Overview
Research summary
I am primarily interested in off-line learning during sleep and wakefulness: my research investigates brain plasticity, focusing specifically on the changes in behaviour and neural activity which occur after initial learning. I’m particularly interested in changes occurring while a memory is not being encoded, practised, or recalled. These can happen both during sleep and during wakefulness.
Current interests in the lab fall into four main categories
- Consolidation of procedural skills
- Emotional episodes
- Transition of memories from episodic to semantic
- 'Sleep engineering’ or ways to manipulate sleep for greater cognitive and or health benefit (see TEDx talk)
Sleep is critical for both health and cognition. Our lab is developing ways to manipulate sleep (called 'Sleep Engineering’) in order to maximise its beneficial properties. We are working on ways to enhance memory, disarm negative emotions, and combat cognitive decline through ageing. Read more here.
Teaching summary
I am teaching on the MSc Neuroimaging: Methods and Applications - PST505
Publication
2025
- Greco, V. et al. 2025. Disarming emotional memories using Targeted Memory Reactivation during Rapid Eye Movement sleep. Imaging Neuroscience 3 IMAG.a.924. (10.1162/IMAG.a.924)
- Leitner, C. et al., 2025. Isolated REM sleep behavior disorder: A model to assess the overnight habituation of emotional reactivity. Clocks & Sleep 7 (1) 9. (10.3390/clockssleep7010009)
- Meshreky, K. and Lewis, P. 2025. Do eye movements in REM sleep play a role in overnight emotional processing?. Neuropsychologia 215 109169. (10.1016/j.neuropsychologia.2025.109169)
- Rakowska, M. et al. 2025. Distributed and gradual microstructure changes are associated with the emergence of behavioural benefit from memory reactivation. Imaging Neuroscience 3 IMAG.a.104. (10.1162/IMAG.a.104)
2024
- Kavoosi, A. et al., 2024. MorpheusNet: Resource efficient sleep stage classifier for embedded on-line systems. Presented at: IEEE International Conference on Systems, Man, and Cybernetics (SMC) Honolulu, Oahu, HI, USA 01-04 October 2023. Proceedings IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE. , pp.2315-2320. (10.1109/SMC53992.2023.10394274)
- Leitner, C. et al., 2024. REM sleep and emotion dysregulation in the elderly: a TMR study. Presented at: 17th World Sleep Congress Rio de Janeiro, Brazil 20-25 October 2023. (10.1016/j.sleep.2023.11.147)
- Navarrete, M. et al. 2024. Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance. Communications Biology 7 (1) 193. (10.1038/s42003-024-05825-2)
- Rakowska, M. et al. 2024. Cueing memory reactivation during NREM sleep engenders long-term plasticity in both brain and behaviour. Imaging Neuroscience 2 , pp.1-21. (10.1162/imag_a_00250)
- Santamaria, L. et al., 2024. Memory reactivation in slow wave sleep enhances relational learning in humans. Communications Biology 7 (1) 288. (10.1038/s42003-024-05947-7)
- Santamaria, L. et al., 2024. Effects of targeted memory reactivation on cortical networks. Brain Sciences 14 (2) 114. (10.3390/brainsci14020114)
2023
- Abdellahi, M. et al. 2023. Targeted memory reactivation in human REM sleep elicits detectable reactivation. eLife 12 e84324. (10.7554/elife.84324)
- Abdellahi, M. E. A. et al. 2023. Targeting targeted memory reactivation: characteristics of cued reactivation in sleep. NeuroImage 266 119820. (10.1016/j.neuroimage.2022.119820)
- Foldes, T. , Santamaria, L. and Lewis, P. 2023. Sleep-related benefits to transitive inference are modulated by encoding strength and joint rank. Learning & Memory 30 (9), pp.201-211. (10.1101/lm.053787.123)
