Professor Philip Davies
(he/him)
- Media commentator
- Available for postgraduate supervision
Teams and roles for Philip Davies
Professor of Physical Chemistry
Overview
We are interested in the fundamental surface processes that underlie phenomena such as catalysis, corrosion and adhesion. These are influenced by many different factors and our work must therefore encompass aspects such as the elemental composition, chemistry and topography of a surface. The broad applicability of our research is evidenced by the wide variety of collaborations in which we are involved including groups in Pharmacy, Engineering, Bioscience, Archaeology and Earth sciences.
Our expertise includes:
· Photoinduced Force Microscopy (PiFM) Infrared spectroscopy of surfaces with 5 nm lateral resolution
· X-ray Photoelectron Spectroscopy (XPS) which provides chemical information on the surface
· Atomic Force Microscopy (AFM) for imaging non-conductors from the nanometre to the micrometer level
· Scanning Tunneling Microscopy (STM) for imaging conducting surface structures at atomic resolution
We also conduct research in photocatalysis and from 2012-2016, I coordinated the FP7 PCATDES consortium which included researchers from the UK, Germany, Spain, Turkey, Thailand, Malaysia and Vietnam. The project developed prototype photocatalytic reactors for water purification.
I was founding director of the EPSRC National Research Facility in Photoelectron Spectroscopy "HarwellXPS", in 2017 which offers state of the art XPS, UPS and ISS for the community. I am currently co-director of HarwellXPS.
We are part of the Cardiff Catalysis Institute
For more information, click on the 'Research' tab above.
Links
Personal Web Site: http://www.cf.ac.uk/chemy/staffinfo/surfsci/davies/
See Also: Cardiff Catalysis Institute and HarwellXPS
Publication
2026
- Theodosiou, A. et al., 2026. Investigating graphite oxidation via real-time offgas analysis. Carbon 247 121052. (10.1016/j.carbon.2025.121052)
2025
- Camacho, S. Y. T. et al., 2025. Layered double hydroxides for H2 generation by the photoreforming of organic compounds. Catalysis Today 448 115168. (10.1016/j.cattod.2024.115168)
- Hughes, R. et al., 2025. Toward a generic model for phosgene synthesis catalysis over activated carbon. ChemCatChem 17 (5) e202401118. (10.1002/cctc.202401118)
- Isaacs, M. et al. 2025. XPS insight note: Coster–Kronig broadening. Surface and Interface Analysis 57 (7), pp.548-554. (10.1002/sia.7410)
- Kulik, T. et al. 2025. Catalytic pyrolysis of sinapic acid on nanoceria: surface complexes, valorization of products, experimental, and atomistic approaches. Chemistry-Sustainability-Energy-Materials e202501249. (10.1002/cssc.202501249)
- Matam, S. K. et al. 2025. Operando X-ray absorption spectroscopic flow cell for electrochemical CO2 reduction: new insight into the role of copper species. Catalysis Science & Technology 15 (4), pp.1070-1081. (10.1039/D4CY00602J)
- Shcherbakov, M. R. et al., 2025. Photo-induced force microscopy. Nature Reviews Methods Primers 5 (1) 34. (10.1038/s43586-025-00403-0)
2024
- Alsidran, S. H. et al. 2024. The role of Cu and film thickness on the photocatalytic activity of mesoporous spin coated TiO2 films. Catalysis Today 441 114904. (10.1016/j.cattod.2024.114904)
- Davies-Jones, J. et al. 2024. Photoinduced force microscopy as a novel method for the study of microbial nanostructures. Nanoscale 16 (1), pp.223-236. (10.1039/D3NR03499B)
- Li, Z. et al., 2024. Porous structure enhances the longitudinal piezoelectric coefficient and electromechanical coupling coefficient of lead‐free (Ba 0.85 Ca 0.15 )(Zr 0.1 Ti 0.9 )O 3. Advanced Science 11 2406255. (10.1002/advs.202406255)
- Lim, J. et al., 2024. Benign methylformamidinium byproduct induced by cation heterogeneity inhibits local formation of δ-phase perovskites. Energy & Environmental Science 17 (23), pp.9134-9143. (10.1039/D4EE03058C)
- Stere, C. E. et al., 2024. Removal and oxidation of low concentration tert -butanol from potable water using nonthermal plasma coupled with metal oxide adsorption. ACS ES&T engineering 4 (9), pp.2121-2134. (10.1021/acsestengg.4c00166)
- Wang, K. et al. 2024. Amphiphilic Janus particles for aerobic alcohol oxidation in oil foams. ACS Catalysis 14 , pp.11545–11553. (10.1021/acscatal.4c00909)
2023
- Ahmad, B. B. et al. 2023. Effect of alkali metal cations on the TiO2 P25 catalyst for hydrogen generation by the photoreforming of glycerol. ChemistrySelect 8 (48) e202304301. (10.1002/slct.202304301)
- Court-Wallace, C. et al. 2023. PiFM and XPS Studies of Porous TiO2 Films for the Photocatalytic Decomposition of Polystyrene. Catalysts 13 (4)(10.3390/catal13040725)
