Dr Louis Luk
(he/him)
- Available for postgraduate supervision
Teams and roles for Louis Luk
Senior Lecturer in Biological Chemistry
Overview
Our group drives innovation in protein science and technology, bridging chemistry and biology to tackle challenges in medicinal chemistry, antibacterial peptide research, bioactive candidate design, as well as biotherapeutic manufacturing. By advancing the interface of these research topics, we excel in diverse techniques such as peptide/protein synthesis, molecular cloning, biological assays, structural biology, and biocatalysis. In addition to technical expertise, group members gain valuable experience in communication, networking, and management, promoting a well-rounded advancement of their professional profile. Our training consistently leads to successful placements in knowledge-based industries, empowering members to thrive in their scientific careers.
Links
Personal website: http://louisluklab.org/
Publication
2025
- Farrington, G. et al., 2025. The roles of EDA2R in ageing and disease. Aging Cell e70282. (10.1111/acel.70282)
2024
- Abramiuk, M. et al., 2024. Biocatalytic pathways, cascades, cells and systems: general discussion. Faraday Discussions 252 , pp.241-261. (10.1039/D4FD90023E)
- Lander, A. J. et al. 2024. Deciphering the synthetic and refolding strategy of a cysteine-rich domain in the tumor necrosis factor receptor (TNF-R) for racemic crystallography analysis and d-peptide ligand discovery. ACS Bio & Med Chem Au 4 (1), pp.68-76. (10.1021/acsbiomedchemau.3c00060)
- Tang, T. M. S. and Luk, L. Y. P. 2024. Towards controlling activity of a peptide asparaginyl ligase (PAL) by lumazine synthetase compartmentalization. Faraday Discussions 252 , pp.403-421. (10.1039/D4FD00002A)
- Williams, T. L. et al. 2024. Secondary amine catalysis in enzyme design: broadening protein template diversity through genetic code expansion. Angewandte Chemie International Edition (10.1002/anie.202403098)
2023
- Cardella, D. , Tsai, Y. and Luk, L. Y. P. 2023. Towards the use of an amino acid cleavable linker for solid-phase chemical synthesis of peptides and proteins. Organic and Biomolecular Chemistry 21 , pp.966-969. (10.1039/d2ob02198f)
- Hayes, H. C. and Luk, L. Y. P. 2023. Investigating the effects of cyclic topology on the performance of a plastic degrading enzyme for polyethylene terephthalate degradation. Scientific Reports 13 1267. (10.1038/s41598-023-27780-4)
- Lander, A. J. et al. 2023. Roles of inter- and intramolecular tryptophan interactions in membrane-active proteins revealed by racemic protein crystallography. Communications Chemistry 6 (1) 154. (10.1038/s42004-023-00953-y)
- Ma, M. et al. 2023. Preparing recombinant “Split AEP” for protein labeling. In: Lloyd, M. ed. Methods in Enzymology. Vol. 690, Methods in Enzymology Elsevier. , pp.501-540. (10.1016/bs.mie.2023.07.004)
2022
- Allemann, R. K. et al. 2022. Spatio-temporal control of cell death by selective delivery of photo-activatable proteins. ChemBioChem 23 (12) e202200115. (10.1002/cbic.202200115)
- Cardella, D. et al. 2022. Effect of trimethine cyanine dye- and folate-conjugation on the in vitro biological activity of proapoptotic peptides. Biomolecules 12 (5) 725. (10.3390/biom12050725)
- Galmés, M. À. et al., 2022. Computational design of an amidase by combining the best electrostatic features of two promiscuous hydrolases. Chemical Science 13 (17), pp.4779-4787. (10.1039/D2SC00778A)
- Lander, A. J. , Jin, Y. and Luk, L. Y. P. 2022. D‐peptide and d‐protein technology: recent advances, challenges, and opportunities. ChemBioChem e202200537. (10.1002/cbic.202200537)
2021
