Professor Nicholas Bray
- Available for postgraduate supervision
Teams and roles for Nicholas Bray
Professor and Divisional Lead for Postgraduate Research, Division of Psychological Medicine and Clinical Neurosciences
Overview
My research investigates molecular mechanisms through which genetic variation confers risk to neuropsychiatric disorders.
Publication
2025
- Chick, S. L. et al. 2025. Whole-exome sequencing analysis identifies risk genes for schizophrenia. Nature Communications 16 (1) 7102. (10.1038/s41467-025-62429-y)
- Owen, M. J. et al. 2025. Genomics of schizophrenia, bipolar disorder and major depressive disorder. Nature Reviews Genetics 26 , pp.862-877. (10.1038/s41576-025-00843-0)
- Richards, A. L. et al. 2025. Effects of shared and nonshared schizophrenia and bipolar disorder alleles on cognition and educational attainment in the UK Biobank. Biological Society: Global Open Science 5 (6) 100601. (10.1016/j.bpsgos.2025.100601)
2024
- Cameron, D. et al. 2024. Genetic implication of prenatal GABAergic and cholinergic neuron development in susceptibility to schizophrenia. Schizophrenia Bulletin Open 50 (5), pp.1171-1184. (10.1093/schbul/sbae083)
- Tume, C. E. et al. 2024. Genetic implication of specific glutamatergic neurons of the prefrontal cortex in the pathophysiology of schizophrenia. Biological Psychiatry 4 (5) 100345. (10.1016/j.bpsgos.2024.100345)
- Wen, C. et al., 2024. Cross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain. Science 384 (6698) eadh0829. (10.1126/science.adh0829)
2023
- Cameron, D. et al. 2023. Single nuclei RNA sequencing of 5 regions of the human prenatal brain implicates developing neuron populations in genetic risk for schizophrenia. Biological Psychiatry 93 , pp.157-166. (10.1016/j.biopsych.2022.06.033)
- Toste, C. , O'Donovan, M. and Bray, N. 2023. Mapping microRNA expression quantitative trait loci in the prenatal human brain implicates miR-1908-5p expression in bipolar disorder and other brain-related traits. Human Molecular Genetics 32 (20), pp.2941-2949. ddad118. (10.1093/hmg/ddad118)
2022
- Hall, J. and Bray, N. J. 2022. Schizophrenia genomics: convergence on synaptic development, adult synaptic plasticity, or both?. Biological Psychiatry 91 (8), pp.709-717. (10.1016/j.biopsych.2021.10.018)
- Trubetskoy, V. et al., 2022. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. Nature 604 , pp.502-508. (10.1038/s41586-022-04434-5)
2021
- Hall, L. S. et al. 2021. Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. Molecular Psychiatry 26 , pp.2082-2088. (10.1038/s41380-020-0743-3)
- Hrastelj, J. et al. 2021. CSF-resident CD4+ T-cells display a distinct gene expression profile with relevance to immune surveillance and multiple sclerosis. Brain Communications (10.1093/braincomms/fcab155)
- Kouakou, M. et al., 2021. Sites of active gene regulation in the prenatal frontal cortex and their role in neuropsychiatric disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 186 (6), pp.376-388. (10.1002/ajmg.b.32877)
- Leung, S. K. et al., 2021. Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing. Cell Reports 37 (7) 110022. (10.1016/j.celrep.2021.110022)
- Steg, L. C. et al., 2021. Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons. Molecular Brain 14 (1) 98. (10.1186/s13041-021-00810-w)
2020
- Bray, N. J. and Owen, M. J. 2020. A developmental perspective on the convergence of genetic risk factors for neuropsychiatric disorders. Biological Psychiatry 87 (2), pp.98-99. (10.1016/j.biopsych.2019.09.010)
- Grama, S. et al. 2020. Polygenic risk for schizophrenia and subcortical brain anatomy in the UK Biobank cohort. Translational Psychiatry 10 309. (10.1038/s41398-020-00940-0)
- Hall, L. S. et al. 2020. A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Human Molecular Genetics 29 (1), pp.159-167. (10.1093/hmg/ddz253)
2019
- Cameron, D. et al. 2019. Transcriptional changes following cellular knockdown of the schizophrenia risk gene SETD1A are enriched for common variant association with the disorder. Molecular Neuropsychiatry 5 (2), pp.109-114. (10.1159/000497181)
- Duarte, R. R. et al., 2019. The psychiatric risk gene NT5C2 regulates adenosine monophosphate-activated protein kinase signaling and protein translation in human neural progenitor cells. Biological Psychiatry 86 (2), pp.120-130. (10.1016/j.biopsych.2019.03.977)
- O'Brien, H. et al. 2019. Sex differences in gene expression in the human fetal brain. [Online].bioRxiv. (10.1101/483636)Available at: https://doi.org/10.1101/483636.
