Dr Sankar Meenakshisundaram
Senior Lecturer in Physical Chemistry
- Sankar@cardiff.ac.uk
- +44 29208 75748
- Translational Research Hub, Floor 3, Room 3.16, Maindy Road, Cathays, Cardiff, CF24 4HQ
- Available for postgraduate supervision
Overview
Sankar’s research focuses on the development of heterogeneous catalysts for the production of chemicals and fuel components from renewable and unconventional feedstock such as lignocellulosic biomass and CO2. He is also interested in working at the interface between homogeneous and heterogeneous catalysis by developing heterogeneous catalysts for transformations that are traditionally homogeneously catalysed.
His research involves development of heterogeneous catalysts (supported metal nanoparticles, supported single atoms, metal oxides, inorganic – organic hybrid materials), catalyst testing (selective oxidation, hydrogenation, hydrogenolysis, cascade reactions, depolymerisation), mechanistic investigation (in situ spectroscopic studies, kinetic studies), catalyst characterisation (state-of-the-art microscopic and spectroscopic studies) and structure-activity correlation. The overarching theme of Sankar’s research is to develop catalysts for a green and sustainable future.
Key Publications:
Mitchell, C. E.et al. 2021. A surface oxidised Fe-S catalyst for the liquid phase hydrogenation of CO2. Catalysis Science and Technology 11, pp. 779-784.
Mitchell, C.et al. 2021. The role of surface oxidation and Fe-Ni synergy in Fe-Ni-S catalysts for CO2 hydrogenation. Faraday Discussions (In Press)
Guadix-Montero, S.et al. 2020. Controlling the selectivity of supported Ru nanoparticles during glycerol hydrogenolysis: C−O vs C−C cleavage. ChemCatChem (In Press)
Sankar,M.et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120(8), pp. 3890-3938.
Macino, M.et al. 2019. Tuning of catalytic sites in Pt/TiO2 catalysts for chemoselective hydrogenation of 3-nitrostyrene. Nature Catalysis 2, pp. 873-881.
Luo, W.et al. 2015. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nature Communications 6, article number: 6540.
Sankar, M.et al. 2014. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nature Communications 5, article number: 3332.
Sankar, M.et al. 2012. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews 41(24), pp. 8099-8139.
Sankar, M.et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6(8), pp. 6600-6613.
Publication
2024
- Ungerer, M. J. et al. 2024. Chem4Energy: a consortium of the Royal Society Africa Capacity-Building Initiative. Interface Focus 14(4), article number: 20240001. (10.1098/rsfs.2024.0001)
2023
- Ahmad, B. B., Davies, P. R., Meenakshisundaram, S., Powell, J. and Toledo Camacho, S. 2023. Effect of alkali metal cations on the TiO2 P25 catalyst for hydrogen generation by the photoreforming of glycerol. ChemistrySelect 8(48), article number: e202304301. (10.1002/slct.202304301)
- Guadix-Montero, S. et al. 2023. Ruthenium ion catalysed C–C bond activation in lignin model compounds – towards lignin depolymerisation. Catalysis Science & Technology 13, pp. 5912-5923. (10.1039/d3cy00076a)
2022
- O'Neill, M. F., Meenakshisundaram, S. and Hintermair, U. 2022. Sustainable synthesis of dimethyl- and diethyl carbonate from CO2 in batch and continuous flow─lessons from thermodynamics and the importance of catalyst stability. ACS Sustainable Chemistry and Engineering 10(16), pp. 5243–5257. (10.1021/acssuschemeng.2c00291)
2021
- Živković, A. et al. 2021. Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities. Pure and Applied Chemistry 93(10), pp. 1229-1244. (10.1515/pac-2021-0114)
- Nowicka, E. et al. 2021. Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H2WO4, H3PO4 and H2O2: A route for upgrading heavy oil fractions. New Journal of Chemistry 45(31), pp. 13885-13892. (10.1039/D1NJ01986D)
- Mitchell, C., Santos-Carballal, D., Beale, A. M., Jones, W., Morgan, D. J., Meenakshisundaram, S. and De Leeuw, N. H. 2021. The role of surface oxidation and Fe-Ni synergy in Fe-Ni-S catalysts for CO2 hydrogenation. Faraday Discussions 230, pp. 30-51. (10.1039/D0FD00137F)
- Guadix-Montero, S. et al. 2021. Controlling the selectivity of supported Ru nanoparticles during glycerol hydrogenolysis: C−O vs C−C cleavage. ChemCatChem 13(6), pp. 1595-1606. (10.1002/cctc.202001881)
- Mitchell, C. E., Terranova, U., Beale, A. M., Jones, W., Morgan, D. J., Meenakshisundaram, S. and de Leeuw, N. H. 2021. A surface oxidised Fe-S catalyst for the liquid phase hydrogenation of CO2. Catalysis Science & Technology 11, pp. 779-784. (10.1039/D0CY01779E)
2020
- Allender, C. J. et al. 2020. The role of growth directors in controlling the morphology of hematite nanorods. Nanoscale Research Letters 15, article number: 161. (10.1186/s11671-020-03387-w)
- Abis, L., Dimitritatos, N., Meenakshisundaram, S., Freakley, S. J. and Hutchings, G. J. 2020. The effect of polymer addition on base catalysed glycerol oxidation using gold and gold-palladium bimetallic catalysts. Topics in Catalysis 63, pp. 394-402. (10.1007/s11244-019-01212-y)
- Guadix-Montero, S., Santos-Hernandez, A., Folli, A. and Meenakshisundaram, S. 2020. Effect of support acidity during selective hydrogenolysis of glycerol over supported palladium-ruthenium catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378(2176), article number: 20200055. (10.1098/rsta.2020.0055)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120(8), pp. 3890-3938. (10.1021/acs.chemrev.9b00662)
- Rucinska, E., Pattisson, S., Miedziak, P. J., Brett, G. L., Morgan, D. J., Sankar, M. and Hutchings, G. J. 2020. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: An optimization of metal ratio and investigation of the deactivation mechanism under autoxidation conditions. Topics in Catalysis 63, pp. 99-112. (10.1007/s11244-020-01231-0)