- Greco, V. et al. 2023. Wearing an eye mask during overnight sleep improves episodic learning and alertness. Sleep 46 (3) zsac305. (10.1093/sleep/zsac305)
- Pereira, S. I. R. et al. 2023. Rule abstraction is facilitated by auditory cueing in REM sleep. Journal of Neuroscience 43 (21), pp.3838-3848. (10.1523/JNEUROSCI.1966-21.2022)
2022
- Debellemanière, E. et al., 2022. Optimising sounds for the driving of sleep oscillations by closed‐loop auditory stimulation. Journal of Sleep Research (10.1111/jsr.13676)
- Navarrete, M. et al. 2022. Ongoing neural oscillations predict the post-stimulus outcome of closed loop auditory stimulation during slow-wave sleep. NeuroImage 253 119055. (10.1016/j.neuroimage.2022.119055)
- Pereira, S. I. R. et al. 2022. Cueing emotional memories during slow wave sleep modulates next-day activity in the orbitofrontal cortex and the amygdala. NeuroImage 253 119120. (10.1016/j.neuroimage.2022.119120)
- Roebber, J. K. et al., 2022. Effects of anti-seizure medication on sleep spindles and slow waves in drug-resistant epilepsy. Brain Sciences 12 (10) 1288. (10.3390/brainsci12101288)
- Sommer, T. et al., 2022. The assimilation of novel information into schemata and its efficient consolidation. Journal of Neuroscience 42 (30), pp.5916-5929. (10.1523/jneurosci.2373-21.2022)
2021
- Hutchinson, I. C. et al., 2021. Targeted memory reactivation in REM but not SWS selectively reduces arousal responses. Communications Biology 4 404. (10.1038/s42003-021-01854-3)
- Rakowska, M. et al. 2021. Long term effects of cueing procedural memory reactivation during NREM sleep. NeuroImage 244 118573. (10.1016/j.neuroimage.2021.118573)
2020
- Navarrete, M. et al. 2020. Examining the optimal timing for closed loop auditory stimulation of slow wave sleep in young and older adults. SLEEP 43 (6), pp.1-14. (10.1093/sleep/zsz315)
- Navarrete, M. , Valderrama, M. and Lewis, P. A. 2020. The role of slow-wave sleep rhythms in the corticalhippocampal loop for memory consolidation. Current Opinion in Behavioral Sciences 32 , pp.102-110. (10.1016/j.cobeha.2020.02.006)
- Pereira, S. I. R. and Lewis, P. A. 2020. Sleeping through brain excitation and inhibition. Nature Neuroscience 23 , pp.1037-1039. (10.1038/s41593-020-0697-4)
- Pereira, S. I. R. and Lewis, P. A. 2020. The differing roles of NREM and REM sleep in the slow enhancement of skills and schemas. Current Opinion in Physiology 15 , pp.82-88. (10.1016/j.cophys.2019.12.005)
- Schneider, J. et al., 2020. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. SLEEP 43 (12)(10.1093/sleep/zsaa111)
2019
- Eichenlaub, J. et al., 2019. The nature of delayed dream incorporation ('dream-lag effect'): personally significant events persist, but not major daily activities or concerns. Journal of Sleep Research 28 (1) e12697. (10.1111/jsr.12697)
2018
- Belal, S. et al. 2018. Identification of memory reactivation during sleep by EEG classification. NeuroImage 176 , pp.203-214. (10.1016/j.neuroimage.2018.04.029)
- Eichenlaub, J. et al., 2018. Incorporation of recent waking-life experiences in dreams correlates with frontal theta activity in REM sleep. Social Cognitive and Affective Neuroscience 13 (6), pp.637-647. (10.1093/scan/nsy041)
- Lewis, P. , Knoblich, G. and Poe, G. 2018. How memory replay in sleep boosts creative problem solving. Trends in Cognitive Sciences 22 (6), pp.491-503. (10.1016/j.tics.2018.03.009)
2017
- Hennies, N. et al., 2017. Cued memory reactivation during SWS abolishes the beneficial effect of sleep on abstraction. Sleep 40 (8)(10.1093/sleep/zsx102)
- Lewis, P. A. et al. 2017. Higher order intentionality tasks are cognitively more demanding. Social Cognitive and Affective Neuroscience 12 (7), pp.1063-1071. (10.1093/scan/nsx034)