- Pain, O. et al. 2019. Novel insight into the etiology of autism spectrum disorder gained by integrating expression data with genome-wide association statistics. Biological Psychiatry 86 (4), pp.265-273. (10.1016/j.biopsych.2019.04.034)
- Toste, C. et al. 2019. No effect of genome-wide significant schizophrenia risk variation at the DRD2 locus on the allelic expression of DRD2 in post-mortem striatum. Molecular Neuropsychiatry 5 (4), pp.212-217. (10.1159/000501022)
2018
- Bray, N. J. and O'Donovan, M. C. 2018. The genetics of neuropsychiatric disorders. Brain and Neuroscience Advances 2 , pp.1-6. (10.1177/2398212818799271)
- O'Brien, H. E. et al. 2018. Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biology 19 194. (10.1186/s13059-018-1567-1)
2017
- Cosgrove, D. et al., 2017. MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls. Translational Psychiatry 7 (1), pp.e1012. (10.1038/tp.2016.286)
- Deans, P. J. M. et al., 2017. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biological Psychiatry 82 (1), pp.49-61. (10.1016/j.biopsych.2016.08.038)
- Hannon, E. et al., 2017. Pleiotropic effects of trait-associated genetic variation on DNA methylation: utility for refining GWAS loci. American Journal of Human Genetics 100 (6), pp.954-959. (10.1016/j.ajhg.2017.04.013)
- Hill, M. et al. 2017. Knockdown of the schizophrenia susceptibility gene TCF4 alters gene expression and proliferation of progenitor cells from the developing human neocortex. Journal of Psychiatry & Neuroscience 42 (3), pp.181-188. 160073. (10.1503/jpn.160073)
- Spiers, H. et al., 2017. 5-hydroxymethylcytosine is highly dynamic across human fetal brain development. BMC Genomics 18 , pp.738. (10.1186/s12864-017-4091-x)
2016
- Bray, N. J. and Hill, M. 2016. Translating genetic risk loci into molecular risk mechanisms for schizophrenia. Schizophrenia Bulletin 42 (1), pp.5-8. (10.1093/schbul/sbv156)
- Duarte, R. R. et al., 2016. Genome-wide significant schizophrenia risk variation on chromosome 10q24 is associated with altered cis-regulation of BORCS7, AS3MT, and NT5C2 in the human brain. American Journal of Medical Genetics. Part B 171 (6), pp.806-814. (10.1002/ajmg.b.32445)
- Hannon, E. et al., 2016. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nature Neuroscience 19 (1), pp.48-54. (10.1038/nn.4182)
2015
- Spiers, H. et al., 2015. Methylomic trajectories across human fetal brain development. Genome Research 25 (3), pp.338-352. (10.1101/gr.180273.114)
2014
- Hill, M. J. et al. 2014. Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells. Schizophrenia Research 153 (1-3), pp.225-230. (10.1016/j.schres.2014.01.034)
- Pidsley, R. et al., 2014. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biology 15 (10) 483. (10.1186/s13059-014-0483-2)
2012
- Bray, N. J. , Kapur, S. and Price, J. 2012. Investigating schizophrenia in a "dish": possibilities, potential and limitations. World Psychiatry 11 (3), pp.153-155. (10.1002/j.2051-5545.2012.tb00116.x)
- Hill, M. and Bray, N. J. 2012. Evidence that schizophrenia risk variation in the ZNF804A gene exerts its effects during fetal brain development. American Journal of Psychiatry 169 (12), pp.1301-1308. (10.1176/appi.ajp.2012.11121845)
- Hill, M. et al. 2012. Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Human Molecular Genetics 21 (5), pp.1018-1024. (10.1093/hmg/ddr532)
- Hill, M. J. and Bray, N. J. 2012. Evidence that schizophrenia risk variation in the ZNF804A gene exerts its effects during foetal brain development. American Journal of Psychiatry 169 (12), pp.1301-1308.