- Liu, S. et al. 2020. Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A 8, pp. 15725-15733. (10.1039/D0TA00334D)
- Abis, L., Dimitratos, N., Sankar, M., Freakley, S. J. and Hutchings, G. J. 2020. Plasmonic oxidation of glycerol using Au/TiO2 catalysts prepared by sol-immobilisation. Catalysis Letters 150(1), pp. 49-55. (10.1007/s10562-019-02952-y)
2019
- Waldron, C. et al. 2019. Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors. Chemical Engineering Journal 377, article number: 119976. (10.1016/j.cej.2018.09.137)
- Venezia, B., Douthwaite, M., Wu, G., Sankar, M., Ellis, P., Hutchings, G. J. and Gavriilidis, A. 2019. Slurry loop tubular membrane reactor for the catalysed aerobic oxidation of benzyl alcohol. Chemical Engineering Journal 378, article number: 122250. (10.1016/j.cej.2019.122250)
- Macino, M. et al. 2019. Tuning of catalytic sites in Pt/TiO2 catalysts for chemoselective hydrogenation of 3-nitrostyrene. Nature Catalysis 2, pp. 873-881. (10.1038/s41929-019-0334-3)
- Abis, L., Dimitratos, N., Meenakshisundaram, S., Freakley, S. J. and Hutchings, G. J. 2019. Plasmonic oxidation of glycerol using AuPd/TiO2 catalysts. Catalysis Science and Technology 9(20), pp. 5686-5691. (10.1039/C9CY01409H)
- Mitchell, C. et al. 2019. Liquid phase hydrogenation of CO2 to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide. New Journal of Chemistry 43, pp. 13985-13997. (10.1039/C9NJ02114K)
- Cattaneo, S. et al. 2019. Synthesis of highly uniform and composition-controlled gold-palladium supported nanoparticles in continuous flow. Nanoscale 17, pp. 8247-8259. (10.1039/C8NR09917K)
2018
- Qu, R., Macino, M., Iqbal, S., Gao, X., He, Q., Hutchings, G. and Sankar, M. 2018. Supported bimetallic AuPd nanoparticles as a catalyst for the selective hydrogenation of nitroarenes. Nanomaterials 8(9), article number: 690. (10.3390/nano8090690)
- Nowicka, E. et al. 2018. Mechanistic insights into selective oxidation of polyaromatic compounds using RICO chemistry. Chemistry - A European Journal 24(47), pp. 12359-12369. (10.1002/chem.201800423)
- Hao, C. et al. 2018. Synergistic effect of segregated Pd and Au nanoparticles on semiconducting SiC for efficient photocatalytic hydrogenation of nitroarenes. ACS Applied Materials and Interfaces 10(27), pp. 23029-23036. (10.1021/acsami.8b04044)
- Terranova, U., Mitchell, C., Meenakshisundaram, S., Morgan, D. J. and De Leeuw, N. H. 2018. Initial oxygen incorporation in the prismatic surfaces of troilite FeS. Journal of Physical Chemistry C 122(24), pp. 12810-12818. (10.1021/acs.jpcc.8b02774)
- Galvanin, F., Meenakshisundaram, S., Cattaneo, S., Bethell, D., Dua, V., Hutchings, G. J. and Gavriilidis, A. 2018. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal 342, pp. 196-210. (10.1016/j.cej.2017.11.165)
- Guadix Montero, S. and Meenakshisundaram, S. 2018. Review on catalytic cleavage of C-C inter-unit linkages in lignin model compounds: Towards lignin depolymerisation. Topics in Catalysis 61(3-4), pp. 183-198. (10.1007/s11244-018-0909-2)
- Groves, C., Meenakshisundaram, S. and Thomas, P. J. 2018. Second-generation biofuels: exploring imaginaries via deliberative workshops with farmers. Journal of Responsible Innovation 5(2), pp. 149-169. (10.1080/23299460.2017.1422926)
- Cattaneo, S., Freakley, S., Morgan, D., Meenakshisundaram, S., Dimitratos, N. and Hutchings, G. 2018. Cinnamaldehyde hydrogenation using Au-Pd catalysts prepared by sol immobilisation. Catalysis Science and Technology 8, pp. 1677-1685. (10.1039/C7CY02556D)
- Nowicka, E. and Meenakshisundaram, S. 2018. Designing Pd-based supported bimetallic catalysts for environmental applications. Journal of Zhejiang University-SCIENCE A 19(1), pp. 5-20. (10.1631/jzus.A1700257)
- Gao, X., Zheng, C., Sagawa, T., Meenakshisundaram, S., Wu, C. and Tronconi, E. 2018. Air pollution control for a green future. Journal of Zhejiang University-SCIENCE A 19(1), pp. 1-4. (10.1631/jzus.A17EU001)
2017
- Douthwaite, M. et al. 2017. The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. Catalysis Science & Technology 7(22), pp. 5284-5293. (10.1039/C7CY01025G)
- Al-Rifai, N. et al. 2017. Deactivation behaviour of supported gold palladium nanoalloy catalysts during the selective oxidation of benzyl alcohol in a micro-packed bed reactor. Industrial & Engineering Chemistry Research 56(45), pp. 12984-12993. (10.1021/acs.iecr.7b01159)
- Guadix Montero, S. et al. 2017. Deactivation studies of bimetallic AuPd nanoparticles supported on MgO during selective aerobic oxidation of alcohols. Applied Catalysis A: General 546, pp. 58-66. (10.1016/j.apcata.2017.07.045)
- Abis, L. et al. 2017. Highly active gold and gold-palladium catalysts prepared by colloidal methods in the absence of polymer stabilizers. ChemCatChem 9(15), pp. 2914-2918. (10.1002/cctc.201700483)
- Morad, M. et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science & Technology 7(9), pp. 1928-1936. (10.1039/C7CY00184C)
2016
- Meenakshisundaram, S. et al. 2016. Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols. Catalysis Science and Technology 6(14), pp. 5473-5482. (10.1039/C6CY00425C)
- Al-Rifai, N. et al. 2016. Hydrodynamic effects on three phase micro-packed bed reactor performance – Gold–palladium catalysed benzyl alcohol oxidation. Chemical Engineering Science 149, pp. 129-142. (10.1016/j.ces.2016.03.018)
- Meenakshisundaram, S. 2016. Recent developments in tuning the structural and functional properties of supported bimetallic nanoalloy catalysts. In: O'Brien, P. and Thomas, P. J. eds. Nanoscience : Volume 3. Royal Society of Chemistry, pp. 154.
