp. 6581-6591. (10.1128/JB.184.23.6581-6591.2002)
- Hill, K. E. et al. 2002. Heterogeneity within the gram-positive anaerobic cocci demonstrated by analysis of 16S-23S intergenic ribosomal RNA polymorphisms. Journal of Medical Microbiology 51(11), pp. 949-957.
- Wall, I. B., Davies, C. E., Hill, K. E., Wilson, M. J., Stephens, P., Harding, K. G. and Thomas, D. W. 2002. Potential role of anaerobic cocci in impaired human wound healing. Wound Repair and Regeneration 10(6), pp. 346-353. (10.1046/j.1524-475X.2002.t01-1-10602.x)
2001
- Davies, C. E., Wilson, M. J., Hill, K. E., Stephens, P., Hill, C. M., Harding, K. G. and Thomas, D. W. 2001. Use of molecular techniques to study microbial diversity in the skin: Chronic wounds reevaluated. Wound Repair and Regeneration 9(5), pp. 332-340. (10.1046/j.1524-475x.2001.00332.x)
1999
- Hill, K. E., Marchesi, J. R. and Weightman, A. J. 1999. Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. Journal of Bacteriology 181(9), pp. 2535-2547. (10.1128/JB.181.8.2535-2547.1999)
1998
- Hill, K. E. and Top, E. M. 1998. Gene transfer in soil systems using microcosms. FEMS Microbiology Ecology 25(4), pp. 319-329. (10.1111/j.1574-6941.1998.tb00483.x)
1997
- Ashelford, K. E. et al. 1997. Using microcosms to study gene transfer in aquatic habitats. FEMS Microbiology Ecology 23(2), pp. 81-94. (10.1111/j.1574-6941.1997.tb00393.x)
1996
- Hill, K. E., Marchesi, J. R. and Fry, J. C. 1996. Conjugation in the epilithon. In: Akkermans, A. D. L., Van Elsas, J. D. and de Bruijn, F. J. eds. Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 125-152., (10.1007/978-94-009-0215-2_9)
1995
- Hill, K. E., Fry, J. C., Weightman, A. J., Day, M. J., Bradley, D. J. and Cousland, B. 1995. Retrotransfer of IncP1-like plasmids from aquatic bacteria. Letters in Applied Microbiology 20(5), pp. 317-322. (10.1111/j.1472-765X.1995.tb00454.x)
1994
- Hill, K. E., Fry, J. C. and Weightman, A. J. 1994. Gene transfer in the aquatic environment: persistence and mobilization of the catabolic recombinant plasmid pD10 in the epilithon. Microbiology 140(7), pp. 1555-1563. (10.1099/13500872-140-7-1555)
1992
- Hill, K. E., Weightman, A. J. and Fry, J. C. 1992. Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Applied and Environmental Microbiology 58, pp. 1292-1300.
1988
- Glenister, D. A., Salamon, K. E., Smith, K., Beighton, D. and Keevil, C. W. 1988. Enhanced growth of complex communities of dental plaque bacteria in mucin-limited continuous culture. Microbial Ecology in Health and Disease 1(1), pp. 31-38. (10.3109/08910608809140176)
Articles
- Davies-Jones, J., Davies, P. R., Graf, A., Hewes, D., Hill, K. E. and Pascoe, M. 2024. Photoinduced force microscopy as a novel method for the study of microbial nanostructures. Nanoscale 16(1), pp. 223-236. (10.1039/D3NR03499B)
- Pritchard, M. F. et al. 2023. Structure–activity relationships of low molecular weight alginate oligosaccharide therapy against Pseudomonas aeruginosa. Biomolecules 13(9), article number: 1366. (10.3390/biom13091366)
- Xue, W. et al. 2023. Defining in vitro topical antimicrobial and antibiofilm activity of epoxy-tigliane structures against oral pathogens. Journal of Oral Microbiology 15(1), article number: 2241326. (10.1080/20002297.2023.2241326)
- Powell, L. C. et al. 2023. Alginate oligosaccharides enhance the antifungal activity of nystatin against candidal biofilms. Frontiers in Cellular and Infection Microbiology 13, article number: 1122340. (10.3389/fcimb.2023.1122340)
- Powell, L. C. et al. 2022. Topical, immunomodulatory epoxy-tiglianes induce biofilm disruption and healing in acute and chronic skin wounds. Science Translational Medicine 14(662) (10.1126/scitranslmed.abn3758)
- Stokniene, J., Varache, M., Rye, P. D., Hill, K. E., Thomas, D. W. and Ferguson, E. L. 2022. Alginate oligosaccharides enhance diffusion and activity of colistin in a mucin-rich environment. Scientific Reports 12, article number: 4986. (10.1038/s41598-022-08927-1)
- Oakley, J. L. et al. 2021. Phenotypic and genotypic adaptations in Pseudomonas aeruginosa biofilms following long-term exposure to an alginate oligomer therapy. mSphere 6(1), pp. e01216-20. (10.1128/mSphere.01216-20)