- Jeffries, A. R. et al., 2012. Stochastic choice of allelic expression in human neural stem cells. Stem Cells 30 (9), pp.1938-1947. (10.1002/stem.1155)
2011
- Hill, M. and Bray, N. J. 2011. Allelic differences in nuclear protein binding at a genome-wide significant risk variant for schizophrenia in ZNF804A [Letter to the editor]. Molecular Psychiatry 16 (8), pp.787-789. (10.1038/mp.2011.21)
2010
- Bray, N. J. et al. 2010. The neurobiology of schizophrenia: new leads and avenues for treatment. Current Opinion in Neurobiology 20 (6), pp.810-815. (10.1016/j.conb.2010.09.008)
- Buonocore, F. et al., 2010. Effects of cis-regulatory variation differ across regions of the adult human brain. Human Molecular Genetics 19 (22), pp.4490-4496. (10.1093/hmg/ddq380)
2009
- Hayesmoore, J. B. G. et al. 2009. The effect of age and the H1c MAPT haplotype on MAPT expression in human brain. Neurobiology of Aging 30 (10), pp.1652-1656. (10.1016/j.neurobiolaging.2007.12.017)
2008
- Bray, N. J. 2008. Gene expression in the etiology of schizophrenia. Schizophrenia Bulletin 34 (3), pp.412-418. (10.1093/schbul/sbn013)
- Bray, N. J. et al. 2008. Cis- and trans- loci influence expression of the schizophrenia susceptibility gene DTNBP1. Human Molecular Genetics 17 (8), pp.1169-1174. (10.1093/hmg/ddn006)
- Hayesmoore, J. B. et al. 2008. DISC1mRNA expression is not influenced by common Cis-acting regulatory polymorphisms or imprinting.. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 147B (7), pp.1065-1069. (10.1002/ajmg.b.30715)
2007
- O'Donovan, M. C. et al. 2007. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia [Conference Abstract]. Schizophrenia bulletin 33 (2), pp.311-312. (10.1093/schbul/sbm004)
2006
- Bray, N. J. et al. 2006. Cis- and trans-acting loci influence expression of DTNBP1, a susceptibility gene for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 141B (7), pp.723-724.
- Bray, N. J. and O'Donovan, M. C. 2006. Investigating cis-acting regulatory variation using assays of relative allelic expression. Psychiatric Genetics 16 (4), pp.173-177. (10.1097/01.ypg.0000218612.35139.84)
- Georgieva, L. et al. 2006. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America (PNAS) ISSN 1091-6490 103 (33), pp.12469-12474. (10.1073/pnas.0603029103)
- Norton, N. et al. 2006. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 141B (1), pp.96-101. (10.1002/ajmg.b.30236)
- Peirce, T. R. et al. 2006. Convergent evidence for 2',3'-cyclic nucleotide 3'-phosphodiesterase as a possible susceptibility gene for schizophrenia. Archives of general psychiatry 63 (1), pp.18-24. (10.1001/archpsyc.63.1.18)
- Peirce, T. et al., 2006. Convergent evidence for 2 ',3 '-cyclic nucleotide 3 '-phosphodiesterase as a possible susceptibility gene for schizophrenia. Archives of General Psychiatry 63 (1), pp.18-24.
2005
- Bray, N. J. et al. 2005. Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Human Molecular Genetics 14 (14), pp.1947-1954. (10.1093/hmg/ddi199)
- Glaser, B. et al., 2005. Identification of a potential Bipolar risk haplotype in the gene encoding the winged-helix transcription factor RFX4. Molecular Psychiatry 10 (10), pp.920-927. (10.1038/sj.mp.4001689)
- Kent, L. et al., 2005. Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Molecular Psychiatry 10 (10), pp.939-943. (10.1038/sj.mp.4001696)
2004
- Bray, N. J. et al. 2004. The serotonin-2A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain. Molecular Psychiatry 9 (1), pp.109-114. (10.1038/sj.mp.4001366)
- Bray, N. J. et al. 2004. Allelic expression of APOE in brain [Conference Abstract]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 130B (1), pp.61-61.