- Tamminen, J. , Lambon Ralph, M. A. and Lewis, P. 2017. Targeted memory reactivation of newly learned words during sleep triggers REM-mediated integration of new memories and existing knowledge.. Neurobiology of Learning and Memory 137 , pp.77-82. (10.1016/j.nlm.2016.11.012)
2016
- Cousins, J. N. et al., 2016. Cued reactivation of motor learning during sleep leads to overnight changes in functional brain activity and connectivity. Plos Biology 14 (5) e1002451. (10.1371/journal.pbio.1002451)
- Durrant, S. J. , Cairney, S. A. and Lewis, P. A. 2016. Cross-modal transfer of statistical information benefits from sleep.. Cortex 78 , pp.85-99. (10.1016/j.cortex.2016.02.011)
- Hennies, N. et al., 2016. Sleep spindle density predicts the effect of prior knowledge on memory consolidation. Journal of Neuroscience 36 (13), pp.3799-3810. (10.1523/JNEUROSCI.3162-15.2016)
2015
- Cairney, S. A. et al., 2015. Complementary roles of slow-wave sleep and rapid eye movement sleep in emotional memory consolidation. Cerebral Cortex 25 (6), pp.1565-1575. (10.1093/cercor/bht349)
- Durrant, S. J. et al., 2015. Schema-conformant memories are preferentially consolidated during REM sleep. Neurobiology of Learning and Memory 122 , pp.41-50. (10.1016/j.nlm.2015.02.011)
- van Rijn, E. et al., 2015. The dream-lag effect: selective processing of personally significant events during Rapid Eye Movement sleep, but not during Slow Wave Sleep. Neurobiology of Learning and Memory 122 , pp.98-109. (10.1016/j.nlm.2015.01.009)
2014
- Cairney, S. A. et al., 2014. Targeted memory reactivation during slow wave sleep facilitates emotional memory consolidation. Sleep 37 (4), pp.701-707. (10.5665/sleep.3572)
- Cairney, S. A. et al., 2014. Sleep spindles provide indirect support to the consolidation of emotional encoding contexts. Neuropsychologia 63 , pp.285-292. (10.1016/j.neuropsychologia.2014.09.016)
- Cousins, J. M. et al., 2014. Cued memory reactivation during slow-wave sleep promotes explicit knowledge of a motor sequence. Journal of Neuroscience 34 (48), pp.15870-15876. (10.1523/JNEUROSCI.1011-14.2014)
- Hennies, N. et al., 2014. Time- but not sleep-dependent consolidation promotes the emergence of cross-modal conceptual representations. Neuropsychologia 63 , pp.1161-123. (10.1016/j.neuropsychologia.2014.08.021)
2013
- Tamminen, J. , Lambon Ralph, M. A. and Lewis, P. A. 2013. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory. Journal of Neuroscience 33 (39), pp.15376-15381. (10.1523/JNEUROSCI.5093-12.2013)
2012
- Durrant, S. J. , Cairney, S. A. and Lewis, P. A. 2012. Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. Cerebral Cortex -New York- Oxford University Press- 23 (10), pp.2467-2478. (10.1093/cercor/bhs244)
- Powell, J. et al., 2012. Orbital prefrontal cortex volume predicts social network size: an imaging study of individual differences in humans. Proceedings of the Royal Society B: Biological Sciences 283 (1824)(10.1098/rspb.2011.2574)
- Wuerger, S. et al., 2012. Premotor cortex is sensitive to auditory–visual congruence for biological motion. Journal of Cognitive Neuroscience 24 (3), pp.575-587. (10.1162/jocn_a_00173)
2011
- Cairney, S. A. et al., 2011. Sleep and environmental context: interactive effects for memory. Experimental Brain Research 214 , pp.83-92. (10.1007/s00221-011-2808-7)
- Durrant, S. J. et al., 2011. Sleep-dependent consolidation of statistical learning. Neuropsychologia 49 (5), pp.1322-1331. (10.1016/j.neuropsychologia.2011.02.015)
- Lewis, P. A. et al. 2011. The impact of overnight consolidation upon memory for emotional and neutral encoding contexts. Neuropsychologia 49 (9), pp.2619-2629. (10.1016/j.neuropsychologia.2011.05.009)