- Powell, L. C. et al. 2021. Quantifying the effects of antibiotic treatment on the extracellular polymer network of antimicrobial resistant and sensitive biofilms using multiple particle tracking. npj Biofilms and Microbiomes 7, article number: 13. (10.1038/s41522-020-00172-6)
- Incledion, A. et al. 2021. A new look at the purported health benefits of commercial and natural clays. Biomolecules 11(1), article number: 58. (10.3390/biom11010058)
- Stokniene, J. et al. 2020. Bi-functional alginate oligosaccharide–polymyxin conjugates for improved treatment of multidrug-resistant gram-negative bacterial infections. Pharmaceutics 12(11), article number: 1080. (10.3390/pharmaceutics12111080)
- Jack, A. A. et al. 2019. Cellulose nanofibril formulations incorporating a low molecular weight alginate oligosaccharide modify bacterial biofilm development. Biomacromolecules 20(8), pp. 2953-2961. (10.1021/acs.biomac.9b00522)
- Pritchard, M. F. et al. 2019. Mucin structural interactions with an alginate oligomer mucolytic in cystic fibrosis sputum. Vibrational Spectroscopy 103, article number: 102932. (10.1016/j.vibspec.2019.102932)
- Powell, L. C. et al. 2018. Targeted disruption of the extracellular polymeric network of pseudomonas aeruginosa biofilms by alginate oligosaccharides. npj Biofilms and Microbiomes 4, article number: 13. (10.1038/s41522-018-0056-3)
- Jack, A. A. et al. 2018. Alginate Oligosaccharide-Induced Modification of the lasI-lasR and rhlI-rhlR Quorum Sensing Systems in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 62(5), article number: e02318-17. (10.1128/AAC.02318-17)
- Pritchard, M., Jack, A., Powell, L., Sadh, H., Hill, K. E., Thomas, D. W. and Rye, P. D. 2017. Alginate Oligosaccharides modify hyphal infiltration of Candida albicans in an in vitro model of invasive Human Candidosis. Journal of Applied Microbiology 123(3), pp. 625-636. (10.1111/jam.13516)
- Pritchard, M. F. et al. 2017. A low-molecular-weight alginate oligosaccharide disrupts pseudomonal microcolony formation and enhances antibiotic effectiveness. Antimicrobial Agents and Chemotherapy 61(9), article number: e00762-17. (10.1128/AAC.00762-17)
- Pritchard, M. F. et al. 2017. The antimicrobial effects of the alginate oligomer OligoG CF-5/20 are independent of direct bacterial cell membrane disruption. Scientific Reports 7, article number: 44731. (10.1038/srep44731)
- Jack, A. A. et al. 2017. The interaction of wood nanocellulose dressings and the wound pathogen P. aeruginosa. Carbohydrate Polymers 157, pp. 1955-1962. (10.1016/j.carbpol.2016.11.080)
- Pritchard, M. F. et al. 2016. A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory disease. Molecular Pharmaceutics 13(3), pp. 863-872. (10.1021/acs.molpharmaceut.5b00794)
- Powell, L. C., Khan, S., Chinga-Carrasco, G., Wright, C. J., Hill, K. E. and Thomas, D. W. 2016. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fiber dressings. Carbohydrate Polymers 137, pp. 191-197. (10.1016/j.carbpol.2015.10.024)
- Rees, A., Powell, L. C., Chinga-Carrasco, G., Gethin, D. T., Syverud, K., Hill, K. E. and Thomas, D. W. 2015. 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMedical Research International 2015, pp. 1-7., article number: 925757. (10.1155/2015/925757)
- Tondervik, A. et al. 2014. Alginate oligosaccharides inhibit fungal cell growth and potentiate the activity of anti-fungals against Candida and Aspergillus spp. PLoS ONE, article number: e112518. (10.1371/journal.pone.0112518)
- Powell, L. C. et al. 2014. A nanoscale characterization of the interaction of a novel alginate oligomer with the cell surface and motility of pseudomonas aeruginosa. American Journal of Respiratory Cell and Molecular Biology 50(3), pp. 483-492. (10.1165/rcmb.2013-0287OC)
- McInnes, R. L. et al. 2014. Contrasting host immuno-inflammatory responses to bacterial challenge within venous and diabetic ulcers. Wound Repair and Regeneration 22(1), pp. 58-69. (10.1111/wrr.12133)
- Gethin, D. T. et al. 2014. Studies on the 3D printing of nanocellulose structures. Advances in Printing and Media Technology XLI(1 A2), pp. 91-95.