- Bray, N. J. et al. 2004. P4-101 Allelic expression of APOE in brain [Conference Abstract]. Neurobiology of Aging 25 , pp.S503-S503. (10.1016/S0197-4580(04)81659-2)
- Bray, N. J. et al. 2004. Allelic expression of APOE in human brain: effects of epsilon status and promoter haplotypes. Human Molecular Genetics 13 (22), pp.2885-2892. (10.1093/hmg/ddh299)
- Bray, N. J. et al. 2004. Allelic variation in the expression of neuropsychiatric candidate genes [Conference Abstract]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 130B (1), pp.25-25.
- Norton, N. et al., 2004. Interaction between neuregulin 1 and its receptor ERBB4 increases susceptibility to schizophrenia [Conference Abstract]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 130B (1), pp.18-18.
- Peirce, T. R. et al., 2004. Convergent functional genomics, association and linkage analysis suggests 2 ',3 '-cyclic nucleotide 3 '-phosphodiesterase (CNP) as a potential susceptibility gene for schizophrenia [Conference Abstract]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 130B (1), pp.81-81. (10.1002/ajmg.b.30101)
- Williams, N. M. et al. 2004. Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Archives of General Psychiatry 61 (4), pp.336-344. (10.1001/archpsyc.61.4.336)
- Williams, N. M. et al. 2004. Identification in two independent samples of a novel schizophrenia risk haplotype of the dystobrevin binding protein gene (DTNBP1). Archives of general psychiatry 61 (4), pp.336-344. (10.1001/archpsyc.61.4.336)
2003
- Bray, N. B. et al. 2003. Cis-acting variation in the expression of a high proportion of genes in human brain. Human Genetics 113 (2), pp.149-153. (10.1007/s00439-003-0956-y)
- Bray, N. J. et al. 2003. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. The American Journal of Human Genetics 73 (1), pp.152-161. (10.1086/376578)
2002
- Bray, N. J. et al. 2002. Detection of cis-acting polymorphisms and epigenetic modification affecting gene expression [Conference Abstracts]. American Journal of Medical Genetics 114 (7), pp.750-750. (10.1002/ajmg.10971)
- Bray, N. J. et al. 2002. Screening the human protocadherin 8 (PCDH8) gene in schizophrenia. Genes, Brain and Behavior 1 (3), pp.187-191. (10.1034/j.1601-183X.2002.10307.x)
- Bray, N. J. et al. 2002. Screening the protocadherin 8 (PCDH8) gene in schizophrenia [Conference Abstract]. American Journal of Medical Genetics 114 (7), pp.844-844.
2001
- Bray, N. J. and Owen, M. J. 2001. Searching for schizophrenia genes. Trends in Molecular Medicine 7 (4), pp.169-174.
2000
- Austin, J. et al., 2000. The high affinity neurotensin receptor gene (NTSR1): comparative sequencing and association studies in schizophrenia. Molecular Psychiatry 5 (5), pp.552-557. (10.1038/sj.mp.4000761)
- Bray, N. J. et al. 2000. A functional and positional candidate gene for schizophrenia. American Journal of Medical Genetics 96 (4), pp.461-462.
- Bray, N. J. et al. 2000. No evidence for association between a non-synonymous polymorphism in the gene encoding human metabotropic glutamate receptor 7 and schizophrenia. Psychiatric Genetics 10 (2), pp.83-86. (10.1097/00041444-200010020-00005)
1999
- Bray, N. J. et al. 1999. Embryonic NCAM and schizophrenia: Genetic analysis of regulatory enzymes. Molecular Psychiatry 4 , pp.S32-S32.
- Norton, N. et al., 1999. No evidence for association between schizophrenia and MAO-A promoter polymorphism. Molecular Psychiatry 4 , pp.S96-S96.