- Adesina, A. S. , Luk, L. Y. P. and Allemann, R. K. 2021. Cryo‐kinetics reveal dynamic effects on the chemistry of human dihydrofolate reductase. ChemBioChem 22 (14), pp.2410-2414. (10.1002/cbic.202100017)
- Galmés, M. À. et al., 2021. Combined theoretical and experimental study to unravel the differences in promiscuous amidase activity of two nonhomologous enzymes. ACS Catalysis 11 (14), pp.8635-8644. (10.1021/acscatal.1c02150)
- Hayes, H. C. , Luk, L. Y. P. and Tsai, Y. 2021. Approaches for peptide and protein cyclisation. Organic and Biomolecular Chemistry 19 (18), pp.3983-4001. (10.1039/D1OB00411E)
- Nodling, A. R. et al. 2021. The role of protein environment in catalysis by biotinylated secondary amines. Organic and Biomolecular Chemistry 19 , pp.10424-10431. (10.1039/D1OB01947C)
- Santi, N. et al. 2021. Transfer hydrogenations catalyzed by streptavidin-hosted secondary amine organocatalyst. Chemical Communications 57 (15), pp.1919-1922. (10.1039/D0CC08142F)
- Tang, T. M. S. L. and Luk, L. Y. P. 2021. Asparaginyl endopeptidases: enzymology, applications and limitations. Organic and Biomolecular Chemistry 19 (23), pp.5048-5062. (10.1039/D1OB00608H)
- Williams, T. L. et al. 2021. Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency. Amino Acids 53 , pp.89-96. (10.1007/s00726-020-02927-z)
2020
- Adesina, A. S. et al. 2020. Electric field measurements reveal the pivotal role of Cofactor-Substrate interaction in dihydrofolate reductase catalysis. ACS Catalysis 10 (14), pp.7907-7914. (10.1021/acscatal.0c01856)
- Meier-Menches, S. M. et al. 2020. Comparative biological evaluation and G-quadruplex interaction studies of two new families of organometallic gold(I) complexes featuring N-heterocyclic carbene and alkynyl ligands. Journal of Inorganic Biochemistry 202 110844. (10.1016/j.jinorgbio.2019.110844)
- Mills, E. M. et al. 2020. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications. Cell Biology and Toxicology 36 , pp.17-29. (10.1007/s10565-019-09488-2)
- Nödling, A. et al. 2020. Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes. Chemical Communications 56 (34), pp.4672-4675. (10.1039/C9CC07931A)
- Nödling, A. R. et al. 2020. Enabling protein-hosted organocatalytic transformations. RSC Advances 10 (27), pp.16147-16161. (10.1039/D0RA01526A)
- Santi, N. , Morrill, L. C. and Luk, L. Y. P. 2020. Streptavidin-hosted organocatalytic aldol addition. Molecules 25 (10) 2457. (10.3390/molecules25102457)
- Tang, T. M. S. et al. 2020. Use of an asparaginyl endopeptidase for chemo-enzymatic peptide and protein labeling. Chemical Science 11 (23), pp.5881-5888. (10.1039/D0SC02023K)
- Thomas, S. R. et al. 2020. Exploring the chemoselectivity towards cysteine arylation by cyclometalated Au(III) compounds: new mechanistic insights. ChemBioChem 21 (21), pp.3071-3076. (10.1002/cbic.202000262)
- Zheng, X. et al., 2020. Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a novel bioorthogonal reaction for site-specific protein modification and peptide cyclization. Journal of the American Chemical Society 142 (11), pp.5097-5103. (10.1021/jacs.9b11875)
2019
- Allemann, R. K. et al. 2019. Heavy enzymes and the rational redesign of protein catalysts. ChemBioChem 20 (22), pp.2807-2812. (10.1002/cbic.201900134)
- Angelastro, A. et al. 2019. Loss of hyperconjugative effects drives hydride transfer during dihydrofolate reductase catalysis. ACS Catalysis 9 (11), pp.10343-10349. (10.1021/acscatal.9b02839)
- Nodling, A. R. et al. 2019. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays in Biochemistry 63 (2), pp.237-266. (10.1042/EBC20180042)
- Patel, S. G. et al. 2019. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Scientific Reports 9 (1), pp.-. 6298. (10.1038/s41598-019-42456-8)