- Roberts, J. L. et al. 2013. An in vitro study of alginate oligomer therapies on oral biofilms. Journal of Dentistry 41(10), pp. 892-899. (10.1016/j.jdent.2013.07.011)
- Powell, L. C. et al. 2013. The effect of alginate oligosaccharides on the mechanical properties of Gram-negative biofilms. Biofouling 29(4), pp. 413-421. (10.1080/08927014.2013.777954)
- Hooper, S. J., Percival, S. L., Hill, K. E., Thomas, D. W., Hayes, A. J. and Williams, D. W. 2012. The visualisation and speed of kill of wound isolates on a silver alginate dressing. International Wound Journal 9(6), pp. 633-642. (10.1111/j.1742-481X.2012.00927.x)
- Khan, S. et al. 2012. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrobial Agents and Chemotherapy 56(10), pp. 5134-5141. (10.1128/AAC.00525-12)
- Percival, S. L., Hill, K. E., Williams, D. W., Hooper, S. J., Thomas, D. W. and Costerton, J. W. 2012. A review of the scientific evidence for biofilms in wounds. Wound Repair and Regeneration 20(5), pp. 647-657. (10.1111/j.1524-475X.2012.00836.x)
- Wildeboer, D. et al. 2012. Specific protease activity indicates the degree of Pseudomonas aeruginosa infection in chronic infected wounds. European Journal of Clinical Microbiology & Infectious Diseases 31(9), pp. 2183-2189. (10.1007/s10096-012-1553-6)
- Wagstaffe, S. J., Hill, K. E., Williams, D. W., Randle, B. J., Thomas, D. W., Stephens, P. and Riley, D. J. 2012. Bispecific antibody-mediated detection of the staphylococcus aureus thermonuclease. Analytical Chemistry 84(14), pp. 5876-5884. (10.1021/ac203403d)
- Hooper, S. J., Williams, D. W., Thomas, D. W., Hill, K. E. and Percival, S. L. 2012. An in vitro comparison of two silver- containing antimicrobial wound dressings. Ostomy Wound Management 58(1), pp. 16-22.
- Percival, S. L., Hill, K. E., Malic, S., Thomas, D. W. and Williams, D. W. 2011. Antimicrobial tolerance and the significance of persister cells in recalcitrant chronic wound biofilms. Wound Repair and Regeneration 19(1), pp. 1-9. (10.1111/j.1524-475X.2010.00651.x)
- Malic, S., Hill, K. E., Playle, R. A., Thomas, D. W. and Williams, D. W. 2011. In vitro interaction of chronic wound bacteria in biofilms. Journal of Wound Care 20(12), pp. 569-577.
- Hill, K. E., Malic, S., McKee, R., Rennison, T., Harding, K. G., Williams, D. W. and Thomas, D. W. 2010. An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. Journal of Antimicrobial Chemotherapy 65(6), pp. 1195-1206. (10.1093/jac/dkq105)
- Malic, S., Hill, K. E., Hayes, A. J., Percival, S. L., Thomas, D. W. and Williams, D. W. 2009. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology-Sgm 155, pp. 2603-2611. (10.1099/mic.0.028712-0)
- Malic, S., Hill, K. E., Ralphs, J. R., Hayes, A. J., Thomas, D. W., Potts, A. J. C. and Williams, D. W. 2007. Characterisation of Candida albicans infection of an in vitro oral epithelial model using confocal laser scanning microscopy. Oral Microbiology And Immunolology 22(3), pp. 188-194. (10.1111/j.1399-302X.2007.00344.x)
- Davies, C. E., Hill, K. E., Newcombe, R. G., Stephens, P., Wilson, M., Harding, K. G. and Thomas, D. W. 2007. A prospective study of the microbiology of chronic venous leg ulcers to re-evaluate the clinical predictive value of tissue biopsies and swabs. Wound Repair and Regeneration 15(1), pp. 17-22. (10.1111/j.1524-475X.2006.00180.x)
- Andersen, A., Hill, K. E., Stephens, P., Thomas, D. W., Jorgensen, B. and Krogfelt, K. A. 2007. Bacterial profiling using skin grafting, standard culture and molecular bacteriological methods. Journal of Wound Care 16(4), pp. 171-175.