2015
- Liu, X. et al. 2015. Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts. Applied Catalysis A: General 504, pp. 373-380. (10.1016/j.apcata.2015.02.034)
- Luo, W., Meenakshisundaram, S., Beale, A. M., He, Q., Kiely, C. J., Bruijnincx, P. C. A. and Weckhuysen, B. M. 2015. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nature Communications 6, pp. ., article number: 6540. (10.1038/ncomms7540)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation. Chemistry - A European Journal 21(11), pp. 4285-4293. (10.1002/chem.201405831)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation [Cover Profile]. Chemistry - A European Journal 21(11), pp. 4169. (10.1002/chem.201406658)
- Meenakshisundaram, S., Ajithkumar, T. G., Sankar, G. and Manikandan, P. 2015. Supported imidazole as heterogeneous catalyst for the synthesis of cyclic carbonates from epoxides and CO2. Catalysis Communications 59, pp. 201-205. (10.1016/j.catcom.2014.10.026)
2014
- Morad, M. et al. 2014. Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. Catalysis Science and Technology 4(9), pp. 3120-3128. (10.1039/c4cy00387j)
- Meenakshisundaram, S., Nowicka, E., Carter, E., Murphy, D. M., Knight, D. W., Bethell, D. and Hutchings, G. J. 2014. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nature Communications 5, pp. ., article number: 3332. (10.1038/ncomms4332)
- Beale, A. M., Hofmann, J. P., Meenakshisundaram, S., Schrojenstein Lantman, E. M. and Weckhuysen, B. M. 2014. Recent trends in operando and in situ characterization: techniques for rational design of catalysts. In: Wilson, K. and Lee, A. F. eds. Heterogeneous Catalysts for Clean Technology: Spectroscopy, Design, and Monitoring. Weinheim, Germany: Wiley, pp. 365-411., (10.1002/9783527658985.ch12)
- Kiely, C., He, Q., Tiruvalam, R., Dimitratos, N., Forde, M. M., Sankar, M. and Hutchings, G. J. 2014. Assessing and controlling the size, morphology and composition of supported bimetallic catalyst nanoparticles. Microscopy and Microanalysis 20(S3), pp. 74-75. (10.1017/S1431927614002098)
2013
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3(9), pp. 2425-2434. (10.1039/c3cy00493g)
- Nowicka, E. et al. 2013. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics 15(29), pp. 12147-12155. (10.1039/c3cp50710f)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162, pp. 365-378. (10.1039/c2fd20153d)
- Cao, E. et al. 2013. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles. Catalysis Today 203, pp. 146-152. (10.1016/j.cattod.2012.05.023)
- Paalanen, P., Weckhuysen, B. M. and Meenakshisundaram, S. 2013. Progress in controlling the size, composition and nanostructure of supported gold-palladium nanoparticles for catalytic applications. Catalysis Science & Technology 3(11), pp. 2869-2880. (10.1039/c3cy00341h)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3(9), pp. 2425-2434. (10.1039/c3cy00493g)
2012
- Meenakshisundaram, S., Dimitratos, N., Miedziak, P. J., Wells, P. P., Kiely, C. J. and Hutchings, G. J. 2012. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews 41(24), pp. 8099-8139. (10.1039/C2CS35296F)
- Ab Rahim, M. H. et al. 2012. Gold, palladium and gold-palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science & Technology 2(9), pp. 1914-1924. (10.1039/C2CY20288C)
- Hall, S. R. et al. 2012. Biotemplated synthesis of catalytic Au-Pd nanoparticles. RSC Advances 2(6), pp. 2217-2220. (10.1039/c2ra01336c)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6(8), pp. 6600-6613. (10.1021/nn302299e)
2011
- Brett, G. L. et al. 2011. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angewandte Chemie. International Edition 50(43), pp. 10136-10139. (10.1002/anie.201101772)
- Meenakshisundaram, S. et al. 2011. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. Chemistry - A European Journal 17(23), pp. 6524-6532. (10.1002/chem.201003484)
- Mantle, M. D. et al. 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115(4), pp. 1073-1079. (10.1021/jp105946q)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 164(1), pp. 315-319. (10.1016/j.cattod.2010.10.028)
- Cao, E. et al. 2011. Reaction and Raman spectroscopic studies of alcohol oxidation on gold-palladium catalysts in microstructured reactors. Chemical Engineering Journal 167(2-3), pp. 734-743. (10.1016/j.cej.2010.08.082)
2010
- Myakonkaya, O. et al. 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350(2), pp. 443-445. (10.1016/j.jcis.2010.06.064)
- Meenakshisundaram, S., Satav, S. and Manikandan, P. 2010. Transesterification of cyclic carbonates to Dimethyl Carbonate using solid oxide catalyst at ambient conditions: environmentally benign synthesis. ChemSusChem 3(5) (10.1002/cssc.201000038)
- Meenakshisundaram, S. et al. 2010. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discussions 145, pp. 341-356. (10.1039/b908172k)
- Myakonkaya, O. et al. 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3(3), pp. 339-341. (10.1002/cssc.200900280)
2009
- Meenakshisundaram, S. et al. 2009. Oxidation of Glycerol to Glycolate by using Supported Gold and Palladium Nanoparticles. Chemsuschem 2(12), pp. 1145-1151. (10.1002/cssc.200900133)