- Delarmelina, M. et al. 2023. The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment. Physical Chemistry Chemical Physics 25 , pp.4161-4176. (10.1039/D2CP03140J)
- Fan, X. et al., 2023. InP/ZnS quantum dots photoluminescence modulation via in situ H2S interface engineering. Nanoscale Horizons 8 (4), pp.522-529. (10.1039/D2NH00436D)
- Gkaliou, K. et al., 2023. Understanding cure and interphase effects in functionalized graphene‐epoxy nanocomposites. Polymers for Advanced Technologies 34 (9), pp.2925-2935. (10.1002/pat.6114)
- Ou, X. et al., 2023. Catalytic treatment of high ionic strength wastewater from shale gas production. In: Modern Developments in Catalysis. Vol. 2, World Scientific Publishing Europe Ltd.. , pp.1-52. (10.1142/9781800612013_0001)
2022
- Davies, P. R. R. and Davies-Jones, J. 2022. Photo induced Force Microscopy: chemical spectroscopy beyond the diffraction limit. Materials Chemistry Frontiers 6 (12), pp.1552-1573. (10.1039/D2QM00040G)
2021
- Allen, L. et al., 2021. Tuning the structure of cerium phosphate nanorods. CrystEngComm 23 (46), pp.8215-8225. (10.1039/D1CE01151K)
- Bowden, B. et al., 2021. Investigating the effects of surface adsorbates on gold and palladium deposition on carbon. Topics in Catalysis 64 , pp.1041-1051. (10.1007/s11244-021-01423-2)
- Guan, S. et al. 2021. The interaction of CO with a copper(ii) chloride oxy-chlorination catalyst. Faraday Discussions 229 , pp.318-340. (10.1039/D0FD00014K)
- Isaacs, M. A. et al., 2021. Advanced XPS characterization: XPS-based multi-technique analyses for comprehensive understanding of functional materials. Materials Chemistry Frontiers 5 (22), pp.7931-7963. (10.1039/D1QM00969A)
- Kennedy, J. et al. 2021. Hydrogen production by the photo-reforming of methanol and the photocatalytic water gas shift reaction. Journal of Physics: Energy 3 (2) 024007. (10.1088/2515-7655/abdd82)
2020
- Allender, C. J. et al. 2020. The role of growth directors in controlling the morphology of hematite nanorods. Nanoscale Research Letters 15 161. (10.1186/s11671-020-03387-w)
- Bemmer, V. et al., 2020. Rationalization of the X-ray photoelectron spectroscopy of aluminium phosphates synthesized from different precursors. RSC Advances 10 (14), pp.84448452. (10.1039/C9RA08738A)
- Bouleghlimat, E. , Bethell, D. and Davies, P. R. 2020. The photocatalytic destruction of cinnamic acid and cinnamyl alcohol: mechanism and the effect of aqueous ions. Chemosphere 251 126469. (10.1016/j.chemosphere.2020.126469)
- Caswell, T. et al. 2020. Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology 10 (7), pp.2083-2091. (10.1039/C9CY02473E)
- Davies, P. R. and Morgan, D. J. 2020. Practical guide for x-ray photoelectron spectroscopy: applications to the study of catalysts. Journal of Vacuum Science and Technology A 38 (3) 033204. (10.1116/1.5140747)
2019
- Bahruji, H. , Bowker, M. and Davies, P. R. 2019. Influence of TiO2 structural structural properties on photocatalytic hydrogen gas production. Journal of Chemical Sciences 131 (4), pp.-. 33. (10.1007/s12039-019-1608-7)
- Parkes, R. J. et al. 2019. Rock-crushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere.. Environmental Microbiology Reports 11 (2), pp.165-172. (10.1111/1758-2229.12723)
2018
- Adishev, A. et al., 2018. Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions 208 , pp.471-495. (10.1039/C8FD90015A)
- Arrigo, R. et al., 2018. Theory as a driving force to understand reactions on nanoparticles: general discussion. Faraday Discussions 208 , pp.147-185. (10.1039/C8FD90013B)
- Bowden, B. et al., 2018. The deposition of metal nanoparticles on carbon surfaces: the role of specific functional groups. Faraday Discussions 208 , pp.455-470. (10.1039/C7FD00210F)
- Gines, L. et al. 2018. Production of metal-free diamond nanoparticles. ACS Omega 3 (11), pp.16099-16104. (10.1021/acsomega.8b02067)
- Guan, S. et al. 2018. Structural behaviour of copper chloride catalysts during the chlorination of CO to phosgene. Faraday Discussions 208 , pp.67-85. (10.1039/C8FD00005K)
- Kennedy, J. et al. 2018. Hydrogen generation by photocatalytic reforming of potential biofuels: polyols, cyclic alcohols and saccharides. Journal of Photochemistry and Photobiology A: Chemistry 356 , pp.451-456. (10.1016/j.jphotochem.2018.01.031)
2017
- Ghosh, S. et al., 2017. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure. Scientific Reports 7 (1) 16703. (10.1038/s41598-017-16822-3)
- Lord, A. M. et al., 2017. Modifying the interface edge to control the electrical transport properties of nanocontacts to nanowires. Nano Letters 17 (2), pp.687-694. (10.1021/acs.nanolett.6b03699)
- Werrell, J. et al. 2017. Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Science and Technology of Advanced Materials 18 (1), pp.654-663. (10.1080/14686996.2017.1366815.)