- Howell-Jones, R. S., Wilson, M., Hill, K. E., Howard, A. J., Price, P. E. and Thomas, D. W. 2005. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. Journal of Antimicrobial Chemotherapy 55(2), pp. 143-149. (10.1093/jac/dkh513)
- Davies, C. E., Hill, K. E., Wilson, M., Stephens, P., Hill, C. M., Harding, K. G. and Thomas, D. W. 2004. Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and non-healing chronic venous leg ulcers. Journal of Clinical Microbiology 42(8), pp. 3549-3557. (10.1128/JCM.42.8.3549-3557.2004)
- Hill, K. E. and Weightman, A. J. 2003. Horizontal transfer of dehalogenase genes on IncP1[beta] plasmids during bacterial adaptation to degrade [alpha]-halocarboxylic acids. FEMS Microbiology Ecology 45(3), pp. 273-282. (10.1016/S0168-6496(03)00158-2)
- Hill, K. E., Davies, C. E., Wilson, M., Stephens, P., Harding, K. G. and Thomas, D. W. 2003. Molecular analysis of the microflora in chronic venous leg ulceration. Journal of Medical Microbiology 52(4), pp. 365-369. (10.1099/jmm.0.05030-0)
- Stephens, P. et al. 2003. Anaerobic cocci populating the deep tissues of chronic wounds impair cellular wound healing responses in vitro. British Journal Of Dermatology 148(3), pp. 456-466. (10.1046/j.1365-2133.2003.05232.x)
- Weightman, A. J., Topping, A. W., Hill, K. E., Lee, L. L., Sakai, K., Slater, J. H. and Thomas, A. W. 2002. Transposition of DEH, a broad-host-range transposon flanked by ISPpu12, in Pseudomonas putida is associated with genomic rearrangements and dehalogenase gene silencing. Journal of Bacteriology 184(23), pp. 6581-6591. (10.1128/JB.184.23.6581-6591.2002)
- Hill, K. E. et al. 2002. Heterogeneity within the gram-positive anaerobic cocci demonstrated by analysis of 16S-23S intergenic ribosomal RNA polymorphisms. Journal of Medical Microbiology 51(11), pp. 949-957.
- Wall, I. B., Davies, C. E., Hill, K. E., Wilson, M. J., Stephens, P., Harding, K. G. and Thomas, D. W. 2002. Potential role of anaerobic cocci in impaired human wound healing. Wound Repair and Regeneration 10(6), pp. 346-353. (10.1046/j.1524-475X.2002.t01-1-10602.x)
- Davies, C. E., Wilson, M. J., Hill, K. E., Stephens, P., Hill, C. M., Harding, K. G. and Thomas, D. W. 2001. Use of molecular techniques to study microbial diversity in the skin: Chronic wounds reevaluated. Wound Repair and Regeneration 9(5), pp. 332-340. (10.1046/j.1524-475x.2001.00332.x)
- Hill, K. E., Marchesi, J. R. and Weightman, A. J. 1999. Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. Journal of Bacteriology 181(9), pp. 2535-2547. (10.1128/JB.181.8.2535-2547.1999)
- Hill, K. E. and Top, E. M. 1998. Gene transfer in soil systems using microcosms. FEMS Microbiology Ecology 25(4), pp. 319-329. (10.1111/j.1574-6941.1998.tb00483.x)
- Ashelford, K. E. et al. 1997. Using microcosms to study gene transfer in aquatic habitats. FEMS Microbiology Ecology 23(2), pp. 81-94. (10.1111/j.1574-6941.1997.tb00393.x)
- Hill, K. E., Fry, J. C., Weightman, A. J., Day, M. J., Bradley, D. J. and Cousland, B. 1995. Retrotransfer of IncP1-like plasmids from aquatic bacteria. Letters in Applied Microbiology 20(5), pp. 317-322. (10.1111/j.1472-765X.1995.tb00454.x)
- Hill, K. E., Fry, J. C. and Weightman, A. J. 1994. Gene transfer in the aquatic environment: persistence and mobilization of the catabolic recombinant plasmid pD10 in the epilithon. Microbiology 140(7), pp. 1555-1563. (10.1099/13500872-140-7-1555)
- Hill, K. E., Weightman, A. J. and Fry, J. C. 1992. Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Applied and Environmental Microbiology 58, pp. 1292-1300.