- Dimitratos, N. et al. 2009. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry 11(8), pp. 1209-1216. (10.1039/b823285g)
- Pollington, S. D. et al. 2009. Enhanced selective glycerol oxidation in multiphase structured reactors. Catalysis Today 145(1-2), pp. 169-175. (10.1016/j.cattod.2008.04.020)
- Sofia, L. T. A., Krishnan, A., Meenakshisundaram, S., Kala Raj, N. K., Manikandan, P., Rajamohanan, P. R. and Ajithkumar, T. G. 2009. Immobilization of phosphotungstic acid (PTA) on imidazole functionalized silica: evidence for the nature of PTA binding by solid state NMR and reaction studies. Journal of Physical Chemistry C 113(50), pp. 21114-21122. (10.1021/jp906108e)
2006
- Meenakshisundaram, S., Nair, C. M., Murty, K. and Manikandan, P. 2006. Transesterification of cyclic carbonates with methanol at ambient conditions over tungstate-based solid catalysts. Applied Catalysis A: General 312, pp. 108-114. (10.1016/j.apcata.2006.06.034)
2004
- Meenakshisundaram, S., Tarte, N. and Manikandan, P. 2004. Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides. Applied Catalysis A: General 276(1-2), pp. 217-222. (10.1016/j.apcata.2004.08.008)
- James, J., Meenakshisundaram, S., Senthil Kumar, S. and Nair, K. V. O. 2004. Preparation and properties of Ba2−xSrxSmTaO6 (x=0–2): a group of new perovskite materials. Materials Chemistry and Physics 83(2-3), pp. 328-333. (10.1016/j.matchemphys.2003.10.007)
Adrannau llyfrau
- Meenakshisundaram, S. 2016. Recent developments in tuning the structural and functional properties of supported bimetallic nanoalloy catalysts. In: O'Brien, P. and Thomas, P. J. eds. Nanoscience : Volume 3. Royal Society of Chemistry, pp. 154.
- Beale, A. M., Hofmann, J. P., Meenakshisundaram, S., Schrojenstein Lantman, E. M. and Weckhuysen, B. M. 2014. Recent trends in operando and in situ characterization: techniques for rational design of catalysts. In: Wilson, K. and Lee, A. F. eds. Heterogeneous Catalysts for Clean Technology: Spectroscopy, Design, and Monitoring. Weinheim, Germany: Wiley, pp. 365-411., (10.1002/9783527658985.ch12)
Erthyglau
- Ungerer, M. J. et al. 2024. Chem4Energy: a consortium of the Royal Society Africa Capacity-Building Initiative. Interface Focus 14(4), article number: 20240001. (10.1098/rsfs.2024.0001)
- Ahmad, B. B., Davies, P. R., Meenakshisundaram, S., Powell, J. and Toledo Camacho, S. 2023. Effect of alkali metal cations on the TiO2 P25 catalyst for hydrogen generation by the photoreforming of glycerol. ChemistrySelect 8(48), article number: e202304301. (10.1002/slct.202304301)
- Guadix-Montero, S. et al. 2023. Ruthenium ion catalysed C–C bond activation in lignin model compounds – towards lignin depolymerisation. Catalysis Science & Technology 13, pp. 5912-5923. (10.1039/d3cy00076a)
- O'Neill, M. F., Meenakshisundaram, S. and Hintermair, U. 2022. Sustainable synthesis of dimethyl- and diethyl carbonate from CO2 in batch and continuous flow─lessons from thermodynamics and the importance of catalyst stability. ACS Sustainable Chemistry and Engineering 10(16), pp. 5243–5257. (10.1021/acssuschemeng.2c00291)
- Živković, A. et al. 2021. Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities. Pure and Applied Chemistry 93(10), pp. 1229-1244. (10.1515/pac-2021-0114)
- Nowicka, E. et al. 2021. Controlled reduction of aromaticity of alkylated polyaromatic compounds by selective oxidation using H2WO4, H3PO4 and H2O2: A route for upgrading heavy oil fractions. New Journal of Chemistry 45(31), pp. 13885-13892. (10.1039/D1NJ01986D)
- Mitchell, C., Santos-Carballal, D., Beale, A. M., Jones, W., Morgan, D. J., Meenakshisundaram, S. and De Leeuw, N. H. 2021. The role of surface oxidation and Fe-Ni synergy in Fe-Ni-S catalysts for CO2 hydrogenation. Faraday Discussions 230, pp. 30-51. (10.1039/D0FD00137F)
- Guadix-Montero, S. et al. 2021. Controlling the selectivity of supported Ru nanoparticles during glycerol hydrogenolysis: C−O vs C−C cleavage. ChemCatChem 13(6), pp. 1595-1606. (10.1002/cctc.202001881)
- Mitchell, C. E., Terranova, U., Beale, A. M., Jones, W., Morgan, D. J., Meenakshisundaram, S. and de Leeuw, N. H. 2021. A surface oxidised Fe-S catalyst for the liquid phase hydrogenation of CO2. Catalysis Science & Technology 11, pp. 779-784. (10.1039/D0CY01779E)
- Allender, C. J. et al. 2020. The role of growth directors in controlling the morphology of hematite nanorods. Nanoscale Research Letters 15, article number: 161. (10.1186/s11671-020-03387-w)
- Abis, L., Dimitritatos, N., Meenakshisundaram, S., Freakley, S. J. and Hutchings, G. J. 2020. The effect of polymer addition on base catalysed glycerol oxidation using gold and gold-palladium bimetallic catalysts. Topics in Catalysis 63, pp. 394-402. (10.1007/s11244-019-01212-y)
- Guadix-Montero, S., Santos-Hernandez, A., Folli, A. and Meenakshisundaram, S. 2020. Effect of support acidity during selective hydrogenolysis of glycerol over supported palladium-ruthenium catalysts. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences 378(2176), article number: 20200055. (10.1098/rsta.2020.0055)
- Meenakshisundaram, S. et al. 2020. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chemical Reviews 120(8), pp. 3890-3938. (10.1021/acs.chemrev.9b00662)