- Lewis, P. A. et al. 2011. Ventromedial prefrontal volume predicts understanding of others and social network size. NeuroImage 57 (4), pp.1624-1629. (10.1016/j.neuroimage.2011.05.030)
2010
- Javardi, A. H. , Walsh, V. and Lewis, P. A. 2010. Offline consolidation of procedural skill learning is enhanced by negative emotional content. Experimental Brain Research 208 (4), pp.507-517. (10.1007/s00221-010-2497-7)
- Lewis, P. A. , Couch, T. J. and Walker, M. P. 2010. Keeping time in your sleep: overnight consolidation of temporal rhythm. Neuropsychologia 49 (1), pp.115-123. (10.1016/j.neuropsychologia.2010.10.025)
- Powell, J. L. et al., 2010. Orbital prefrontal cortex volume correlates with social cognitive competence. Neuropsychologia 48 (12), pp.3554-3562. (10.1016/j.neuropsychologia.2010.08.004)
2009
- Durrant, S. and Lewis, P. A. 2009. Memory consolidation: tracking transfer with functional connectivity. Current Biology 19 (18), pp.R860-R862. (10.1016/j.cub.2009.08.019)
- Lewis, P. A. and Miall, R. C. 2009. The precision of temporal judgement: milliseconds, many minutes, and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences 364 (1525)(10.1098/rstb.2009.0020)
2007
- Critchley, H. D. et al., 2007. Vagus nerve stimulation for treatment-resistant depression: behavioral and neural effects on encoding negative material. Psychosomatic Medicine -Washington- 69 (1), pp.17-22. (10.1097/PSY.0b013e31802e106d)
- Holland, P. and Lewis, P. A. 2007. Emotional memory: selective enhancement by sleep. Current Biology 17 (5), pp.R179-R181. (10.1016/j.cub.2006.12.033)
2006
- Lewis, P. A. et al. 2006. Neural correlates of processing valence and arousal in affective words. Cerebral Cortex -New York- Oxford University Press- 17 (3), pp.742-748. (10.1093/cercor/bhk024)
- Lewis, P. A. and Miall, R. C. 2006. A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes 71 (2-3), pp.226-234. (10.1016/j.beproc.2005.12.009)
- Lewis, P. A. and Miall, R. C. 2006. Remembering the time: a continuous clock. Trends in Cognitive Sciences 10 (9), pp.401-406. (10.1016/j.tics.2006.07.006)
2005
- Lewis, P. A. et al. 2005. Brain mechanisms for mood congruent memory facilitation. NeuroImage 25 (4), pp.1214-1223. (10.1016/j.neuroimage.2004.11.053)
- Lewis, P. A. and Walsh, V. 2005. Time perception: components of the brain’s clock. Current Biology 15 (10), pp.R389-R391. (10.1016/j.cub.2005.05.008)
2004
- Lewis, P. A. et al. 2004. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia 42 (10), pp.1301-1312. (10.1016/j.neuropsychologia.2004.03.001)
2003
- Lewis, P. A. and Critchley, H. D. 2003. Mood-dependent memory. Trends in Cognitive Sciences 7 (10), pp.431-433. (10.1016/j.tics.2003.08.005)
- Lewis, P. A. and Miall, R. C. 2003. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia 41 (12), pp.1583-1592. (10.1016/S0028-3932(03)00118-0)
- Lewis, P. A. et al. 2003. Interval timing in mice does not rely upon the circadian pacemaker. Neuroscience Letters 348 (3), pp.131-134. (10.1016/S0304-3940(03)00521-4)
- Lewis, P. A. and Miall, R. C. 2003. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Current Opinion in Neurobiology 13 (2), pp.250-255. (10.1016/S0959-4388(03)00036-9)
2002
- Lewis, P. A. 2002. Finding the timer. Trends in Cognitive Sciences 6 (5), pp.195-196. (10.1016/S1364-6613(02)01906-X)
- Lewis, P. A. 2002. Musical Minds. Trends in Cognitive Sciences 6 (9), pp.364-366. (10.1016/S1364-6613(02)01955-1)
- Lewis, P. A. and Miall, R. C. 2002. Brain activity during non-automatic motor production of discrete multi-second intervals. Neuroreport -Oxford- 13 (4), pp.1731-1735.