- Glenister, D. A., Salamon, K. E., Smith, K., Beighton, D. and Keevil, C. W. 1988. Enhanced growth of complex communities of dental plaque bacteria in mucin-limited continuous culture. Microbial Ecology in Health and Disease 1(1), pp. 31-38. (10.3109/08910608809140176)
Book sections
- Hill, K. E., Marchesi, J. R. and Fry, J. C. 1996. Conjugation in the epilithon. In: Akkermans, A. D. L., Van Elsas, J. D. and de Bruijn, F. J. eds. Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dortrecht, The Netherlands, pp. 125-152., (10.1007/978-94-009-0215-2_9)
Conferences
- Sharma, P. et al. 2023. In vitro antibiofilm activity of hexylresorcinol lozenges against oropharyngeal pathogens. Presented at: 2023 ERS International Congress, Milan, Italy, 9-13 September 2023. European Respiratory Society, (10.1183/13993003.congress-2023.PA603)
- Khan, S. et al. 2012. Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrobial Agents and Chemotherapy 56(10), pp. 5134-5141. (10.1128/AAC.00525-12)
- Wagstaffe, S. J., Hill, K. E., Williams, D. W., Randle, B. J., Thomas, D. W., Stephens, P. and Riley, D. J. 2012. Bispecific antibody-mediated detection of the staphylococcus aureus thermonuclease. Analytical Chemistry 84(14), pp. 5876-5884. (10.1021/ac203403d)
- Hill, K. E., Malic, S., McKee, R., Rennison, T., Harding, K. G., Williams, D. W. and Thomas, D. W. 2010. An in vitro model of chronic wound biofilms to test wound dressings and assess antimicrobial susceptibilities. Journal of Antimicrobial Chemotherapy 65(6), pp. 1195-1206. (10.1093/jac/dkq105)
- Malic, S., Hill, K. E., Hayes, A. J., Percival, S. L., Thomas, D. W. and Williams, D. W. 2009. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology-Sgm 155, pp. 2603-2611. (10.1099/mic.0.028712-0)
- Howell-Jones, R. S., Wilson, M., Hill, K. E., Howard, A. J., Price, P. E. and Thomas, D. W. 2005. A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. Journal of Antimicrobial Chemotherapy 55(2), pp. 143-149. (10.1093/jac/dkh513)
- Davies, C. E., Hill, K. E., Wilson, M., Stephens, P., Hill, C. M., Harding, K. G. and Thomas, D. W. 2004. Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and non-healing chronic venous leg ulcers. Journal of Clinical Microbiology 42(8), pp. 3549-3557. (10.1128/JCM.42.8.3549-3557.2004)
Ymchwil
Current Research Projects
- Qbiotics (2016-2018) Undertaking translational research characterising and testing novel and semi-synthetic antimicrobial compounds from the Australian rainforest.
- BIA formulations (2015-2019) Developing the “second generation” of our polymer therapeutics, for use in wound healing and medical device coatings to Phase 1 studies.
- Tailored OligoG (2013-2017) Characterising structure/activity relationships of the oligosaccharide nanomedicines; from molecular modelling to designing candidate structures through large-scale synthesis and pre-clinical testing.
- Nanoheal (2012-2016) To design, synthesize and test novel nanomaterials based on nanocellulose as barriers and novel dressing materials and modification of the surface with 3-dimensional printing to modify cellular responses.
Addysgu
Current Teaching
MSc Implantology (Cellular and Molecular Biology)
- Module lead
- Microbiology teaching
- Exam setting and marking
- Project supervision
MSc Oral Biology
- Microbiology teaching
Bywgraffiad
Recent Biography
CARDIFF UNIVERSITY SCHOOL OF DENTISTRY, CARDIFF, U.K.
Oral and Biomedical Sciences
SENIOR POST-DOCTORAL RESEARCH FELLOW:
- Independent Researcher and Lecturer (2009-to date)
- EPSRC: Development of an intelligent wound dressing to measure bacterial numbers and diversity in chronic wounds in real time. (2006 – 2009)
WOUND HEALING RESEARCH UNIT, UWCM. CARDIFF, U.K.
POST-DOCTORAL RESEARCH FELLOW
- Johnson & Johnson: Commercial Funding: Investigating the role of bacterial biofilms in chronic wounds using in vitro modelling. (2003 – 2005)
UNIVERSITY OF WALES COLLEGE OF MEDICINE, CARDIFF, U.K.