- Willliams, H. et al., 1999. No evidence for allelic association between schizophrenia and a functional variant of the human dopamine beta-hydroxylase gene (DBH).. American Journal Of Medical Genetics Part A 88 (5), pp.557-559. (10.1002/(SICI)1096-8628(19991015)88:5<557::AID-AJMG22>3.0.CO;2-F)
Articles
- Austin, J. et al., 2000. The high affinity neurotensin receptor gene (NTSR1): comparative sequencing and association studies in schizophrenia. Molecular Psychiatry 5 (5), pp.552-557. (10.1038/sj.mp.4000761)
- Bray, N. B. et al. 2003. Cis-acting variation in the expression of a high proportion of genes in human brain. Human Genetics 113 (2), pp.149-153. (10.1007/s00439-003-0956-y)
- Bray, N. J. and O'Donovan, M. C. 2018. The genetics of neuropsychiatric disorders. Brain and Neuroscience Advances 2 , pp.1-6. (10.1177/2398212818799271)
- Bray, N. J. and Owen, M. J. 2020. A developmental perspective on the convergence of genetic risk factors for neuropsychiatric disorders. Biological Psychiatry 87 (2), pp.98-99. (10.1016/j.biopsych.2019.09.010)
- Bray, N. J. 2008. Gene expression in the etiology of schizophrenia. Schizophrenia Bulletin 34 (3), pp.412-418. (10.1093/schbul/sbn013)
- Bray, N. J. et al. 2004. The serotonin-2A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain. Molecular Psychiatry 9 (1), pp.109-114. (10.1038/sj.mp.4001366)
- Bray, N. J. et al. 2002. Detection of cis-acting polymorphisms and epigenetic modification affecting gene expression [Conference Abstracts]. American Journal of Medical Genetics 114 (7), pp.750-750. (10.1002/ajmg.10971)
- Bray, N. J. et al. 2003. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. The American Journal of Human Genetics 73 (1), pp.152-161. (10.1086/376578)
- Bray, N. J. et al. 1999. Embryonic NCAM and schizophrenia: Genetic analysis of regulatory enzymes. Molecular Psychiatry 4 , pp.S32-S32.
- Bray, N. J. and Hill, M. 2016. Translating genetic risk loci into molecular risk mechanisms for schizophrenia. Schizophrenia Bulletin 42 (1), pp.5-8. (10.1093/schbul/sbv156)
- Bray, N. J. et al. 2008. Cis- and trans- loci influence expression of the schizophrenia susceptibility gene DTNBP1. Human Molecular Genetics 17 (8), pp.1169-1174. (10.1093/hmg/ddn006)
- Bray, N. J. et al. 2006. Cis- and trans-acting loci influence expression of DTNBP1, a susceptibility gene for schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 141B (7), pp.723-724.
- Bray, N. J. et al. 2000. A functional and positional candidate gene for schizophrenia. American Journal of Medical Genetics 96 (4), pp.461-462.
- Bray, N. J. et al. 2004. Allelic expression of APOE in brain [Conference Abstract]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 130B (1), pp.61-61.
- Bray, N. J. et al. 2004. P4-101 Allelic expression of APOE in brain [Conference Abstract]. Neurobiology of Aging 25 , pp.S503-S503. (10.1016/S0197-4580(04)81659-2)
- Bray, N. J. et al. 2004. Allelic expression of APOE in human brain: effects of epsilon status and promoter haplotypes. Human Molecular Genetics 13 (22), pp.2885-2892. (10.1093/hmg/ddh299)
- Bray, N. J. , Kapur, S. and Price, J. 2012. Investigating schizophrenia in a "dish": possibilities, potential and limitations. World Psychiatry 11 (3), pp.153-155. (10.1002/j.2051-5545.2012.tb00116.x)
- Bray, N. J. et al. 2002. Screening the human protocadherin 8 (PCDH8) gene in schizophrenia. Genes, Brain and Behavior 1 (3), pp.187-191. (10.1034/j.1601-183X.2002.10307.x)
- Bray, N. J. et al. 2002. Screening the protocadherin 8 (PCDH8) gene in schizophrenia [Conference Abstract]. American Journal of Medical Genetics 114 (7), pp.844-844.
- Bray, N. J. et al. 2010. The neurobiology of schizophrenia: new leads and avenues for treatment. Current Opinion in Neurobiology 20 (6), pp.810-815. (10.1016/j.conb.2010.09.008)
- Bray, N. J. and O'Donovan, M. C. 2006. Investigating cis-acting regulatory variation using assays of relative allelic expression. Psychiatric Genetics 16 (4), pp.173-177. (10.1097/01.ypg.0000218612.35139.84)
- Bray, N. J. and Owen, M. J. 2001. Searching for schizophrenia genes. Trends in Molecular Medicine 7 (4), pp.169-174.
- Bray, N. J. et al. 2004. Allelic variation in the expression of neuropsychiatric candidate genes [Conference Abstract]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 130B (1), pp.25-25.