- Rucinska, E., Pattisson, S., Miedziak, P. J., Brett, G. L., Morgan, D. J., Sankar, M. and Hutchings, G. J. 2020. Cinnamyl alcohol oxidation using supported bimetallic Au-Pd nanoparticles: An optimization of metal ratio and investigation of the deactivation mechanism under autoxidation conditions. Topics in Catalysis 63, pp. 99-112. (10.1007/s11244-020-01231-0)
- Liu, S. et al. 2020. Probing composition distributions in nanoalloy catalysts with correlative electron microscopy. Journal of Materials Chemistry A 8, pp. 15725-15733. (10.1039/D0TA00334D)
- Abis, L., Dimitratos, N., Sankar, M., Freakley, S. J. and Hutchings, G. J. 2020. Plasmonic oxidation of glycerol using Au/TiO2 catalysts prepared by sol-immobilisation. Catalysis Letters 150(1), pp. 49-55. (10.1007/s10562-019-02952-y)
- Waldron, C. et al. 2019. Three step synthesis of benzylacetone and 4-(4-methoxyphenyl)butan-2-one in flow using micropacked bed reactors. Chemical Engineering Journal 377, article number: 119976. (10.1016/j.cej.2018.09.137)
- Venezia, B., Douthwaite, M., Wu, G., Sankar, M., Ellis, P., Hutchings, G. J. and Gavriilidis, A. 2019. Slurry loop tubular membrane reactor for the catalysed aerobic oxidation of benzyl alcohol. Chemical Engineering Journal 378, article number: 122250. (10.1016/j.cej.2019.122250)
- Macino, M. et al. 2019. Tuning of catalytic sites in Pt/TiO2 catalysts for chemoselective hydrogenation of 3-nitrostyrene. Nature Catalysis 2, pp. 873-881. (10.1038/s41929-019-0334-3)
- Abis, L., Dimitratos, N., Meenakshisundaram, S., Freakley, S. J. and Hutchings, G. J. 2019. Plasmonic oxidation of glycerol using AuPd/TiO2 catalysts. Catalysis Science and Technology 9(20), pp. 5686-5691. (10.1039/C9CY01409H)
- Mitchell, C. et al. 2019. Liquid phase hydrogenation of CO2 to formate using palladium and ruthenium nanoparticles supported on molybdenum carbide. New Journal of Chemistry 43, pp. 13985-13997. (10.1039/C9NJ02114K)
- Cattaneo, S. et al. 2019. Synthesis of highly uniform and composition-controlled gold-palladium supported nanoparticles in continuous flow. Nanoscale 17, pp. 8247-8259. (10.1039/C8NR09917K)
- Qu, R., Macino, M., Iqbal, S., Gao, X., He, Q., Hutchings, G. and Sankar, M. 2018. Supported bimetallic AuPd nanoparticles as a catalyst for the selective hydrogenation of nitroarenes. Nanomaterials 8(9), article number: 690. (10.3390/nano8090690)
- Nowicka, E. et al. 2018. Mechanistic insights into selective oxidation of polyaromatic compounds using RICO chemistry. Chemistry - A European Journal 24(47), pp. 12359-12369. (10.1002/chem.201800423)
- Hao, C. et al. 2018. Synergistic effect of segregated Pd and Au nanoparticles on semiconducting SiC for efficient photocatalytic hydrogenation of nitroarenes. ACS Applied Materials and Interfaces 10(27), pp. 23029-23036. (10.1021/acsami.8b04044)
- Terranova, U., Mitchell, C., Meenakshisundaram, S., Morgan, D. J. and De Leeuw, N. H. 2018. Initial oxygen incorporation in the prismatic surfaces of troilite FeS. Journal of Physical Chemistry C 122(24), pp. 12810-12818. (10.1021/acs.jpcc.8b02774)
- Galvanin, F., Meenakshisundaram, S., Cattaneo, S., Bethell, D., Dua, V., Hutchings, G. J. and Gavriilidis, A. 2018. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst. Chemical Engineering Journal 342, pp. 196-210. (10.1016/j.cej.2017.11.165)
- Guadix Montero, S. and Meenakshisundaram, S. 2018. Review on catalytic cleavage of C-C inter-unit linkages in lignin model compounds: Towards lignin depolymerisation. Topics in Catalysis 61(3-4), pp. 183-198. (10.1007/s11244-018-0909-2)
- Groves, C., Meenakshisundaram, S. and Thomas, P. J. 2018. Second-generation biofuels: exploring imaginaries via deliberative workshops with farmers. Journal of Responsible Innovation 5(2), pp. 149-169. (10.1080/23299460.2017.1422926)
- Cattaneo, S., Freakley, S., Morgan, D., Meenakshisundaram, S., Dimitratos, N. and Hutchings, G. 2018. Cinnamaldehyde hydrogenation using Au-Pd catalysts prepared by sol immobilisation. Catalysis Science and Technology 8, pp. 1677-1685. (10.1039/C7CY02556D)
- Nowicka, E. and Meenakshisundaram, S. 2018. Designing Pd-based supported bimetallic catalysts for environmental applications. Journal of Zhejiang University-SCIENCE A 19(1), pp. 5-20. (10.1631/jzus.A1700257)
- Gao, X., Zheng, C., Sagawa, T., Meenakshisundaram, S., Wu, C. and Tronconi, E. 2018. Air pollution control for a green future. Journal of Zhejiang University-SCIENCE A 19(1), pp. 1-4. (10.1631/jzus.A17EU001)
- Douthwaite, M. et al. 2017. The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. Catalysis Science & Technology 7(22), pp. 5284-5293. (10.1039/C7CY01025G)
- Al-Rifai, N. et al. 2017. Deactivation behaviour of supported gold palladium nanoalloy catalysts during the selective oxidation of benzyl alcohol in a micro-packed bed reactor. Industrial & Engineering Chemistry Research 56(45), pp. 12984-12993. (10.1021/acs.iecr.7b01159)
- Guadix Montero, S. et al. 2017. Deactivation studies of bimetallic AuPd nanoparticles supported on MgO during selective aerobic oxidation of alcohols. Applied Catalysis A: General 546, pp. 58-66. (10.1016/j.apcata.2017.07.045)