2016
- Davies, P. R. 2016. On the role of water in heterogeneous catalysis: a tribute to Professor M. Wyn Roberts. Topics in Catalysis 59 (8), pp.671-677. (10.1007/s11244-016-0539-5)
2015
- Altass, H. et al., 2015. XPS and STM studies of the oxidation of hydrogen chloride at Cu(100) surfaces. Surface Science 650 , pp.177-186. (10.1016/j.susc.2015.12.024)
- Bahruji, H. et al. 2015. Rutile TiO2-Pd photocatalysts for hydrogen gas production from methanol reforming. Topics in Catalysis 58 (2-3), pp.70-76. (10.1007/s11244-014-0346-9)
- Bahruji, H. et al. 2015. The importance of metal reducibility for the photo-reforming of methanol on transition metal-TiO2 photocatalysts and the use of non-precious metals. International Journal of Hydrogen Energy 40 (3), pp.1465-1471. (10.1016/j.ijhydene.2014.11.097)
- Burgess, R. et al. 2015. The functionalisation of graphite surfaces with nitric acid: identification of functional groups and their effects on gold deposition. Journal of Catalysis 323 , pp.10-18. (10.1016/j.jcat.2014.12.021)
2014
- Bowker, M. et al. 2014. Hydrogen production by photoreforming of biofuels using Au, Pd and Au-Pd/TiO2 photocatalysts. Journal of Catalysis 310 , pp.10-15. (10.1016/j.jcat.2013.04.005)
- Lord, A. M. et al., 2014. Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS. Applied Surface Science 320 , pp.664-669. (10.1016/j.apsusc.2014.09.078)
- Lord, A. M. et al., 2014. Enhanced long-path electrical conduction in ZnO nanowire array devices grown via defect-driven nucleation. Journal of Physical Chemistry C 118 (36), pp.21177-21184. (10.1021/jp505414u)
2013
- Altass, H. et al. 2013. Enhancing surface reactivity with a noble metal. Chemical Communications 49 (74), pp.8223-8225. (10.1039/c3cc43567a)
- Bahruji, H. et al. 2013. The adsorption and reaction of alcohols on TiO2 and Pd/TiO2 catalysts. Applied Catalysis A: General 454 , pp.66-73. (10.1016/j.apcata.2013.01.005)
- Bamroongwongdee, C. et al. 2013. Fabrication of complex model oxide catalysts: Mo oxide supported on Fe3O4(111). Faraday Discussions 162 , pp.201-212. (10.1039/c2fd20134h)
- Bouleghlimat, E. et al. 2013. The effect of acid treatment on the surface chemistry and topography of graphite. Carbon 361 , pp.124-133. (10.1016/j.carbon.2013.04.076)
- Bowker, M. et al. 2013. Encapsulation of Au nanoparticles on a silicon wafer during thermal oxidation. Journal of Physical Chemistry C 117 (41), pp.21577-21582. (10.1021/jp4074043)
- Davies, R. J. et al. 2013. A facile route to model catalysts: the synthesis of Au@Pd core-shell nanoparticles on y-Fe2O3 (0001). Nanoscale 5 , pp.9018-9022. (10.1039/c3nr03047d)
- Williams, S. E. et al. 2013. Controlling the nanoscale patterning of AuNPs on silicon surfaces. Nanomaterials 3 (1), pp.192-203. (10.3390/nano3010192)
2012
- Bowen, J. L. et al. 2012. A simple zero length surface-modification approach for preparing novel bifunctional supports for co-immobilisation studies. Tetrahedron Letters 53 (29), pp.3727-3730. (10.1016/j.tetlet.2012.04.116)
2011
- Bahruji, H. et al. 2011. New insights into the mechanism of photocatalytic reforming on Pd/TiO2. Applied Catalysis B - Environmental 107 (1-2), pp.205-209. (10.1016/j.apcatb.2011.07.015)
- Carley, A. F. et al. 2011. An investigation into the chemistry of electrodeposited lanthanum hydroxide-polyethylenimine films. Thin Solid Films (10.1016/j.tsf.2011.11.087)
- Carley, A. F. , Davies, P. R. and Roberts, M. W. 2011. Oxygen transient states in catalytic oxidation at metal surfaces. Catalysis Today 169 (1), pp.118-124. (10.1016/j.cattod.2010.10.081)
- Davies, R. J. et al. 2011. The oxidation of Fe(111). Surface Science 605 (17-18), pp.1754-1762. (10.1016/j.susc.2011.06.017)
2010
- Bahruji, H. et al. 2010. Sustainable H2 gas production by photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 216 (2-3), pp.115-118. (10.1016/j.jphotochem.2010.06.022)
- Bowker, M. et al. 2010. Influence of thermal treatment on nanostructured gold model catalysts?. Langmuir 26 (21), pp.16261-16266. (10.1021/la101372w)
- Bowker, M. et al. 2010. Effects of the nanostructuring of gold films upon their thermal stability. Acs Nano 4 (4), pp.2228-2232. (10.1021/nn901614e)
- Carley, A. F. et al. 2010. Transient Oxygen States in Catalysis: Ammonia Oxidation at Ag(111). Langmuir 26 (21), pp.16221-16225. (10.1021/la100953m)
- Davies, P. R. and Bowker, M. 2010. On the nature of the active site in catalysis: the reactivity of surface oxygen on Cu(1 1 0). Catalysis Today 154 (1-2), pp.31-37. (10.1016/j.cattod.2009.12.011)
2009
- Allender, C. J. et al. 2009. A glimpse of the inner workings of the templated site. Chemical Communications 2009 (2), pp.165-167. (10.1039/b811578h)
- Bahruji, H. , Bowker, M. and Davies, P. R. 2009. Photoactivated reaction of water with silicon nanoparticles. International Journal of Hydrogen Energy 34 (20), pp.8504-8510. (10.1016/j.ijhydene.2009.08.039)