- Lewis, P. A. and Walsh, V. 2002. Neuropsychology: Time Out of Mind. Current Biology 12 (1), pp.R9-R11. (10.1016/S0960-9822(01)00638-8)
Articles
- Abdellahi, M. et al. 2023. Targeted memory reactivation in human REM sleep elicits detectable reactivation. eLife 12 e84324. (10.7554/elife.84324)
- Abdellahi, M. E. A. et al. 2023. Targeting targeted memory reactivation: characteristics of cued reactivation in sleep. NeuroImage 266 119820. (10.1016/j.neuroimage.2022.119820)
- Belal, S. et al. 2018. Identification of memory reactivation during sleep by EEG classification. NeuroImage 176 , pp.203-214. (10.1016/j.neuroimage.2018.04.029)
- Cairney, S. A. et al., 2014. Targeted memory reactivation during slow wave sleep facilitates emotional memory consolidation. Sleep 37 (4), pp.701-707. (10.5665/sleep.3572)
- Cairney, S. A. et al., 2014. Sleep spindles provide indirect support to the consolidation of emotional encoding contexts. Neuropsychologia 63 , pp.285-292. (10.1016/j.neuropsychologia.2014.09.016)
- Cairney, S. A. et al., 2011. Sleep and environmental context: interactive effects for memory. Experimental Brain Research 214 , pp.83-92. (10.1007/s00221-011-2808-7)
- Cairney, S. A. et al., 2015. Complementary roles of slow-wave sleep and rapid eye movement sleep in emotional memory consolidation. Cerebral Cortex 25 (6), pp.1565-1575. (10.1093/cercor/bht349)
- Cousins, J. M. et al., 2014. Cued memory reactivation during slow-wave sleep promotes explicit knowledge of a motor sequence. Journal of Neuroscience 34 (48), pp.15870-15876. (10.1523/JNEUROSCI.1011-14.2014)
- Cousins, J. N. et al., 2016. Cued reactivation of motor learning during sleep leads to overnight changes in functional brain activity and connectivity. Plos Biology 14 (5) e1002451. (10.1371/journal.pbio.1002451)
- Critchley, H. D. et al., 2007. Vagus nerve stimulation for treatment-resistant depression: behavioral and neural effects on encoding negative material. Psychosomatic Medicine -Washington- 69 (1), pp.17-22. (10.1097/PSY.0b013e31802e106d)
- Debellemanière, E. et al., 2022. Optimising sounds for the driving of sleep oscillations by closed‐loop auditory stimulation. Journal of Sleep Research (10.1111/jsr.13676)
- Durrant, S. and Lewis, P. A. 2009. Memory consolidation: tracking transfer with functional connectivity. Current Biology 19 (18), pp.R860-R862. (10.1016/j.cub.2009.08.019)
- Durrant, S. J. , Cairney, S. A. and Lewis, P. A. 2016. Cross-modal transfer of statistical information benefits from sleep.. Cortex 78 , pp.85-99. (10.1016/j.cortex.2016.02.011)
- Durrant, S. J. , Cairney, S. A. and Lewis, P. A. 2012. Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. Cerebral Cortex -New York- Oxford University Press- 23 (10), pp.2467-2478. (10.1093/cercor/bhs244)
- Durrant, S. J. et al., 2015. Schema-conformant memories are preferentially consolidated during REM sleep. Neurobiology of Learning and Memory 122 , pp.41-50. (10.1016/j.nlm.2015.02.011)
- Durrant, S. J. et al., 2011. Sleep-dependent consolidation of statistical learning. Neuropsychologia 49 (5), pp.1322-1331. (10.1016/j.neuropsychologia.2011.02.015)
- Eichenlaub, J. et al., 2018. Incorporation of recent waking-life experiences in dreams correlates with frontal theta activity in REM sleep. Social Cognitive and Affective Neuroscience 13 (6), pp.637-647. (10.1093/scan/nsy041)
- Eichenlaub, J. et al., 2019. The nature of delayed dream incorporation ('dream-lag effect'): personally significant events persist, but not major daily activities or concerns. Journal of Sleep Research 28 (1) e12697. (10.1111/jsr.12697)
- Foldes, T. , Santamaria, L. and Lewis, P. 2023. Sleep-related benefits to transitive inference are modulated by encoding strength and joint rank. Learning & Memory 30 (9), pp.201-211. (10.1101/lm.053787.123)