- Abis, L. et al. 2017. Highly active gold and gold-palladium catalysts prepared by colloidal methods in the absence of polymer stabilizers. ChemCatChem 9(15), pp. 2914-2918. (10.1002/cctc.201700483)
- Morad, M. et al. 2017. Multifunctional supported bimetallic catalysts for a cascade reaction with hydrogen auto transfer: synthesis of 4-phenylbutan-2-ones from 4-methoxybenzyl alcohols. Catalysis Science & Technology 7(9), pp. 1928-1936. (10.1039/C7CY00184C)
- Meenakshisundaram, S. et al. 2016. Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols. Catalysis Science and Technology 6(14), pp. 5473-5482. (10.1039/C6CY00425C)
- Al-Rifai, N. et al. 2016. Hydrodynamic effects on three phase micro-packed bed reactor performance – Gold–palladium catalysed benzyl alcohol oxidation. Chemical Engineering Science 149, pp. 129-142. (10.1016/j.ces.2016.03.018)
- Liu, X. et al. 2015. Liquid phase oxidation of cyclohexane using bimetallic Au–Pd/MgO catalysts. Applied Catalysis A: General 504, pp. 373-380. (10.1016/j.apcata.2015.02.034)
- Luo, W., Meenakshisundaram, S., Beale, A. M., He, Q., Kiely, C. J., Bruijnincx, P. C. A. and Weckhuysen, B. M. 2015. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nature Communications 6, pp. ., article number: 6540. (10.1038/ncomms7540)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation. Chemistry - A European Journal 21(11), pp. 4285-4293. (10.1002/chem.201405831)
- Nowicka, E. et al. 2015. Selective oxidation of alkyl-substituted polyaromatics using ruthenium-ion-catalyzed oxidation [Cover Profile]. Chemistry - A European Journal 21(11), pp. 4169. (10.1002/chem.201406658)
- Meenakshisundaram, S., Ajithkumar, T. G., Sankar, G. and Manikandan, P. 2015. Supported imidazole as heterogeneous catalyst for the synthesis of cyclic carbonates from epoxides and CO2. Catalysis Communications 59, pp. 201-205. (10.1016/j.catcom.2014.10.026)
- Morad, M. et al. 2014. Solvent-free aerobic oxidation of alcohols using supported gold palladium nanoalloys prepared by a modified impregnation method. Catalysis Science and Technology 4(9), pp. 3120-3128. (10.1039/c4cy00387j)
- Meenakshisundaram, S., Nowicka, E., Carter, E., Murphy, D. M., Knight, D. W., Bethell, D. and Hutchings, G. J. 2014. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nature Communications 5, pp. ., article number: 3332. (10.1038/ncomms4332)
- Kiely, C., He, Q., Tiruvalam, R., Dimitratos, N., Forde, M. M., Sankar, M. and Hutchings, G. J. 2014. Assessing and controlling the size, morphology and composition of supported bimetallic catalyst nanoparticles. Microscopy and Microanalysis 20(S3), pp. 74-75. (10.1017/S1431927614002098)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3(9), pp. 2425-2434. (10.1039/c3cy00493g)
- Nowicka, E. et al. 2013. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics 15(29), pp. 12147-12155. (10.1039/c3cp50710f)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162, pp. 365-378. (10.1039/c2fd20153d)
- Cao, E. et al. 2013. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles. Catalysis Today 203, pp. 146-152. (10.1016/j.cattod.2012.05.023)
- Paalanen, P., Weckhuysen, B. M. and Meenakshisundaram, S. 2013. Progress in controlling the size, composition and nanostructure of supported gold-palladium nanoparticles for catalytic applications. Catalysis Science & Technology 3(11), pp. 2869-2880. (10.1039/c3cy00341h)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au–Pd titanium silicalite catalysts. Catalysis Science & Technology 3(9), pp. 2425-2434. (10.1039/c3cy00493g)
- Meenakshisundaram, S., Dimitratos, N., Miedziak, P. J., Wells, P. P., Kiely, C. J. and Hutchings, G. J. 2012. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews 41(24), pp. 8099-8139. (10.1039/C2CS35296F)
- Ab Rahim, M. H. et al. 2012. Gold, palladium and gold-palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science & Technology 2(9), pp. 1914-1924. (10.1039/C2CY20288C)
- Hall, S. R. et al. 2012. Biotemplated synthesis of catalytic Au-Pd nanoparticles. RSC Advances 2(6), pp. 2217-2220. (10.1039/c2ra01336c)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6(8), pp. 6600-6613. (10.1021/nn302299e)
- Brett, G. L. et al. 2011. Selective oxidation of glycerol by highly active bimetallic catalysts at ambient temperature under base-free conditions. Angewandte Chemie. International Edition 50(43), pp. 10136-10139. (10.1002/anie.201101772)
- Meenakshisundaram, S. et al. 2011. Controlling the duality of the mechanism in liquid-phase oxidation of benzyl alcohol catalysed by supported Au-Pd nanoparticles. Chemistry - A European Journal 17(23), pp. 6524-6532. (10.1002/chem.201003484)
- Mantle, M. D. et al. 2011. Pulsed-field gradient NMR spectroscopic studies of alcohols in supported gold catalysts. Journal of Physical Chemistry C 115(4), pp. 1073-1079. (10.1021/jp105946q)
- Miedziak, P. J. et al. 2011. Oxidation of benzyl alcohol using supported gold-palladium nanoparticles. Catalysis Today 164(1), pp. 315-319. (10.1016/j.cattod.2010.10.028)
- Cao, E. et al. 2011. Reaction and Raman spectroscopic studies of alcohol oxidation on gold-palladium catalysts in microstructured reactors. Chemical Engineering Journal 167(2-3), pp. 734-743. (10.1016/j.cej.2010.08.082)