- Bowker, M. , Davies, P. R. and Al-Mazroai, L. S. 2009. Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catalysis Letters 128 (3-4), pp.253 - 255. (10.1007/s10562-008-9781-1)
- Carley, A. F. et al. 2009. A low energy pathway to CuCl2 at Cu(110) surfaces. Physical Chemistry Chemical Physics 11 (46), pp.10899-10907. (10.1039/b914970h)
- Davies, P. R. , Edwards, D. and Richards, D. 2009. Possible role for Cu(II) compounds in the oxidation of malonyl dichloride and HCl at Cu(110) surfaces. Journal of Physical Chemistry. C 113 (24), pp.10333-10336. (10.1021/jp903042f)
- Davies, P. R. and Roberts, M. W. 2009. A view of surface science since 1960: Oxygen states at metal surfaces. Catalysis Today 145 (1-2), pp.2-9. (10.1016/j.cattod.2008.06.001)
- Kasry, A. et al. 2009. Comparison of methods for generating planar DNA-modified surfaces for hybridization studies. ACS Applied Materials & Interfaces 1 (8), pp.1793-1798. (10.1021/am9003073)
2007
- Carley, A. F. et al. 2007. Dissociative chemisorption of hydrogen chloride at Cu(110): atom-resolved time-dependent evidence for transient states in the formation of the final state stable chloride overlayer. In: Harris, K. D. M. and Edwards, P. P. eds. Turning Points in Solid-State, Materials and Surface Science. London: RSC Publishing. , pp.479-491. (10.1039/9781847558183-00479)
- Davies, P. R. , Edwards, D. and Parsons, M. 2007. Molecularly resolved studies of the role of basicity in the reaction of amines with oxygen at a Cu(110) surface. Surface Science 601 (15), pp.3253-3260. (10.1016/j.susc.2007.06.009)
- Davies, P. R. and Roberts, M. W. 2007. Atom resolved surface reactions: nanocatalysis. RSC Nanoscience & Nanotechnology Cambridge: Royal Society of Chemistry.
2005
- Bushell, J. et al., 2005. The Reactive Chemisorption of Alkyl Iodides at Cu(110) and Ag(111) Surfaces: A Combined STM and XPS Study. Journal of Physical Chemistry B 109 (19), pp.9556-9566. (10.1021/jp0513465)
- Carley, A. F. et al. 2005. Molecularly resolved studies of the reaction of pyridine and dimethylamine with oxygen at a Cu(110) surface. Topics in Catalysis 36 (1-4), pp.21-32. (10.1007/s11244-005-7859-1)
- Carley, A. F. et al. 2005. A reactive oxygen state at a barium promoted Au (100) surface: the oxidation of ethene at cryogenic temperatures. Catalysis Letters 101 (3-4), pp.137-139. (10.1007/s10562-005-4879-1)
- Carley, A. F. , Davies, P. R. and Roberts, M. W. 2005. Activation of oxygen at metal surfaces. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363 (1829), pp.829-846. (10.1098/rsta.2004.1544)
2004
- Carley, A. F. et al. 2004. Chemisorption and reaction of phenyl iodide at Cu(110) surfaces: a combined STM and XPS study. Surface Science 555 (1-3), pp.L138-L142. (10.1016/j.susc.2004.03.005)
- Carley, A. F. et al. 2004. Reactivity and Structural Aspects of Cesium and Oxygen States at Cu(110) Surfaces: An XPS and STM Investigation. Journal of Physical Chemistry B 108 (38), pp.14518-14526. (10.1021/jp049469x)
- Davies, P. R. , Edwards, D. and Richards, D. 2004. Aromatic interactions in the close packing of phenyl-imides at Cu(110) surfaces. Surface Science 573 (2), pp.284-290. (10.1016/j.susc.2004.09.039)
- Davies, P. R. , Edwards, D. and Richards, D. 2004. STM and XPS Studies of the Oxidation of Aniline at Cu(110) Surfaces. Journal of Physical Chemistry B 108 (48), pp.18630-18639. (10.1021/jp047697l)
2003
- Carley, A. F. et al. 2003. Oxygen states at magnesium and copper surfaces revealed by scanning tunneling microscopy and surface reactivity. Topics in Catalysis 24 (1-4), pp.51-59. (10.1023/B:TOCA.0000003076.82649.c4)
- Carley, A. F. et al. 2003. A combined XPS/STM and TPD study of the chemisorption and reactions of methyl mercaptan at a Cu(110) surface. Topics in Catalysis 22 (3-4), pp.161-172. (10.1023/A:1023559516485)
- Davies, P. R. and Newton, N. G. 2003. The chemisorption and decomposition of pyridine and ammonia at clean and oxidised Al(111) surfaces. Surface Science 546 (2-3), pp.149-158. (10.1016/j.susc.2003.09.032)
2002
- Carley, A. F. et al. 2002. Atom resolved evidence for a defective chemisorbed oxygen state at a Mg(0001) surface. Chemical Communications- Royal Society of Chemistry (18), pp.2020-2021. (10.1039/b205212a)
Articles
- Adishev, A. et al., 2018. Control of catalytic nanoparticle synthesis: general discussion. Faraday Discussions 208 , pp.471-495. (10.1039/C8FD90015A)
- Ahmad, B. B. et al. 2023. Effect of alkali metal cations on the TiO2 P25 catalyst for hydrogen generation by the photoreforming of glycerol. ChemistrySelect 8 (48) e202304301. (10.1002/slct.202304301)
- Allen, L. et al., 2021. Tuning the structure of cerium phosphate nanorods. CrystEngComm 23 (46), pp.8215-8225. (10.1039/D1CE01151K)