- Scott, A. F. et al. 2019. Crystal structure and biophysical analysis of furfural detoxifying aldehyde reductase from clostridium beijerinkii. Applied and Environmental Microbiology (10.1128/AEM.00978-19)
2018
- Behiry, E. M. et al. 2018. Isotope substitution of promiscuous alcohol dehydrogenase reveals the origin of substrate preference in the transition state. Angewandte Chemie International Edition 57 (12), pp.3128-3131. (10.1002/anie.201712826)
- Nodling, A. R. et al. 2018. Reactivity and selectivity of iminium organocatalysis improved by a protein host. Angewandte Chemie International Edition 57 (38), pp.12478-12482. (10.1002/anie.201806850)
- Suzuki, T. et al., 2018. Switchable genome editing via genetic code expansion. Scientific Reports 8 (1) 10051. (10.1038/s41598-018-28178-3)
- Świderek, K. et al., 2018. Reaction mechanism of organocatalytic Michael addition of nitromethane to cinnamaldehyde: a case study on catalyst regeneration and solvent effects. Journal of Physical Chemistry A 122 (1), pp.451-459. (10.1021/acs.jpca.7b11803)
- Williams, T. L. et al. 2018. Carbapenems as water soluble organocatalysts. Wellcome Open Research 2018 (3) 107. (10.12688/wellcomeopenres.14721.1)
2017
- Angelastro, A. et al. 2017. A versatile disulfide-driven recycling system for NADP+ with high cofactor turnover number. ACS Catalysis 7 (2), pp.1025-1029. (10.1021/acscatal.6b03061)
- Angelastro, A. et al. 2017. Chemoenzymatic assembly of isotopically labeled folates. Journal of the American Chemical Society 139 (37), pp.13047-13054. (10.1021/jacs.7b06358)
- Lai, S. et al., 2017. Site-specific His/Asp phosphoproteomic analysis of prokaryotes reveals putative targets for drug resistance. BMC Microbiology 17 (1) 123. (10.1186/s12866-017-1034-2)
- Liao, J. et al., 2017. Acetylome of acinetobacter baumannii SK17 reveals a highly-conserved modification of histone-like protein HU. Frontiers in Molecular Biosciences 4 77. (10.3389/fmolb.2017.00077)
- Loveridge, E. J. et al. 2017. Reduction of folate by dihydrofolate reductase from thermotoga maritima. Biochemistry 56 (13), pp.1879-1886. (10.1021/acs.biochem.6b01268)
- Scott, A. F. , Luk, L. Y. P. and Allemann, R. K. 2017. Chemical ligation and isotope labeling to locate dynamic effects. In: Imperiali, B. ed. Methods in Enzymology. Vol. 596, Elsevier. , pp.23-41. (10.1016/bs.mie.2017.06.040)
- Wilkins, L. C. et al. 2017. Reactions of biologically inspired hydride sources with B(C6F5)3. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2101) 20170009. (10.1098/rsta.2017.0009)
2016
- Castillo, J. P. et al., 2016. β1-subunit–induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel. Proceedings of the National Academy of Sciences 113 (23), pp.E3231-E3239. (10.1073/pnas.1606381113)
- Ruiz-Pernía, J. J. et al., 2016. Minimization of dynamic effects in the evolution of dihydrofolate reductase. Chemical Science 7 (5), pp.3248-3255. (10.1039/C5SC04209G)
2015
- Allemann, R. K. , Loveridge, E. and Luk, L. Y. P. 2015. Protein motions, dynamic effects and thermal stability in dihydrofolate reductase from the hyperthermophile thermotoga maritima. In: Olivares-Quiroz, L. , Guzmán-López, O. and Jardón-Valadez, H. E. eds. Physical Biology of Proteins and Peptides: Theory, Experiment, and Simulation. Springer International Publishing. , pp.99-113. (10.1007/978-3-319-21687-4_6)
- Luk, L. Y. P. et al. 2015. Chemical ligation and isotope labeling to locate dynamic effects during catalysis by dihydrofolate reductase. Angewandte Chemie International Edition 54 (31), pp.9016-9020. (10.1002/anie.201503968)