- Greco, V. et al. 2023. Wearing an eye mask during overnight sleep improves episodic learning and alertness. Sleep 46 (3) zsac305. (10.1093/sleep/zsac305)
- Greco, V. et al. 2025. Disarming emotional memories using Targeted Memory Reactivation during Rapid Eye Movement sleep. Imaging Neuroscience 3 IMAG.a.924. (10.1162/IMAG.a.924)
- Hennies, N. et al., 2017. Cued memory reactivation during SWS abolishes the beneficial effect of sleep on abstraction. Sleep 40 (8)(10.1093/sleep/zsx102)
- Hennies, N. et al., 2016. Sleep spindle density predicts the effect of prior knowledge on memory consolidation. Journal of Neuroscience 36 (13), pp.3799-3810. (10.1523/JNEUROSCI.3162-15.2016)
- Hennies, N. et al., 2014. Time- but not sleep-dependent consolidation promotes the emergence of cross-modal conceptual representations. Neuropsychologia 63 , pp.1161-123. (10.1016/j.neuropsychologia.2014.08.021)
- Holland, P. and Lewis, P. A. 2007. Emotional memory: selective enhancement by sleep. Current Biology 17 (5), pp.R179-R181. (10.1016/j.cub.2006.12.033)
- Hutchinson, I. C. et al., 2021. Targeted memory reactivation in REM but not SWS selectively reduces arousal responses. Communications Biology 4 404. (10.1038/s42003-021-01854-3)
- Javardi, A. H. , Walsh, V. and Lewis, P. A. 2010. Offline consolidation of procedural skill learning is enhanced by negative emotional content. Experimental Brain Research 208 (4), pp.507-517. (10.1007/s00221-010-2497-7)
- Leitner, C. et al., 2025. Isolated REM sleep behavior disorder: A model to assess the overnight habituation of emotional reactivity. Clocks & Sleep 7 (1) 9. (10.3390/clockssleep7010009)
- Lewis, P. A. 2002. Finding the timer. Trends in Cognitive Sciences 6 (5), pp.195-196. (10.1016/S1364-6613(02)01906-X)
- Lewis, P. A. 2002. Musical Minds. Trends in Cognitive Sciences 6 (9), pp.364-366. (10.1016/S1364-6613(02)01955-1)
- Lewis, P. A. et al. 2017. Higher order intentionality tasks are cognitively more demanding. Social Cognitive and Affective Neuroscience 12 (7), pp.1063-1071. (10.1093/scan/nsx034)
- Lewis, P. A. et al. 2011. The impact of overnight consolidation upon memory for emotional and neutral encoding contexts. Neuropsychologia 49 (9), pp.2619-2629. (10.1016/j.neuropsychologia.2011.05.009)
- Lewis, P. A. , Couch, T. J. and Walker, M. P. 2010. Keeping time in your sleep: overnight consolidation of temporal rhythm. Neuropsychologia 49 (1), pp.115-123. (10.1016/j.neuropsychologia.2010.10.025)
- Lewis, P. A. et al. 2006. Neural correlates of processing valence and arousal in affective words. Cerebral Cortex -New York- Oxford University Press- 17 (3), pp.742-748. (10.1093/cercor/bhk024)
- Lewis, P. A. et al. 2005. Brain mechanisms for mood congruent memory facilitation. NeuroImage 25 (4), pp.1214-1223. (10.1016/j.neuroimage.2004.11.053)
- Lewis, P. A. and Critchley, H. D. 2003. Mood-dependent memory. Trends in Cognitive Sciences 7 (10), pp.431-433. (10.1016/j.tics.2003.08.005)
- Lewis, P. A. and Miall, R. C. 2006. A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes 71 (2-3), pp.226-234. (10.1016/j.beproc.2005.12.009)
- Lewis, P. A. and Miall, R. C. 2003. Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia 41 (12), pp.1583-1592. (10.1016/S0028-3932(03)00118-0)
- Lewis, P. A. and Miall, R. C. 2009. The precision of temporal judgement: milliseconds, many minutes, and beyond. Philosophical Transactions of the Royal Society B: Biological Sciences 364 (1525)(10.1098/rstb.2009.0020)
- Lewis, P. A. et al. 2003. Interval timing in mice does not rely upon the circadian pacemaker. Neuroscience Letters 348 (3), pp.131-134. (10.1016/S0304-3940(03)00521-4)
- Lewis, P. A. and Miall, R. C. 2002. Brain activity during non-automatic motor production of discrete multi-second intervals. Neuroreport -Oxford- 13 (4), pp.1731-1735.