- Myakonkaya, O. et al. 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350(2), pp. 443-445. (10.1016/j.jcis.2010.06.064)
- Meenakshisundaram, S., Satav, S. and Manikandan, P. 2010. Transesterification of cyclic carbonates to Dimethyl Carbonate using solid oxide catalyst at ambient conditions: environmentally benign synthesis. ChemSusChem 3(5) (10.1002/cssc.201000038)
- Meenakshisundaram, S. et al. 2010. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discussions 145, pp. 341-356. (10.1039/b908172k)
- Myakonkaya, O. et al. 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3(3), pp. 339-341. (10.1002/cssc.200900280)
- Meenakshisundaram, S. et al. 2009. Oxidation of Glycerol to Glycolate by using Supported Gold and Palladium Nanoparticles. Chemsuschem 2(12), pp. 1145-1151. (10.1002/cssc.200900133)
- Dimitratos, N. et al. 2009. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry 11(8), pp. 1209-1216. (10.1039/b823285g)
- Pollington, S. D. et al. 2009. Enhanced selective glycerol oxidation in multiphase structured reactors. Catalysis Today 145(1-2), pp. 169-175. (10.1016/j.cattod.2008.04.020)
- Sofia, L. T. A., Krishnan, A., Meenakshisundaram, S., Kala Raj, N. K., Manikandan, P., Rajamohanan, P. R. and Ajithkumar, T. G. 2009. Immobilization of phosphotungstic acid (PTA) on imidazole functionalized silica: evidence for the nature of PTA binding by solid state NMR and reaction studies. Journal of Physical Chemistry C 113(50), pp. 21114-21122. (10.1021/jp906108e)
- Meenakshisundaram, S., Nair, C. M., Murty, K. and Manikandan, P. 2006. Transesterification of cyclic carbonates with methanol at ambient conditions over tungstate-based solid catalysts. Applied Catalysis A: General 312, pp. 108-114. (10.1016/j.apcata.2006.06.034)
- Meenakshisundaram, S., Tarte, N. and Manikandan, P. 2004. Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides. Applied Catalysis A: General 276(1-2), pp. 217-222. (10.1016/j.apcata.2004.08.008)
- James, J., Meenakshisundaram, S., Senthil Kumar, S. and Nair, K. V. O. 2004. Preparation and properties of Ba2−xSrxSmTaO6 (x=0–2): a group of new perovskite materials. Materials Chemistry and Physics 83(2-3), pp. 328-333. (10.1016/j.matchemphys.2003.10.007)
- Moreno, I. et al. 2013. Selective oxidation of benzyl alcohol using in situ generated H2O2 over hierarchical Au-Pd titanium silicalite catalysts. Catalysis Science & Technology 3(9), pp. 2425-2434. (10.1039/c3cy00493g)
- Nowicka, E. et al. 2013. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Physical Chemistry Chemical Physics 15(29), pp. 12147-12155. (10.1039/c3cp50710f)
- He, Q. et al. 2013. Switching-off toluene formation in the solvent-free oxidation of benzyl alcohol using supported trimetallic Au-Pd-Pt nanoparticles. Faraday Discussions 162, pp. 365-378. (10.1039/c2fd20153d)
- Cao, E. et al. 2013. Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au-Pd nanoparticles. Catalysis Today 203, pp. 146-152. (10.1016/j.cattod.2012.05.023)
- Meenakshisundaram, S., Dimitratos, N., Miedziak, P. J., Wells, P. P., Kiely, C. J. and Hutchings, G. J. 2012. Designing bimetallic catalysts for a green and sustainable future. Chemical Society Reviews 41(24), pp. 8099-8139. (10.1039/C2CS35296F)
- Ab Rahim, M. H. et al. 2012. Gold, palladium and gold-palladium supported nanoparticles for the synthesis of glycerol carbonate from glycerol and urea. Catalysis Science & Technology 2(9), pp. 1914-1924. (10.1039/C2CY20288C)
- Hall, S. R. et al. 2012. Biotemplated synthesis of catalytic Au-Pd nanoparticles. RSC Advances 2(6), pp. 2217-2220. (10.1039/c2ra01336c)
- Meenakshisundaram, S. et al. 2012. Synthesis of stable ligand-free gold-palladium nanoparticles using a simple excess anion method. ACS Nano 6(8), pp. 6600-6613. (10.1021/nn302299e)
- Myakonkaya, O. et al. 2010. Recycling nanocatalysts by tuning solvent quality. Journal of Colloid and Interface Science 350(2), pp. 443-445. (10.1016/j.jcis.2010.06.064)
- Meenakshisundaram, S. et al. 2010. Oxidation of alcohols using supported gold and gold-palladium nanoparticles. Faraday Discussions 145, pp. 341-356. (10.1039/b908172k)
- Myakonkaya, O. et al. 2010. Recovery and reuse of nanoparticles by tuning solvent quality. Chemsuschem 3(3), pp. 339-341. (10.1002/cssc.200900280)
- Meenakshisundaram, S. et al. 2009. Oxidation of Glycerol to Glycolate by using Supported Gold and Palladium Nanoparticles. Chemsuschem 2(12), pp. 1145-1151. (10.1002/cssc.200900133)
- Dimitratos, N. et al. 2009. Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry 11(8), pp. 1209-1216. (10.1039/b823285g)
- Pollington, S. D. et al. 2009. Enhanced selective glycerol oxidation in multiphase structured reactors. Catalysis Today 145(1-2), pp. 169-175. (10.1016/j.cattod.2008.04.020)
Research
- Developing strategies for the synthesis of supported monometallic and bimetallic nanoparticles for catalytic applications
- Catalyst development for CO2 utilization.
- Catalyst development for renewable feedstock valorisation (cellulose, hemicellulose and lignin)
- Mechanistic investigation of catalytic processes using kinetic and in-situ spectroscopic methods.