- Luk, L. Y. P. , Loveridge, E. J. and Allemann, R. K. 2015. Protein motions and dynamic effects in enzyme catalysis. Physical Chemistry Chemical Physics 17 , pp.30817-30827. (10.1039/C5CP00794A)
2014
- Behiry, E. M. et al. 2014. Role of the occluded conformation in bacterial dihydrofolate reductases. Biochemistry 53 (29), pp.4761-4768. (10.1021/bi500507v)
- Guo, J. N. et al. 2014. Thermal adaptation of dihydrofolate reductase from the moderate thermophile geobacillus stearothermophilus. Biochemistry 53 (17), pp.2855-2863. (10.1021/bi500238q)
- Luk, L. Y. P. , Loveridge, E. J. and Allemann, R. K. 2014. Different dynamical effects in mesophilic and hyperthermophilic dihydrofolate reductases. Journal of the American Chemical Society 136 (19), pp.6862-6865. (10.1021/ja502673h)
- Luk, L. Y. P. et al. 2014. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic com-pensatory effects on the rate constant. Journal of the American Chemical Society 136 (49), pp.17317-17323. (10.1021/ja5102536)
2013
- Guo, J. et al., 2013. Effect of dimerization on dihydrofolate reductase catalysis. Biochemistry 52 (22), pp.3881-3887. (10.1021/bi4005073)
- Luk, L. Y. P. et al. 2013. Unraveling the role of protein dynamics in dihydrofolate reductase catalysis. Proceedings of the National Academy of Sciences of the United States of America 110 (41), pp.16344-16349. (10.1073/pnas.1312437110)
- Ruiz-Pernia, J. J. et al., 2013. Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductase. Journal of the American Chemical Society 135 (49), pp.18689-18696. (10.1021/ja410519h)
2011
- Luk, L. Y. P. , Qian, Q. and Tanner, M. E. 2011. A cope rearrangement in the reaction catalyzed by dimethylallyltryptophan synthase?. Journal of the American Chemical Society 133 (32), pp.12342-12345. (10.1021/ja2034969)
2009
- Luk, L. Y. P. and Tanner, M. E. 2009. Mechanism of dimethylallyltryptophan synthase: Evidence for a dimethylallyl cation intermediate in an aromatic prenyltransferase reaction. Journal of the American Chemical Society 131 (39), pp.13932-13933. (10.1021/ja906485u)
2007
- Luk, L. Y. P. et al. 2007. Mechanistic studies on norcoclaurine synthase of benzylisoquinoline alkaloid biosynthesis: An enzymatic Pictet-Spengler reaction. Biochemistry 46 (35), pp.10153-10161. (10.1021/bi700752n)
Articles
- Abramiuk, M. et al., 2024. Biocatalytic pathways, cascades, cells and systems: general discussion. Faraday Discussions 252 , pp.241-261. (10.1039/D4FD90023E)
- Adesina, A. S. , Luk, L. Y. P. and Allemann, R. K. 2021. Cryo‐kinetics reveal dynamic effects on the chemistry of human dihydrofolate reductase. ChemBioChem 22 (14), pp.2410-2414. (10.1002/cbic.202100017)
- Adesina, A. S. et al. 2020. Electric field measurements reveal the pivotal role of Cofactor-Substrate interaction in dihydrofolate reductase catalysis. ACS Catalysis 10 (14), pp.7907-7914. (10.1021/acscatal.0c01856)
- Allemann, R. K. et al. 2022. Spatio-temporal control of cell death by selective delivery of photo-activatable proteins. ChemBioChem 23 (12) e202200115. (10.1002/cbic.202200115)
- Allemann, R. K. et al. 2019. Heavy enzymes and the rational redesign of protein catalysts. ChemBioChem 20 (22), pp.2807-2812. (10.1002/cbic.201900134)
- Angelastro, A. et al. 2017. A versatile disulfide-driven recycling system for NADP+ with high cofactor turnover number. ACS Catalysis 7 (2), pp.1025-1029. (10.1021/acscatal.6b03061)
- Angelastro, A. et al. 2017. Chemoenzymatic assembly of isotopically labeled folates. Journal of the American Chemical Society 139 (37), pp.13047-13054. (10.1021/jacs.7b06358)