- Allender, C. J. et al. 2020. The role of growth directors in controlling the morphology of hematite nanorods. Nanoscale Research Letters 15 161. (10.1186/s11671-020-03387-w)
- Allender, C. J. et al. 2009. A glimpse of the inner workings of the templated site. Chemical Communications 2009 (2), pp.165-167. (10.1039/b811578h)
- Alsidran, S. H. et al. 2024. The role of Cu and film thickness on the photocatalytic activity of mesoporous spin coated TiO2 films. Catalysis Today 441 114904. (10.1016/j.cattod.2024.114904)
- Altass, H. et al. 2013. Enhancing surface reactivity with a noble metal. Chemical Communications 49 (74), pp.8223-8225. (10.1039/c3cc43567a)
- Altass, H. et al., 2015. XPS and STM studies of the oxidation of hydrogen chloride at Cu(100) surfaces. Surface Science 650 , pp.177-186. (10.1016/j.susc.2015.12.024)
- Arrigo, R. et al., 2018. Theory as a driving force to understand reactions on nanoparticles: general discussion. Faraday Discussions 208 , pp.147-185. (10.1039/C8FD90013B)
- Bahruji, H. et al. 2013. The adsorption and reaction of alcohols on TiO2 and Pd/TiO2 catalysts. Applied Catalysis A: General 454 , pp.66-73. (10.1016/j.apcata.2013.01.005)
- Bahruji, H. , Bowker, M. and Davies, P. R. 2019. Influence of TiO2 structural structural properties on photocatalytic hydrogen gas production. Journal of Chemical Sciences 131 (4), pp.-. 33. (10.1007/s12039-019-1608-7)
- Bahruji, H. et al. 2011. New insights into the mechanism of photocatalytic reforming on Pd/TiO2. Applied Catalysis B - Environmental 107 (1-2), pp.205-209. (10.1016/j.apcatb.2011.07.015)
- Bahruji, H. , Bowker, M. and Davies, P. R. 2009. Photoactivated reaction of water with silicon nanoparticles. International Journal of Hydrogen Energy 34 (20), pp.8504-8510. (10.1016/j.ijhydene.2009.08.039)
- Bahruji, H. et al. 2015. Rutile TiO2-Pd photocatalysts for hydrogen gas production from methanol reforming. Topics in Catalysis 58 (2-3), pp.70-76. (10.1007/s11244-014-0346-9)
- Bahruji, H. et al. 2010. Sustainable H2 gas production by photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 216 (2-3), pp.115-118. (10.1016/j.jphotochem.2010.06.022)
- Bahruji, H. et al. 2015. The importance of metal reducibility for the photo-reforming of methanol on transition metal-TiO2 photocatalysts and the use of non-precious metals. International Journal of Hydrogen Energy 40 (3), pp.1465-1471. (10.1016/j.ijhydene.2014.11.097)
- Bamroongwongdee, C. et al. 2013. Fabrication of complex model oxide catalysts: Mo oxide supported on Fe3O4(111). Faraday Discussions 162 , pp.201-212. (10.1039/c2fd20134h)
- Bemmer, V. et al., 2020. Rationalization of the X-ray photoelectron spectroscopy of aluminium phosphates synthesized from different precursors. RSC Advances 10 (14), pp.84448452. (10.1039/C9RA08738A)
- Bouleghlimat, E. , Bethell, D. and Davies, P. R. 2020. The photocatalytic destruction of cinnamic acid and cinnamyl alcohol: mechanism and the effect of aqueous ions. Chemosphere 251 126469. (10.1016/j.chemosphere.2020.126469)
- Bouleghlimat, E. et al. 2013. The effect of acid treatment on the surface chemistry and topography of graphite. Carbon 361 , pp.124-133. (10.1016/j.carbon.2013.04.076)
- Bowden, B. et al., 2018. The deposition of metal nanoparticles on carbon surfaces: the role of specific functional groups. Faraday Discussions 208 , pp.455-470. (10.1039/C7FD00210F)
- Bowden, B. et al., 2021. Investigating the effects of surface adsorbates on gold and palladium deposition on carbon. Topics in Catalysis 64 , pp.1041-1051. (10.1007/s11244-021-01423-2)
- Bowen, J. L. et al. 2012. A simple zero length surface-modification approach for preparing novel bifunctional supports for co-immobilisation studies. Tetrahedron Letters 53 (29), pp.3727-3730. (10.1016/j.tetlet.2012.04.116)
- Bowker, M. et al. 2010. Influence of thermal treatment on nanostructured gold model catalysts?. Langmuir 26 (21), pp.16261-16266. (10.1021/la101372w)
- Bowker, M. et al. 2010. Effects of the nanostructuring of gold films upon their thermal stability. Acs Nano 4 (4), pp.2228-2232. (10.1021/nn901614e)
- Bowker, M. et al. 2013. Encapsulation of Au nanoparticles on a silicon wafer during thermal oxidation. Journal of Physical Chemistry C 117 (41), pp.21577-21582. (10.1021/jp4074043)
- Bowker, M. , Davies, P. R. and Al-Mazroai, L. S. 2009. Photocatalytic reforming of glycerol over gold and palladium as an alternative fuel source. Catalysis Letters 128 (3-4), pp.253 - 255. (10.1007/s10562-008-9781-1)
- Bowker, M. et al. 2014. Hydrogen production by photoreforming of biofuels using Au, Pd and Au-Pd/TiO2 photocatalysts. Journal of Catalysis 310 , pp.10-15. (10.1016/j.jcat.2013.04.005)
- Burgess, R. et al. 2015. The functionalisation of graphite surfaces with nitric acid: identification of functional groups and their effects on gold deposition. Journal of Catalysis 323 , pp.10-18. (10.1016/j.jcat.2014.12.021)