- Lewis, P. A. and Miall, R. C. 2006. Remembering the time: a continuous clock. Trends in Cognitive Sciences 10 (9), pp.401-406. (10.1016/j.tics.2006.07.006)
- Lewis, P. A. and Miall, R. C. 2003. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Current Opinion in Neurobiology 13 (2), pp.250-255. (10.1016/S0959-4388(03)00036-9)
- Lewis, P. A. et al. 2011. Ventromedial prefrontal volume predicts understanding of others and social network size. NeuroImage 57 (4), pp.1624-1629. (10.1016/j.neuroimage.2011.05.030)
- Lewis, P. A. and Walsh, V. 2002. Neuropsychology: Time Out of Mind. Current Biology 12 (1), pp.R9-R11. (10.1016/S0960-9822(01)00638-8)
- Lewis, P. A. and Walsh, V. 2005. Time perception: components of the brain’s clock. Current Biology 15 (10), pp.R389-R391. (10.1016/j.cub.2005.05.008)
- Lewis, P. A. et al. 2004. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia 42 (10), pp.1301-1312. (10.1016/j.neuropsychologia.2004.03.001)
- Lewis, P. , Knoblich, G. and Poe, G. 2018. How memory replay in sleep boosts creative problem solving. Trends in Cognitive Sciences 22 (6), pp.491-503. (10.1016/j.tics.2018.03.009)
- Meshreky, K. and Lewis, P. 2025. Do eye movements in REM sleep play a role in overnight emotional processing?. Neuropsychologia 215 109169. (10.1016/j.neuropsychologia.2025.109169)
- Navarrete, M. et al. 2022. Ongoing neural oscillations predict the post-stimulus outcome of closed loop auditory stimulation during slow-wave sleep. NeuroImage 253 119055. (10.1016/j.neuroimage.2022.119055)
- Navarrete, M. et al. 2024. Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance. Communications Biology 7 (1) 193. (10.1038/s42003-024-05825-2)
- Navarrete, M. et al. 2020. Examining the optimal timing for closed loop auditory stimulation of slow wave sleep in young and older adults. SLEEP 43 (6), pp.1-14. (10.1093/sleep/zsz315)
- Navarrete, M. , Valderrama, M. and Lewis, P. A. 2020. The role of slow-wave sleep rhythms in the corticalhippocampal loop for memory consolidation. Current Opinion in Behavioral Sciences 32 , pp.102-110. (10.1016/j.cobeha.2020.02.006)
- Pereira, S. I. R. and Lewis, P. A. 2020. Sleeping through brain excitation and inhibition. Nature Neuroscience 23 , pp.1037-1039. (10.1038/s41593-020-0697-4)
- Pereira, S. I. R. and Lewis, P. A. 2020. The differing roles of NREM and REM sleep in the slow enhancement of skills and schemas. Current Opinion in Physiology 15 , pp.82-88. (10.1016/j.cophys.2019.12.005)
- Pereira, S. I. R. et al. 2023. Rule abstraction is facilitated by auditory cueing in REM sleep. Journal of Neuroscience 43 (21), pp.3838-3848. (10.1523/JNEUROSCI.1966-21.2022)
- Pereira, S. I. R. et al. 2022. Cueing emotional memories during slow wave sleep modulates next-day activity in the orbitofrontal cortex and the amygdala. NeuroImage 253 119120. (10.1016/j.neuroimage.2022.119120)
- Powell, J. et al., 2012. Orbital prefrontal cortex volume predicts social network size: an imaging study of individual differences in humans. Proceedings of the Royal Society B: Biological Sciences 283 (1824)(10.1098/rspb.2011.2574)
- Powell, J. L. et al., 2010. Orbital prefrontal cortex volume correlates with social cognitive competence. Neuropsychologia 48 (12), pp.3554-3562. (10.1016/j.neuropsychologia.2010.08.004)
- Rakowska, M. et al. 2021. Long term effects of cueing procedural memory reactivation during NREM sleep. NeuroImage 244 118573. (10.1016/j.neuroimage.2021.118573)