- Angelastro, A. et al. 2019. Loss of hyperconjugative effects drives hydride transfer during dihydrofolate reductase catalysis. ACS Catalysis 9 (11), pp.10343-10349. (10.1021/acscatal.9b02839)
- Behiry, E. M. et al. 2018. Isotope substitution of promiscuous alcohol dehydrogenase reveals the origin of substrate preference in the transition state. Angewandte Chemie International Edition 57 (12), pp.3128-3131. (10.1002/anie.201712826)
- Behiry, E. M. et al. 2014. Role of the occluded conformation in bacterial dihydrofolate reductases. Biochemistry 53 (29), pp.4761-4768. (10.1021/bi500507v)
- Cardella, D. et al. 2022. Effect of trimethine cyanine dye- and folate-conjugation on the in vitro biological activity of proapoptotic peptides. Biomolecules 12 (5) 725. (10.3390/biom12050725)
- Cardella, D. , Tsai, Y. and Luk, L. Y. P. 2023. Towards the use of an amino acid cleavable linker for solid-phase chemical synthesis of peptides and proteins. Organic and Biomolecular Chemistry 21 , pp.966-969. (10.1039/d2ob02198f)
- Castillo, J. P. et al., 2016. β1-subunit–induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel. Proceedings of the National Academy of Sciences 113 (23), pp.E3231-E3239. (10.1073/pnas.1606381113)
- Farrington, G. et al., 2025. The roles of EDA2R in ageing and disease. Aging Cell e70282. (10.1111/acel.70282)
- Galmés, M. À. et al., 2022. Computational design of an amidase by combining the best electrostatic features of two promiscuous hydrolases. Chemical Science 13 (17), pp.4779-4787. (10.1039/D2SC00778A)
- Galmés, M. À. et al., 2021. Combined theoretical and experimental study to unravel the differences in promiscuous amidase activity of two nonhomologous enzymes. ACS Catalysis 11 (14), pp.8635-8644. (10.1021/acscatal.1c02150)
- Guo, J. N. et al. 2014. Thermal adaptation of dihydrofolate reductase from the moderate thermophile geobacillus stearothermophilus. Biochemistry 53 (17), pp.2855-2863. (10.1021/bi500238q)
- Guo, J. et al., 2013. Effect of dimerization on dihydrofolate reductase catalysis. Biochemistry 52 (22), pp.3881-3887. (10.1021/bi4005073)
- Hayes, H. C. and Luk, L. Y. P. 2023. Investigating the effects of cyclic topology on the performance of a plastic degrading enzyme for polyethylene terephthalate degradation. Scientific Reports 13 1267. (10.1038/s41598-023-27780-4)
- Hayes, H. C. , Luk, L. Y. P. and Tsai, Y. 2021. Approaches for peptide and protein cyclisation. Organic and Biomolecular Chemistry 19 (18), pp.3983-4001. (10.1039/D1OB00411E)
- Lai, S. et al., 2017. Site-specific His/Asp phosphoproteomic analysis of prokaryotes reveals putative targets for drug resistance. BMC Microbiology 17 (1) 123. (10.1186/s12866-017-1034-2)
- Lander, A. J. , Jin, Y. and Luk, L. Y. P. 2022. D‐peptide and d‐protein technology: recent advances, challenges, and opportunities. ChemBioChem e202200537. (10.1002/cbic.202200537)
- Lander, A. J. et al. 2024. Deciphering the synthetic and refolding strategy of a cysteine-rich domain in the tumor necrosis factor receptor (TNF-R) for racemic crystallography analysis and d-peptide ligand discovery. ACS Bio & Med Chem Au 4 (1), pp.68-76. (10.1021/acsbiomedchemau.3c00060)
- Lander, A. J. et al. 2023. Roles of inter- and intramolecular tryptophan interactions in membrane-active proteins revealed by racemic protein crystallography. Communications Chemistry 6 (1) 154. (10.1038/s42004-023-00953-y)
- Liao, J. et al., 2017. Acetylome of acinetobacter baumannii SK17 reveals a highly-conserved modification of histone-like protein HU. Frontiers in Molecular Biosciences 4 77. (10.3389/fmolb.2017.00077)
- Loveridge, E. J. et al. 2017. Reduction of folate by dihydrofolate reductase from thermotoga maritima. Biochemistry 56 (13), pp.1879-1886. (10.1021/acs.biochem.6b01268)