- Bushell, J. et al., 2005. The Reactive Chemisorption of Alkyl Iodides at Cu(110) and Ag(111) Surfaces: A Combined STM and XPS Study. Journal of Physical Chemistry B 109 (19), pp.9556-9566. (10.1021/jp0513465)
- Camacho, S. Y. T. et al., 2025. Layered double hydroxides for H2 generation by the photoreforming of organic compounds. Catalysis Today 448 115168. (10.1016/j.cattod.2024.115168)
- Carley, A. F. et al. 2004. Chemisorption and reaction of phenyl iodide at Cu(110) surfaces: a combined STM and XPS study. Surface Science 555 (1-3), pp.L138-L142. (10.1016/j.susc.2004.03.005)
- Carley, A. F. et al. 2005. Molecularly resolved studies of the reaction of pyridine and dimethylamine with oxygen at a Cu(110) surface. Topics in Catalysis 36 (1-4), pp.21-32. (10.1007/s11244-005-7859-1)
- Carley, A. F. et al. 2003. Oxygen states at magnesium and copper surfaces revealed by scanning tunneling microscopy and surface reactivity. Topics in Catalysis 24 (1-4), pp.51-59. (10.1023/B:TOCA.0000003076.82649.c4)
- Carley, A. F. et al. 2004. Reactivity and Structural Aspects of Cesium and Oxygen States at Cu(110) Surfaces: An XPS and STM Investigation. Journal of Physical Chemistry B 108 (38), pp.14518-14526. (10.1021/jp049469x)
- Carley, A. F. et al. 2009. A low energy pathway to CuCl2 at Cu(110) surfaces. Physical Chemistry Chemical Physics 11 (46), pp.10899-10907. (10.1039/b914970h)
- Carley, A. F. et al. 2011. An investigation into the chemistry of electrodeposited lanthanum hydroxide-polyethylenimine films. Thin Solid Films (10.1016/j.tsf.2011.11.087)
- Carley, A. F. et al. 2003. A combined XPS/STM and TPD study of the chemisorption and reactions of methyl mercaptan at a Cu(110) surface. Topics in Catalysis 22 (3-4), pp.161-172. (10.1023/A:1023559516485)
- Carley, A. F. et al. 2002. Atom resolved evidence for a defective chemisorbed oxygen state at a Mg(0001) surface. Chemical Communications- Royal Society of Chemistry (18), pp.2020-2021. (10.1039/b205212a)
- Carley, A. F. et al. 2005. A reactive oxygen state at a barium promoted Au (100) surface: the oxidation of ethene at cryogenic temperatures. Catalysis Letters 101 (3-4), pp.137-139. (10.1007/s10562-005-4879-1)
- Carley, A. F. , Davies, P. R. and Roberts, M. W. 2005. Activation of oxygen at metal surfaces. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363 (1829), pp.829-846. (10.1098/rsta.2004.1544)
- Carley, A. F. , Davies, P. R. and Roberts, M. W. 2011. Oxygen transient states in catalytic oxidation at metal surfaces. Catalysis Today 169 (1), pp.118-124. (10.1016/j.cattod.2010.10.081)
- Carley, A. F. et al. 2010. Transient Oxygen States in Catalysis: Ammonia Oxidation at Ag(111). Langmuir 26 (21), pp.16221-16225. (10.1021/la100953m)
- Caswell, T. et al. 2020. Enhancement in the rate of nitrate degradation on Au- and Ag-decorated TiO2 photocatalysts. Catalysis Science and Technology 10 (7), pp.2083-2091. (10.1039/C9CY02473E)
- Court-Wallace, C. et al. 2023. PiFM and XPS Studies of Porous TiO2 Films for the Photocatalytic Decomposition of Polystyrene. Catalysts 13 (4)(10.3390/catal13040725)
- Davies, P. R. and Morgan, D. J. 2020. Practical guide for x-ray photoelectron spectroscopy: applications to the study of catalysts. Journal of Vacuum Science and Technology A 38 (3) 033204. (10.1116/1.5140747)
- Davies, P. R. R. and Davies-Jones, J. 2022. Photo induced Force Microscopy: chemical spectroscopy beyond the diffraction limit. Materials Chemistry Frontiers 6 (12), pp.1552-1573. (10.1039/D2QM00040G)
- Davies, P. R. 2016. On the role of water in heterogeneous catalysis: a tribute to Professor M. Wyn Roberts. Topics in Catalysis 59 (8), pp.671-677. (10.1007/s11244-016-0539-5)
- Davies, P. R. and Bowker, M. 2010. On the nature of the active site in catalysis: the reactivity of surface oxygen on Cu(1 1 0). Catalysis Today 154 (1-2), pp.31-37. (10.1016/j.cattod.2009.12.011)
- Davies, P. R. , Edwards, D. and Parsons, M. 2007. Molecularly resolved studies of the role of basicity in the reaction of amines with oxygen at a Cu(110) surface. Surface Science 601 (15), pp.3253-3260. (10.1016/j.susc.2007.06.009)
- Davies, P. R. , Edwards, D. and Richards, D. 2004. Aromatic interactions in the close packing of phenyl-imides at Cu(110) surfaces. Surface Science 573 (2), pp.284-290. (10.1016/j.susc.2004.09.039)
- Davies, P. R. , Edwards, D. and Richards, D. 2009. Possible role for Cu(II) compounds in the oxidation of malonyl dichloride and HCl at Cu(110) surfaces. Journal of Physical Chemistry. C 113 (24), pp.10333-10336. (10.1021/jp903042f)
- Davies, P. R. , Edwards, D. and Richards, D. 2004. STM and XPS Studies of the Oxidation of Aniline at Cu(110) Surfaces. Journal of Physical Chemistry B 108 (48), pp.18630-18639. (10.1021/jp047697l)