- Developing heterogeneous catalysts for transformations that are traditionally homogeneously catalysed
Catalyst Synthesis Strategies
In this theme, we are interested in developing simple and effective strategies for the synthesis of supported monometallic and bimetallic nanoparticles based catalysts for various organic transformations including selective oxidation, selective hydrogenation/hydrogenolysis and hydrogen auto transfer reactions. The challenge is to prepare these catalysts with precise control over the size, composition and nanostructure / shape by tuning the synthesis parameters. We design new methodologies by combining aspects of material science, nanotechnology and catalyst characterisation. In another part of this theme, we aim to design heterogeneous catalysts that are active, stable and selective for the above-mentioned organic transformations.
References
- Paalanen, et al. Catalysis Science & Technology, 3 (2013) 2869.
- Sankar et al. ACS Nano 6 (2012) 6600.
- Sankar et al. Chemistry: A European Journal. 17 (2011) 6524.
- Macino et al. Nature Catalysis 3 (2020) 683.
Renewable Feedstock
In this theme, we aim to develop catalytic systems (supported metal, mixed metal oxides, polyoxometalates, zeolites, inorganic-organic hybrid) for the valorisation of renewable materials such as CO2, lignocellulosic biomass components (cellulose, hemicellulose and lignin). For the CO2 valorisation reactions, we aim to develop heterogeneous catalysts for the (a) synthesis of cyclic carbonates from epoxides and CO2, (b) transesterification of cyclic carbonates to prepare dimethyl carbonate and glycols and (c) synthesis of polycarbonates from epoxides and CO2.
References
- US Patent: 6,924,379, Indian Patent (Granted).
- Sankar et al. Applied Catalysis A: General 276 (2004) 217.
- Sankar et al. ChemSusChem 3 (2010) 575.
- Luo et al. Nature Communications 6 (2015) 6540.
- Mitchell et al. Catalysis Science and Technology 11 (2021) 779.
- Mitchell et al. Faraday Discussions (2021) - In Press
Mechanistic Investigation
In this theme, we use in-situ spectroscopic, kinetic methodologies to understand the mechanism of catalytic reactions (oxidation, hydrogenation and hydrogen auto transfer reactions). We use this information in the catalyst development program to design more active and selective catalysts. For example, we used EPR spectroscopic method to understand the reason behind the formation of nearly 99% of benzaldehyde during the catalytic selective aerobic oxidation of benzyl alcohol in spite of the fact that benzaldehyde readily oxidises to benzoic acid at room temperature in air. We found that traces of benzyl alcohol (substrate) inhibit the oxidation of benzaldehyde by selectively quenching the radicals (Figure below).
References
- Sankar et al., Nature Communications, 5 (2014), 3332.
- Nowicka et al., Physical Chemistry Chemical Physics, 15 (2013) 12147.
- Sankar et al., Faraday Discussions, 145 (2010) 341.
For more information on specific projects available with Dr Sankar Meenakshisundaram please review the Catalysis and interfacial science section of our research project themes.
Teaching
Module Leader
CH5150 - Introduction to Green and Sustainable Chemistry
Lecturer
CH3411 - Catalytic Materials for Green Chemistry
Practical Modules
CH5210 - Further Chemistry Laboratories
Biography
B. Sc. in Chemistry, St. Xavier's College, Tirunelveli, India (1998), M.Sc. in Chemistry, The American College, Madurai, India (2001), PhD in Heterogeneous Catalysis, National Chemical Laboratory, Pune, India (2007, Dr. P. Manikandan), Postdoctoral Research Associate, Cardiff University, UK (2007-2011, Prof Graham J. Hutchings FRS), Marie-Curie Intra-European Research Fellow, Utrecht University, The Netherlands (2011-2013, Prof. B. M. Weckhuysen), University Research Fellow, Cardiff Catalysis Institute, School of Chemistry Cardiff University (2014 - 2019), Lecturer in Physical Chemistry (2019 - 2023), Senior Lecturer (2023 - till date) Cardiff Catalysis Institute, School of Chemistry, Cardiff University .
Honours and awards
- Junior & Senior Research Fellowship (2002) by the Council of Scientific and Industrial Research (CSIR), India for PhD Research.
- Lectureship (2001) by the Council of Scientific and Industrial Research (CSIR), India.
- Marie Curie Intra European Fellowship for Career Development (2011) by the Research Executive Agency, FP-7.
- Honorary Research Associate (2011-2014), Cardiff University, UK.
- University Research Fellowship (2014) by Cardiff University, UK.
Honours and awards
- Junior & Senior Research Fellowship (2002) by the Council of Scientific and Industrial Research (CSIR), India for PhD Research.
- Lectureship (2001) by the Council of Scientific and Industrial Research (CSIR), India.
- Marie Curie Intra European Fellowship for Career Development (2011) by the Research Executive Agency, FP-7.
- Honorary Research Associate (2011-2014), Cardiff University, UK.
- Chancellor's Research Fellowship (2014) by the Cardiff Catalysis Institute, Cardiff University, UK.
Supervisions
I am interested in supervising PhD students in the areas of
- Supported Metal Nanoparticles for Selective Organic Transformations (Oxidation, Hydrogenation).
- Heterogeneous Catalysts for CO2 conversion to value added products.
- Supported Single - Atom Catalysts for Selective Organic Transformations (Oxidation, Hydrogenation).
- Fundamental Understanding of Catalyst Synthesis.
- Catalytic Biomass Conversion.
Current supervision
Saleha Maashi Maashi
Research student
Chijuka Obayi
Research student
Past projects
Dr. Susana Guadix Montero ( 2014 - 2018)
https://orca.cardiff.ac.uk/id/eprint/125611/
Dr. Claire Mitchell (2015 - 2019)
https://orca.cardiff.ac.uk/id/eprint/133537/
Dr. Maha Alreshidi
Dr. Heba Alsharif
Ms. Kennedy Jones (submitted)
Dr. Lifeng Xiao
Research themes
Specialisms
- heterogeneous catalysis
- Synthesis, Characterisation and Application of Supported Metal Catalysts
- Catalysis and mechanisms of reactions
- Nanotechnology