- Luk, L. Y. P. , Loveridge, E. J. and Allemann, R. K. 2014. Different dynamical effects in mesophilic and hyperthermophilic dihydrofolate reductases. Journal of the American Chemical Society 136 (19), pp.6862-6865. (10.1021/ja502673h)
- Luk, L. Y. P. et al. 2015. Chemical ligation and isotope labeling to locate dynamic effects during catalysis by dihydrofolate reductase. Angewandte Chemie International Edition 54 (31), pp.9016-9020. (10.1002/anie.201503968)
- Luk, L. Y. P. et al. 2014. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic com-pensatory effects on the rate constant. Journal of the American Chemical Society 136 (49), pp.17317-17323. (10.1021/ja5102536)
- Luk, L. Y. P. et al. 2007. Mechanistic studies on norcoclaurine synthase of benzylisoquinoline alkaloid biosynthesis: An enzymatic Pictet-Spengler reaction. Biochemistry 46 (35), pp.10153-10161. (10.1021/bi700752n)
- Luk, L. Y. P. , Loveridge, E. J. and Allemann, R. K. 2015. Protein motions and dynamic effects in enzyme catalysis. Physical Chemistry Chemical Physics 17 , pp.30817-30827. (10.1039/C5CP00794A)
- Luk, L. Y. P. , Qian, Q. and Tanner, M. E. 2011. A cope rearrangement in the reaction catalyzed by dimethylallyltryptophan synthase?. Journal of the American Chemical Society 133 (32), pp.12342-12345. (10.1021/ja2034969)
- Luk, L. Y. P. et al. 2013. Unraveling the role of protein dynamics in dihydrofolate reductase catalysis. Proceedings of the National Academy of Sciences of the United States of America 110 (41), pp.16344-16349. (10.1073/pnas.1312437110)
- Luk, L. Y. P. and Tanner, M. E. 2009. Mechanism of dimethylallyltryptophan synthase: Evidence for a dimethylallyl cation intermediate in an aromatic prenyltransferase reaction. Journal of the American Chemical Society 131 (39), pp.13932-13933. (10.1021/ja906485u)
- Meier-Menches, S. M. et al. 2020. Comparative biological evaluation and G-quadruplex interaction studies of two new families of organometallic gold(I) complexes featuring N-heterocyclic carbene and alkynyl ligands. Journal of Inorganic Biochemistry 202 110844. (10.1016/j.jinorgbio.2019.110844)
- Mills, E. M. et al. 2020. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications. Cell Biology and Toxicology 36 , pp.17-29. (10.1007/s10565-019-09488-2)
- Nödling, A. et al. 2020. Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes. Chemical Communications 56 (34), pp.4672-4675. (10.1039/C9CC07931A)
- Nödling, A. R. et al. 2020. Enabling protein-hosted organocatalytic transformations. RSC Advances 10 (27), pp.16147-16161. (10.1039/D0RA01526A)
- Nodling, A. R. et al. 2019. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays in Biochemistry 63 (2), pp.237-266. (10.1042/EBC20180042)
- Nodling, A. R. et al. 2018. Reactivity and selectivity of iminium organocatalysis improved by a protein host. Angewandte Chemie International Edition 57 (38), pp.12478-12482. (10.1002/anie.201806850)
- Nodling, A. R. et al. 2021. The role of protein environment in catalysis by biotinylated secondary amines. Organic and Biomolecular Chemistry 19 , pp.10424-10431. (10.1039/D1OB01947C)
- Patel, S. G. et al. 2019. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Scientific Reports 9 (1), pp.-. 6298. (10.1038/s41598-019-42456-8)
- Ruiz-Pernía, J. J. et al., 2016. Minimization of dynamic effects in the evolution of dihydrofolate reductase. Chemical Science 7 (5), pp.3248-3255. (10.1039/C5SC04209G)
- Ruiz-Pernia, J. J. et al., 2013. Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductase. Journal of the American Chemical Society 135 (49), pp.18689-18696. (10.1021/ja410519h)