- Bray, N. J. et al. 2005. Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Human Molecular Genetics 14 (14), pp.1947-1954. (10.1093/hmg/ddi199)
- Bray, N. J. et al. 2000. No evidence for association between a non-synonymous polymorphism in the gene encoding human metabotropic glutamate receptor 7 and schizophrenia. Psychiatric Genetics 10 (2), pp.83-86. (10.1097/00041444-200010020-00005)
- Buonocore, F. et al., 2010. Effects of cis-regulatory variation differ across regions of the adult human brain. Human Molecular Genetics 19 (22), pp.4490-4496. (10.1093/hmg/ddq380)
- Cameron, D. et al. 2019. Transcriptional changes following cellular knockdown of the schizophrenia risk gene SETD1A are enriched for common variant association with the disorder. Molecular Neuropsychiatry 5 (2), pp.109-114. (10.1159/000497181)
- Cameron, D. et al. 2023. Single nuclei RNA sequencing of 5 regions of the human prenatal brain implicates developing neuron populations in genetic risk for schizophrenia. Biological Psychiatry 93 , pp.157-166. (10.1016/j.biopsych.2022.06.033)
- Cameron, D. et al. 2024. Genetic implication of prenatal GABAergic and cholinergic neuron development in susceptibility to schizophrenia. Schizophrenia Bulletin Open 50 (5), pp.1171-1184. (10.1093/schbul/sbae083)
- Chick, S. L. et al. 2025. Whole-exome sequencing analysis identifies risk genes for schizophrenia. Nature Communications 16 (1) 7102. (10.1038/s41467-025-62429-y)
- Cosgrove, D. et al., 2017. MiR-137-derived polygenic risk: effects on cognitive performance in patients with schizophrenia and controls. Translational Psychiatry 7 (1), pp.e1012. (10.1038/tp.2016.286)
- Deans, P. J. M. et al., 2017. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biological Psychiatry 82 (1), pp.49-61. (10.1016/j.biopsych.2016.08.038)
- Duarte, R. R. et al., 2016. Genome-wide significant schizophrenia risk variation on chromosome 10q24 is associated with altered cis-regulation of BORCS7, AS3MT, and NT5C2 in the human brain. American Journal of Medical Genetics. Part B 171 (6), pp.806-814. (10.1002/ajmg.b.32445)
- Duarte, R. R. et al., 2019. The psychiatric risk gene NT5C2 regulates adenosine monophosphate-activated protein kinase signaling and protein translation in human neural progenitor cells. Biological Psychiatry 86 (2), pp.120-130. (10.1016/j.biopsych.2019.03.977)
- Georgieva, L. et al. 2006. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America (PNAS) ISSN 1091-6490 103 (33), pp.12469-12474. (10.1073/pnas.0603029103)
- Glaser, B. et al., 2005. Identification of a potential Bipolar risk haplotype in the gene encoding the winged-helix transcription factor RFX4. Molecular Psychiatry 10 (10), pp.920-927. (10.1038/sj.mp.4001689)
- Grama, S. et al. 2020. Polygenic risk for schizophrenia and subcortical brain anatomy in the UK Biobank cohort. Translational Psychiatry 10 309. (10.1038/s41398-020-00940-0)
- Hall, J. and Bray, N. J. 2022. Schizophrenia genomics: convergence on synaptic development, adult synaptic plasticity, or both?. Biological Psychiatry 91 (8), pp.709-717. (10.1016/j.biopsych.2021.10.018)
- Hall, L. S. et al. 2020. A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Human Molecular Genetics 29 (1), pp.159-167. (10.1093/hmg/ddz253)
- Hall, L. S. et al. 2021. Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. Molecular Psychiatry 26 , pp.2082-2088. (10.1038/s41380-020-0743-3)
- Hannon, E. et al., 2016. Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci. Nature Neuroscience 19 (1), pp.48-54. (10.1038/nn.4182)
- Hannon, E. et al., 2017. Pleiotropic effects of trait-associated genetic variation on DNA methylation: utility for refining GWAS loci. American Journal of Human Genetics 100 (6), pp.954-959. (10.1016/j.ajhg.2017.04.013)
- Hayesmoore, J. B. G. et al. 2009. The effect of age and the H1c MAPT haplotype on MAPT expression in human brain. Neurobiology of Aging 30 (10), pp.1652-1656. (10.1016/j.neurobiolaging.2007.12.017)
- Hayesmoore, J. B. et al. 2008. DISC1mRNA expression is not influenced by common Cis-acting regulatory polymorphisms or imprinting.. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 147B (7), pp.1065-1069. (10.1002/ajmg.b.30715)
- Hill, M. and Bray, N. J. 2011. Allelic differences in nuclear protein binding at a genome-wide significant risk variant for schizophrenia in ZNF804A [Letter to the editor]. Molecular Psychiatry 16 (8), pp.787-789. (10.1038/mp.2011.21)
- Hill, M. and Bray, N. J. 2012. Evidence that schizophrenia risk variation in the ZNF804A gene exerts its effects during fetal brain development. American Journal of Psychiatry 169 (12), pp.1301-1308. (10.1176/appi.ajp.2012.11121845)
- Hill, M. et al. 2012. Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Human Molecular Genetics 21 (5), pp.1018-1024. (10.1093/hmg/ddr532)
- Hill, M. et al. 2017. Knockdown of the schizophrenia susceptibility gene TCF4 alters gene expression and proliferation of progenitor cells from the developing human neocortex. Journal of Psychiatry & Neuroscience 42 (3), pp.181-188. 160073. (10.1503/jpn.160073)
- Hill, M. J. and Bray, N. J. 2012. Evidence that schizophrenia risk variation in the ZNF804A gene exerts its effects during foetal brain development. American Journal of Psychiatry 169 (12), pp.1301-1308.