POST-DOCTORAL RESEARCH ASSOCIATE
Department of Oral Surgery Medicine and Pathology, Dental School, Heath Park
- Research into Ageing: A prospective characterisation of the microflora in chronic wounds using both cultural & molecular techniques. (1999-2003)
Anrhydeddau a dyfarniadau
Cardiff University Innovation and Impact Award in Medicine, 2017
Aelodaethau proffesiynol
- Cymdeithas Microbioleg America (ASM)
Safleoedd academaidd blaenorol
Uwch Gymrawd Ymchwil Ôl-ddoethurol
- (2006 - 2009) EPSRC: Datblygu gwisgo clwyfau deallus i fesur niferoedd bacteriol ac amrywiaeth mewn clwyfau cronig mewn amser real. Ysgol Deintyddiaeth Prifysgol Caerdydd, Caerdydd, y DU
Cydymaith Ymchwil Ôl-ddoethurol
- (2003 - 2005) Johnson & Johnson: Ymchwilio i rôl bioffilmiau bacteriol mewn clwyfau cronig gan ddefnyddio modelu in vitro. Uned Ymchwil Gwella Clwyfau, UWCM, Caerdydd, y DU.
- (1999 - 2003) Ymchwil i Heneiddio: Nodweddiad posibl o'r microflora mewn clwyfau cronig gan ddefnyddio technegau diwylliannol a moleciwlaidd. Meddygaeth Llawfeddygaeth y Geg a Phatholeg, Ysgol Ddeintyddol, UWCM, Caerdydd, y DU.
- (1996 – 1999) Grant yr Undeb Ewropeaidd: Addasiad microbaidd i ddiraddio organohalogensau naturiol a synthetig. Ysgol y Biowyddorau, Coleg Prifysgol Cymru Caerdydd, y DU
- (1993 – 1996) Grant gan yr Undeb Ewropeaidd: Gallu cario plasmid a symud genynnau o wahanol briddoedd Ewropeaidd. Ysgol y Biowyddorau, Coleg Prifysgol Cymru Caerdydd, y DU
Cymwysterau Addysg Uwch
- 2014 PGCE (PCET) Tystysgrif Ôl-raddedig mewn Addysg (Prifysgol Caerdydd) Rhagoriaeth
- 1992 Ph.D. Microbioleg (Coleg Prifysgol Cymru Caerdydd)
- 1987 B.Sc (Anrh) Bioleg Gymhwysol (UWIST) Dosbarth 2.1
Pwyllgorau ac adolygu
- (2019 ) Pwyllgor Moeseg Ymchwil Ysgol Ddeintyddol (DSREC)
- (2019) Panel Dewis Crucible GW4
- (2018 ) Y Pwyllgor Cydraddoldeb, Amrywiaeth a Chynhwysiant (EDI)
- Adolygydd Grant, MRC, Sefydliad Ymchwil Ffibrosis Systig Eidalaidd
- Adolygydd cyfnodolion, asiantau gwrthficrobaidd a chemotherapi, microbioleg, Journal of Wound Care, Archifau Microbioleg, British Journal of Dermatology, Atgyweirio Clwyfau ac Adfywio, Dermatoleg Milfeddygol, International Journal of Antimicrobal Agents.
Meysydd goruchwyliaeth
Mae gen i ddiddordeb mewn goruchwylio myfyrwyr PhD ym meysydd:
- Microbioleg
- Gwella clwyfau
- Therapeutics antibiofilm
- ymwrthedd gwrthficrobaidd
Myfyrwyr PGR cyfredol
Jennifer Adams
- PROSIECT: Datblygu technolegau newydd i fodelu effeithiau therapïau gwrthficrobaidd ar bioffilmiau bacteriol
- CYLLID: Cyngor Ymchwil Norwy, Llywodraeth Cynulliad Cymru ac Algipharma AS
- https://www.cardiff.ac.uk/people/research-students/view/1768270-Adams-Jennifer
JingXiang Wu
- PROSIECT: Torri mecanobioleg bacteria a bioffilmiau mewn ymwrthedd colistin
- CYLLID: Cyngor Ysgoloriaethau Tsieina-Prifysgol Caerdydd (CSC-CU) Ysgoloriaeth ar y Cyd gyda QBiotics Ltd
Contact Details
+44 29225 10661
Ysbyty Deintyddol y Brifysgol, Ystafell Ystafell 5F.03, Parc y Mynydd Bychan, Caerdydd, CF14 4XY