- Santi, N. , Morrill, L. C. and Luk, L. Y. P. 2020. Streptavidin-hosted organocatalytic aldol addition. Molecules 25 (10) 2457. (10.3390/molecules25102457)
- Santi, N. et al. 2021. Transfer hydrogenations catalyzed by streptavidin-hosted secondary amine organocatalyst. Chemical Communications 57 (15), pp.1919-1922. (10.1039/D0CC08142F)
- Scott, A. F. et al. 2019. Crystal structure and biophysical analysis of furfural detoxifying aldehyde reductase from clostridium beijerinkii. Applied and Environmental Microbiology (10.1128/AEM.00978-19)
- Suzuki, T. et al., 2018. Switchable genome editing via genetic code expansion. Scientific Reports 8 (1) 10051. (10.1038/s41598-018-28178-3)
- Świderek, K. et al., 2018. Reaction mechanism of organocatalytic Michael addition of nitromethane to cinnamaldehyde: a case study on catalyst regeneration and solvent effects. Journal of Physical Chemistry A 122 (1), pp.451-459. (10.1021/acs.jpca.7b11803)
- Tang, T. M. S. et al. 2020. Use of an asparaginyl endopeptidase for chemo-enzymatic peptide and protein labeling. Chemical Science 11 (23), pp.5881-5888. (10.1039/D0SC02023K)
- Tang, T. M. S. and Luk, L. Y. P. 2024. Towards controlling activity of a peptide asparaginyl ligase (PAL) by lumazine synthetase compartmentalization. Faraday Discussions 252 , pp.403-421. (10.1039/D4FD00002A)
- Tang, T. M. S. L. and Luk, L. Y. P. 2021. Asparaginyl endopeptidases: enzymology, applications and limitations. Organic and Biomolecular Chemistry 19 (23), pp.5048-5062. (10.1039/D1OB00608H)
- Thomas, S. R. et al. 2020. Exploring the chemoselectivity towards cysteine arylation by cyclometalated Au(III) compounds: new mechanistic insights. ChemBioChem 21 (21), pp.3071-3076. (10.1002/cbic.202000262)
- Wilkins, L. C. et al. 2017. Reactions of biologically inspired hydride sources with B(C6F5)3. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2101) 20170009. (10.1098/rsta.2017.0009)
- Williams, T. L. et al. 2021. Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency. Amino Acids 53 , pp.89-96. (10.1007/s00726-020-02927-z)
- Williams, T. L. et al. 2018. Carbapenems as water soluble organocatalysts. Wellcome Open Research 2018 (3) 107. (10.12688/wellcomeopenres.14721.1)
- Williams, T. L. et al. 2024. Secondary amine catalysis in enzyme design: broadening protein template diversity through genetic code expansion. Angewandte Chemie International Edition (10.1002/anie.202403098)
- Zheng, X. et al., 2020. Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a novel bioorthogonal reaction for site-specific protein modification and peptide cyclization. Journal of the American Chemical Society 142 (11), pp.5097-5103. (10.1021/jacs.9b11875)
Book sections
- Allemann, R. K. , Loveridge, E. and Luk, L. Y. P. 2015. Protein motions, dynamic effects and thermal stability in dihydrofolate reductase from the hyperthermophile thermotoga maritima. In: Olivares-Quiroz, L. , Guzmán-López, O. and Jardón-Valadez, H. E. eds. Physical Biology of Proteins and Peptides: Theory, Experiment, and Simulation. Springer International Publishing. , pp.99-113. (10.1007/978-3-319-21687-4_6)
- Ma, M. et al. 2023. Preparing recombinant “Split AEP” for protein labeling. In: Lloyd, M. ed. Methods in Enzymology. Vol. 690, Methods in Enzymology Elsevier. , pp.501-540. (10.1016/bs.mie.2023.07.004)
- Scott, A. F. , Luk, L. Y. P. and Allemann, R. K. 2017. Chemical ligation and isotope labeling to locate dynamic effects. In: Imperiali, B. ed. Methods in Enzymology. Vol. 596, Elsevier. , pp.23-41. (10.1016/bs.mie.2017.06.040)
Research
-
Scalable and Precise Protein Labeling via Biocatalysis: Advancing Biotherapeutic Design and Manufacturing.