- Hill, M. J. et al. 2014. Transcriptional consequences of schizophrenia candidate miR-137 manipulation in human neural progenitor cells. Schizophrenia Research 153 (1-3), pp.225-230. (10.1016/j.schres.2014.01.034)
- Hrastelj, J. et al. 2021. CSF-resident CD4+ T-cells display a distinct gene expression profile with relevance to immune surveillance and multiple sclerosis. Brain Communications (10.1093/braincomms/fcab155)
- Jeffries, A. R. et al., 2012. Stochastic choice of allelic expression in human neural stem cells. Stem Cells 30 (9), pp.1938-1947. (10.1002/stem.1155)
- Kent, L. et al., 2005. Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD. Molecular Psychiatry 10 (10), pp.939-943. (10.1038/sj.mp.4001696)
- Kouakou, M. et al., 2021. Sites of active gene regulation in the prenatal frontal cortex and their role in neuropsychiatric disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 186 (6), pp.376-388. (10.1002/ajmg.b.32877)
- Leung, S. K. et al., 2021. Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing. Cell Reports 37 (7) 110022. (10.1016/j.celrep.2021.110022)
- Norton, N. et al., 1999. No evidence for association between schizophrenia and MAO-A promoter polymorphism. Molecular Psychiatry 4 , pp.S96-S96.
- Norton, N. et al., 2004. Interaction between neuregulin 1 and its receptor ERBB4 increases susceptibility to schizophrenia [Conference Abstract]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 130B (1), pp.18-18.
- Norton, N. et al. 2006. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 141B (1), pp.96-101. (10.1002/ajmg.b.30236)
- O'Brien, H. E. et al. 2018. Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biology 19 194. (10.1186/s13059-018-1567-1)
- O'Donovan, M. C. et al. 2007. Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia [Conference Abstract]. Schizophrenia bulletin 33 (2), pp.311-312. (10.1093/schbul/sbm004)
- Owen, M. J. et al. 2025. Genomics of schizophrenia, bipolar disorder and major depressive disorder. Nature Reviews Genetics 26 , pp.862-877. (10.1038/s41576-025-00843-0)
- Pain, O. et al. 2019. Novel insight into the etiology of autism spectrum disorder gained by integrating expression data with genome-wide association statistics. Biological Psychiatry 86 (4), pp.265-273. (10.1016/j.biopsych.2019.04.034)
- Peirce, T. R. et al., 2004. Convergent functional genomics, association and linkage analysis suggests 2 ',3 '-cyclic nucleotide 3 '-phosphodiesterase (CNP) as a potential susceptibility gene for schizophrenia [Conference Abstract]. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 130B (1), pp.81-81. (10.1002/ajmg.b.30101)
- Peirce, T. R. et al. 2006. Convergent evidence for 2',3'-cyclic nucleotide 3'-phosphodiesterase as a possible susceptibility gene for schizophrenia. Archives of general psychiatry 63 (1), pp.18-24. (10.1001/archpsyc.63.1.18)
- Peirce, T. et al., 2006. Convergent evidence for 2 ',3 '-cyclic nucleotide 3 '-phosphodiesterase as a possible susceptibility gene for schizophrenia. Archives of General Psychiatry 63 (1), pp.18-24.