- Davies, P. R. and Newton, N. G. 2003. The chemisorption and decomposition of pyridine and ammonia at clean and oxidised Al(111) surfaces. Surface Science 546 (2-3), pp.149-158. (10.1016/j.susc.2003.09.032)
- Davies, P. R. and Roberts, M. W. 2009. A view of surface science since 1960: Oxygen states at metal surfaces. Catalysis Today 145 (1-2), pp.2-9. (10.1016/j.cattod.2008.06.001)
- Davies, R. J. et al. 2013. A facile route to model catalysts: the synthesis of Au@Pd core-shell nanoparticles on y-Fe2O3 (0001). Nanoscale 5 , pp.9018-9022. (10.1039/c3nr03047d)
- Davies, R. J. et al. 2011. The oxidation of Fe(111). Surface Science 605 (17-18), pp.1754-1762. (10.1016/j.susc.2011.06.017)
- Davies-Jones, J. et al. 2024. Photoinduced force microscopy as a novel method for the study of microbial nanostructures. Nanoscale 16 (1), pp.223-236. (10.1039/D3NR03499B)
- Delarmelina, M. et al. 2023. The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment. Physical Chemistry Chemical Physics 25 , pp.4161-4176. (10.1039/D2CP03140J)
- Fan, X. et al., 2023. InP/ZnS quantum dots photoluminescence modulation via in situ H2S interface engineering. Nanoscale Horizons 8 (4), pp.522-529. (10.1039/D2NH00436D)
- Ghosh, S. et al., 2017. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure. Scientific Reports 7 (1) 16703. (10.1038/s41598-017-16822-3)
- Gines, L. et al. 2018. Production of metal-free diamond nanoparticles. ACS Omega 3 (11), pp.16099-16104. (10.1021/acsomega.8b02067)
- Gkaliou, K. et al., 2023. Understanding cure and interphase effects in functionalized graphene‐epoxy nanocomposites. Polymers for Advanced Technologies 34 (9), pp.2925-2935. (10.1002/pat.6114)
- Guan, S. et al. 2018. Structural behaviour of copper chloride catalysts during the chlorination of CO to phosgene. Faraday Discussions 208 , pp.67-85. (10.1039/C8FD00005K)
- Guan, S. et al. 2021. The interaction of CO with a copper(ii) chloride oxy-chlorination catalyst. Faraday Discussions 229 , pp.318-340. (10.1039/D0FD00014K)
- Hughes, R. et al., 2025. Toward a generic model for phosgene synthesis catalysis over activated carbon. ChemCatChem 17 (5) e202401118. (10.1002/cctc.202401118)
- Isaacs, M. A. et al., 2021. Advanced XPS characterization: XPS-based multi-technique analyses for comprehensive understanding of functional materials. Materials Chemistry Frontiers 5 (22), pp.7931-7963. (10.1039/D1QM00969A)
- Isaacs, M. et al. 2025. XPS insight note: Coster–Kronig broadening. Surface and Interface Analysis 57 (7), pp.548-554. (10.1002/sia.7410)
- Kasry, A. et al. 2009. Comparison of methods for generating planar DNA-modified surfaces for hybridization studies. ACS Applied Materials & Interfaces 1 (8), pp.1793-1798. (10.1021/am9003073)
- Kennedy, J. et al. 2018. Hydrogen generation by photocatalytic reforming of potential biofuels: polyols, cyclic alcohols and saccharides. Journal of Photochemistry and Photobiology A: Chemistry 356 , pp.451-456. (10.1016/j.jphotochem.2018.01.031)
- Kennedy, J. et al. 2021. Hydrogen production by the photo-reforming of methanol and the photocatalytic water gas shift reaction. Journal of Physics: Energy 3 (2) 024007. (10.1088/2515-7655/abdd82)
- Kulik, T. et al. 2025. Catalytic pyrolysis of sinapic acid on nanoceria: surface complexes, valorization of products, experimental, and atomistic approaches. Chemistry-Sustainability-Energy-Materials e202501249. (10.1002/cssc.202501249)
- Li, Z. et al., 2024. Porous structure enhances the longitudinal piezoelectric coefficient and electromechanical coupling coefficient of lead‐free (Ba 0.85 Ca 0.15 )(Zr 0.1 Ti 0.9 )O 3. Advanced Science 11 2406255. (10.1002/advs.202406255)
- Lim, J. et al., 2024. Benign methylformamidinium byproduct induced by cation heterogeneity inhibits local formation of δ-phase perovskites. Energy & Environmental Science 17 (23), pp.9134-9143. (10.1039/D4EE03058C)
- Lord, A. M. et al., 2014. Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS. Applied Surface Science 320 , pp.664-669. (10.1016/j.apsusc.2014.09.078)
- Lord, A. M. et al., 2017. Modifying the interface edge to control the electrical transport properties of nanocontacts to nanowires. Nano Letters 17 (2), pp.687-694. (10.1021/acs.nanolett.6b03699)
- Lord, A. M. et al., 2014. Enhanced long-path electrical conduction in ZnO nanowire array devices grown via defect-driven nucleation. Journal of Physical Chemistry C 118 (36), pp.21177-21184. (10.1021/jp505414u)
- Matam, S. K. et al. 2025. Operando X-ray absorption spectroscopic flow cell for electrochemical CO2 reduction: new insight into the role of copper species. Catalysis Science & Technology 15 (4), pp.1070-1081. (10.1039/D4CY00602J)
- Parkes, R. J. et al. 2019. Rock-crushing derived hydrogen directly supports a methanogenic community: significance for the deep biosphere.. Environmental Microbiology Reports 11 (2), pp.165-172. (10.1111/1758-2229.12723)