-
Discovery of Peptide Binders as Lead Candidates: Integrating Synthetic Biology into Medicinal Chemistry Development.
-
Enzyme-Catalysed Bifunctional Ligand Synthesis: Advancing Targeted Protein Degradation for Therapeutic Applications
Teaching
CHT352: Techniques in Drug Discovery
CHT235: Structure and Techniques in Chemical Biology
CH3412: Supramolecular Chemistry
CH3317: Engineered Biocatalysis
Biography
Honours and awards
BBSRC. 03/2021-02/2024. Principle Investigator. EC-LOOP.
Royal Society International Exchange Scheme. 03/2018-02/2020. Principal Investigator. Protein Nanoreactor: Encapsulating Toxic Biocatalyst for the Production of High-Value Cyclic Peptides.
Royal Society Research Grant. 03/2018-02/2019. Principal Investigator. Large scale fermentation of cyclic proteins.
Leverhulme Trust. 11/2017-10/2020. Principal Investigator. Designing Multifunctional Organocatalytic Artificial Enzymes.
Wellcome Seed Trust. 08/2016-08/2018. Principal Investigator. Dihydrofolate reductase interactome: an unrecognised network that can control DNA synthesis and cell replication.
BBSRC. 08/2014-07/2017. Co-investigator. Reaction-coupled dynamics in DHFR catalysis.
BBSRC. 04/2017-03/2020. Co-investigator. Traceless, non-invasive and spatiotemporal control of protein activity in cells.
Professional memberships
RSC PPSG Communication Officer and Committee Member
RSC CBBG Committee Member
Head of Ethics Committee at Cardiff School of Chemistry
Member of EDI Committee at Cardiff School of Chemistry
Academic positions
2020-Present: Senior Lecturer
2019-2020: Lecturer
2016-2020: Cardiff University Research Fellow
2012-2020: Post-doctoral Researcher (Cardiff University)
2010-2012: Post-doctoral Research Associate (University of Chicago)
2004-2010: PhD Chemistry (University of British Columbia)
1999-2004: BSc Chemistry and Microbiology & Immunology (University of British Columbia)
Speaking engagements
- Chemistry, St Andrews, Scotland, UK, 2024
- European Peptide Synthesis Conference, Czech Republic, 2024
- British Peptide Society: Chemistry & Biology of Peptides, Liverpool, UK, 2024
- Chemistry, King's College London, London, UK, 2024
- Manchester Institute of Biotechnology (MIB), Manchester, UK, 2024
- Trends in Enzyme Catalysis, Spain, 2022
- CEM New Frontiers inPeptide Synthesis, Liverpool, UK, 2022
- Chemistry, Nanyang University, Singapore, 2022
- Cardiff School of Pharmacy, UK, 2020
- Chemistry, Leeds University, Leeds, UK, 2020
- Chemistry, Northeastern University, China, 2019
- RSC Organic Division Southwest Regional, Oxford, UK, 2019
- Chemistry, University of British Columbia, Canada, 2019
- Molecular Sciences,University of Western Australia, Australia, 2019
- Chemistry (Hilvert's group), ETH, Switzerland, 2019
- Chemistry, Jaume I University, Spain, 2019
- Chemistry, Xiamen University, China, 2019
- Applied Science, Polytechnic University of Hong Kong, China, 2019
- Chemistry and Biochemistry, Laurier Wilfred University, Canada, 2019
Contact Details
+44 29225 10161
Main Building, Floor 1st , Room 1.54, Park Place, Cardiff, CF10 3AT
Research themes
Specialisms
- chemical biology
- Medicinal and biomolecular chemistry
- Medical biochemistry of proteins and peptides
- Biocatalysis and enzyme technology
- Organic chemistry