- Pidsley, R. et al., 2014. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biology 15 (10) 483. (10.1186/s13059-014-0483-2)
- Richards, A. L. et al. 2025. Effects of shared and nonshared schizophrenia and bipolar disorder alleles on cognition and educational attainment in the UK Biobank. Biological Society: Global Open Science 5 (6) 100601. (10.1016/j.bpsgos.2025.100601)
- Spiers, H. et al., 2017. 5-hydroxymethylcytosine is highly dynamic across human fetal brain development. BMC Genomics 18 , pp.738. (10.1186/s12864-017-4091-x)
- Spiers, H. et al., 2015. Methylomic trajectories across human fetal brain development. Genome Research 25 (3), pp.338-352. (10.1101/gr.180273.114)
- Steg, L. C. et al., 2021. Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons. Molecular Brain 14 (1) 98. (10.1186/s13041-021-00810-w)
- Toste, C. et al. 2019. No effect of genome-wide significant schizophrenia risk variation at the DRD2 locus on the allelic expression of DRD2 in post-mortem striatum. Molecular Neuropsychiatry 5 (4), pp.212-217. (10.1159/000501022)
- Toste, C. , O'Donovan, M. and Bray, N. 2023. Mapping microRNA expression quantitative trait loci in the prenatal human brain implicates miR-1908-5p expression in bipolar disorder and other brain-related traits. Human Molecular Genetics 32 (20), pp.2941-2949. ddad118. (10.1093/hmg/ddad118)
- Trubetskoy, V. et al., 2022. Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. Nature 604 , pp.502-508. (10.1038/s41586-022-04434-5)
- Tume, C. E. et al. 2024. Genetic implication of specific glutamatergic neurons of the prefrontal cortex in the pathophysiology of schizophrenia. Biological Psychiatry 4 (5) 100345. (10.1016/j.bpsgos.2024.100345)
- Wen, C. et al., 2024. Cross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain. Science 384 (6698) eadh0829. (10.1126/science.adh0829)
- Williams, N. M. et al. 2004. Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Archives of General Psychiatry 61 (4), pp.336-344. (10.1001/archpsyc.61.4.336)
- Williams, N. M. et al. 2004. Identification in two independent samples of a novel schizophrenia risk haplotype of the dystobrevin binding protein gene (DTNBP1). Archives of general psychiatry 61 (4), pp.336-344. (10.1001/archpsyc.61.4.336)
- Willliams, H. et al., 1999. No evidence for allelic association between schizophrenia and a functional variant of the human dopamine beta-hydroxylase gene (DBH).. American Journal Of Medical Genetics Part A 88 (5), pp.557-559. (10.1002/(SICI)1096-8628(19991015)88:5<557::AID-AJMG22>3.0.CO;2-F)
Websites
- O'Brien, H. et al. 2019. Sex differences in gene expression in the human fetal brain. [Online].bioRxiv. (10.1101/483636)Available at: https://doi.org/10.1101/483636.
Research
Neuropsychiatric disorders, such as schizophrenia, arise from the action of thousands of genetic variants in combination with environmental factors. The vast majority of genetic loci that are commonly involved in these disorders implicate non-coding regions of the genome and are therefore thought to affect gene regulation (gene expression and splicing). My group apply a variety of functional genomic technologies to human brain tissue and neural cells to investigate effects of genetic risk variants on gene regulation and their downstream molecular consequences. We are particularly interested in gestation as a potentially important period for later vulnerability to some of these disorders, and have recently produced the first genome-wide investigation of genetic effects on gene expression in the human prenatal brain (O’Brien et al, 2018).
Teaching
I am experienced in teaching at both undergraduate and postgraduate level and am a Fellow of the Higher Education Academy.
Biography
Following a BSc in Psychology (London) and MSc in Neuroscience (London), I gained a PhD (exploring genes involved in brain development as candidates for schizophrenia susceptibility) under the supervision of Mike Owen in Cardiff. My post-doctoral research, undertaken in Cardiff with Mick O’Donovan, focused on gene expression as a potential mediator of genetic risk for psychiatric disorders. I was appointed as a Lecturer at the Institute of Psychiatry, King’s College London, in 2006 and promoted to Senior Lecturer in 2012. I returned to Cardiff University in 2015, where I am now Professor and Divisional Lead for Postgraduate Research.