- Shcherbakov, M. R. et al., 2025. Photo-induced force microscopy. Nature Reviews Methods Primers 5 (1) 34. (10.1038/s43586-025-00403-0)
- Stere, C. E. et al., 2024. Removal and oxidation of low concentration tert -butanol from potable water using nonthermal plasma coupled with metal oxide adsorption. ACS ES&T engineering 4 (9), pp.2121-2134. (10.1021/acsestengg.4c00166)
- Theodosiou, A. et al., 2026. Investigating graphite oxidation via real-time offgas analysis. Carbon 247 121052. (10.1016/j.carbon.2025.121052)
- Wang, K. et al. 2024. Amphiphilic Janus particles for aerobic alcohol oxidation in oil foams. ACS Catalysis 14 , pp.11545–11553. (10.1021/acscatal.4c00909)
- Werrell, J. et al. 2017. Effect of slurry composition on the chemical mechanical polishing of thin diamond films. Science and Technology of Advanced Materials 18 (1), pp.654-663. (10.1080/14686996.2017.1366815.)
- Williams, S. E. et al. 2013. Controlling the nanoscale patterning of AuNPs on silicon surfaces. Nanomaterials 3 (1), pp.192-203. (10.3390/nano3010192)
Book sections
- Carley, A. F. et al. 2007. Dissociative chemisorption of hydrogen chloride at Cu(110): atom-resolved time-dependent evidence for transient states in the formation of the final state stable chloride overlayer. In: Harris, K. D. M. and Edwards, P. P. eds. Turning Points in Solid-State, Materials and Surface Science. London: RSC Publishing. , pp.479-491. (10.1039/9781847558183-00479)
- Ou, X. et al., 2023. Catalytic treatment of high ionic strength wastewater from shale gas production. In: Modern Developments in Catalysis. Vol. 2, World Scientific Publishing Europe Ltd.. , pp.1-52. (10.1142/9781800612013_0001)
Books
- Davies, P. R. and Roberts, M. W. 2007. Atom resolved surface reactions: nanocatalysis. RSC Nanoscience & Nanotechnology Cambridge: Royal Society of Chemistry.
Research
Our primary interest is understanding how a surface can modifies or direct a chemical reaction with particular interest in heterogeneous catalysis where the surface has long been recognised critical in determining activity, selectivity and lifetime. However, surface chemistry is an integral part of almost every heterogeneous system and thus our work is also relevant to aspects of adhesion, corrosion and biological activity. The core of our work has been concerned with understanding the reactions of molecules at surfaces characterised both chemically and structurally at the atomic level.
The heart of our research is our expertise in photoelectron spectroscopy (I was founding Director of the very successful EPSRC National Research Facility in Photoelectron Spectroscopy (HarwellXPS)) and nanoscale vibrational spectroscopy, we have the only Photo induced force microscope in the UK which provides infrared spectroscopy with 5 nm lateral resolution and applications anywhere the local chemistry of a surface or interface is needed.
Other aspects of our work include studying the mechanism of photocatalysis, and in particular water splitting; characterising the decomposition pathways for archaeological iron (collaboration with the School of Conservation); investigating novel polymeric based sensors (collaboration with the School of Pharmacy) and exploring the anti-bacterial properties of nano-particulate silver (collaboration with the School of Pharmacy)
For more information on specific projects available with Professor Philip Davies please review the Catalysis and interfacial science section of our research project themes.
Teaching
Undergraduate & Postgraduate Taught Courses
CH5101 Foundations of Physical Chemistry (Spectroscopy)
CH5201 Further Physical Chemistry (Kinetics & interface science)
CH5206 Key Skills for Chemists
CH2306 Application of Research Methods
CH4409 Applications of Advanced Spectroscopic Methods
CHT330 Applications of Advanced Spectroscopic Methods
Postgraduate Research Courses
Inkscape for scientific illustration
Zotero for reference management
Biography
1989 PhD, University College Cardiff (Supervisor: M. W. Roberts)
1989 Lecturer in Chemistry, Cardiff
2000 Senior Lecturer
2014 Personal Chair in Physical Chemistry
2012-2016 Coordinator of the FP7 funded PCATDES consortium
2017-2023 Director, EPSRC National Research Facility in Photoelectron Spectroscopy (HarwellXPS)
2023-present co-Director, HarwellXPS
Honours and awards
Fellow of the Royal Society of Chemistry
Supervisions
- Surface science (Photoelectron spectroscopy & nanoscale vibrational spectroscopy)
- Surface treatments
- Surface characterisation
- Nanoscale surface design
- Photocatalysis.
Current supervision
Contact Details
+44 29208 74072
Translational Research Hub, Floor 3rd, Room 3.25, Maindy Road, Cathays, Cardiff, CF24 4HQ
Research themes
Specialisms
- Surface Science
- Photoelectron Spectroscopy
- Photocatalysis
- Coatings
- Nanoscale characterisation