- Rakowska, M. et al. 2024. Cueing memory reactivation during NREM sleep engenders long-term plasticity in both brain and behaviour. Imaging Neuroscience 2 , pp.1-21. (10.1162/imag_a_00250)
- Rakowska, M. et al. 2025. Distributed and gradual microstructure changes are associated with the emergence of behavioural benefit from memory reactivation. Imaging Neuroscience 3 IMAG.a.104. (10.1162/IMAG.a.104)
- Roebber, J. K. et al., 2022. Effects of anti-seizure medication on sleep spindles and slow waves in drug-resistant epilepsy. Brain Sciences 12 (10) 1288. (10.3390/brainsci12101288)
- Santamaria, L. et al., 2024. Memory reactivation in slow wave sleep enhances relational learning in humans. Communications Biology 7 (1) 288. (10.1038/s42003-024-05947-7)
- Santamaria, L. et al., 2024. Effects of targeted memory reactivation on cortical networks. Brain Sciences 14 (2) 114. (10.3390/brainsci14020114)
- Schneider, J. et al., 2020. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. SLEEP 43 (12)(10.1093/sleep/zsaa111)
- Sommer, T. et al., 2022. The assimilation of novel information into schemata and its efficient consolidation. Journal of Neuroscience 42 (30), pp.5916-5929. (10.1523/jneurosci.2373-21.2022)
- Tamminen, J. , Lambon Ralph, M. A. and Lewis, P. 2017. Targeted memory reactivation of newly learned words during sleep triggers REM-mediated integration of new memories and existing knowledge.. Neurobiology of Learning and Memory 137 , pp.77-82. (10.1016/j.nlm.2016.11.012)
- Tamminen, J. , Lambon Ralph, M. A. and Lewis, P. A. 2013. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory. Journal of Neuroscience 33 (39), pp.15376-15381. (10.1523/JNEUROSCI.5093-12.2013)
- van Rijn, E. et al., 2015. The dream-lag effect: selective processing of personally significant events during Rapid Eye Movement sleep, but not during Slow Wave Sleep. Neurobiology of Learning and Memory 122 , pp.98-109. (10.1016/j.nlm.2015.01.009)
- Wuerger, S. et al., 2012. Premotor cortex is sensitive to auditory–visual congruence for biological motion. Journal of Cognitive Neuroscience 24 (3), pp.575-587. (10.1162/jocn_a_00173)
Conferences
- Kavoosi, A. et al., 2024. MorpheusNet: Resource efficient sleep stage classifier for embedded on-line systems. Presented at: IEEE International Conference on Systems, Man, and Cybernetics (SMC) Honolulu, Oahu, HI, USA 01-04 October 2023. Proceedings IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE. , pp.2315-2320. (10.1109/SMC53992.2023.10394274)
- Leitner, C. et al., 2024. REM sleep and emotion dysregulation in the elderly: a TMR study. Presented at: 17th World Sleep Congress Rio de Janeiro, Brazil 20-25 October 2023. (10.1016/j.sleep.2023.11.147)
Research
Funding
BBSRC, MRC, EPSRC, Wellcome Trust, DARPA
Research collaborators
Hong Viet-Ngo, Institute for Medical Psychology and Behavioural Neurobiology ,Teubingen, Germany 9
Alex Casson, Electrical Engineering, Manchester, UK
Simon Stringer, Oxford Center for Theoretical Neuroscience, Oxford, UK
Biography
Undergraduate education
BA at Cornell University
Postgraduate education
DPhil at Oxford
Supervisions
Postgraduate research interests
If you are interested in applying for a PhD, or for further information regarding my postgraduate research, please contact me directly (contact details available on the 'Overview' page), or submit a formal application.
Current students
Mahmoud Eid Abdelhafez Abdellahi
Anne Koopman - studying sleep engineering for creativity
Jules Schneider - studying ways to trigger SWS
Contact Details
+44 29208 70467
Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