Dr Robert Young
Teams and roles for Robert Young
Research Fellow
Overview
Research Overview
My research centres around the application of electron optical techniques, especially transmission and scanning electron microscopy, to investigate the ultrastructure of connective tissues. The overarching hypothesis for my work has been that composition and structure of tissue matrices define tissue function. In the past I have worked in the field of musculo-skeletal biology, investigating the fine structure of ligaments and cartilage, to try to understand the changes within these tissues in degradative diseases such as osteo- and rheumatoid arthritis. For the past ten years I have worked in collaboration with Professor Andrew Quantock focussing on ocular tissues, including cornea, sclera and trabecular meshwork. A range of tissues obtained from human eyes, through both local and international collaborations, have been investigated to characterise the nature of interactions between collagens and proteoglycans in health and disease.
Our studies have involved a number of cutting edge technologies for microscopy, both in relation to new preparation techniques for tissue preparation, for example using low temperature tissue preservation (high pressure freezing and freeze substitution), and novel instrumentation for image acquisition (serial block face 3View ® SEM). Throughout my career I have maintained a keen interest in new methodology for electron microscopy. I have applied specialised localisation methods employing specific antibody markers to identify minute differences in tissue components, proteoglycans, during development of the cornea in the embryo. These appear to be important for the maturation of a transparent matrix, itself essential for vision. The same tissue molecules are also involved in the pathogenesis of certain blinding conditions where enzyme deficiencies gives rise to opacities in the cornea, eventually requiring a corneal transplant for treatment.
Currently there is enormous interest in 3D imaging techniques, not only in diagnostic imaging such as with OCT, but also at the level of single cells and matrix macromolecules. These methods of electron tomography and, most recently, serial block face scanning electron microscopy are being used in our electron microscopy laboratory in the Structural Biophysics Research Group.
Teaching Overview
I currently assist with laboratory-based teaching of postgraduate research students and undergraduates carrying out final year research projects.
Selected Publications
Young, RD, Knupp, C, Pinali, C, Png, K MY, Ralphs, J R, Bushby, AJ, Starborg, T, Kadler, KE, Quantock AJ. 2014. Three-dimensional aspects of matrix assembly by cells in the developing cornea Proceedings of the National Academy of Sciences 111 (2) 687-692
Young, RD, Liskova, P, Pinali, C, Palka, BP, Palos, M, Jirsova, K, Hrdlickova, E, Tesarova, M, Elleder, M, Zeman, J, Meek, KM, Knupp, C and Quantock, AJ. 2011. Large Proteoglycan Complexes and Disturbed Collagen Architecture in the Corneal Extracellular Matrix of Mucopolysaccharidosis Type VII (Sly Syndrome). Investigative Ophthalmology & Visual Science 52 (9) 6720-6728.
Young, RD, Swamynathan, SK, Boote, C, Mann, M, Quantock, AJ, Piatigorsky, J, Funderburgh, JL, Meek, KM. 2009. Stromal Edema in Klf4 Conditional Null Mouse Cornea Is Associated with Altered Collagen Fibril Organization and Reduced Proteoglycans. Investigative Ophthalmology & Visual Science 50 (9) 4155-4161
Young, RD, Akama, TO, Liskova, P, Ebenezer, ND, Allan, B, Kerr, B, Caterson, B, Fukuda, MN, Quantock, AJ. 2007. Differential immunogold localisation of sulphated and unsulphated keratan sulphate proteoglycans in normal and macular dystrophy cornea using sulphation motif-specific antibodies. Histochemistry and Cell Biology 127 (1), 115-120
Young, RD, Quantock, AJ, Sotozono, C, Koizumi, N, Kinoshita, S. 2006. Sulphation patterns of keratan sulphate proteoglycan in sclerocornea resemble cornea rather than sclera. British Journal of Ophthalmology 90 (3), 391-393
Publication
2025
- Liao, Y. et al., 2025. A bioequivalent cornea cross-linking method using photo-initiators LAP and visible light. Materials Today Bio 34 102110. (10.1016/j.mtbio.2025.102110)
- Ma, Q. et al. 2025. Ultrastructural aspects of corneal functional recovery in rats following intrastromal keratocyte injection. Investigative Ophthalmology & Visual Science 66 (2) 45. (10.1167/iovs.66.2.45)
2024
- Braddock, F. L. et al., 2024. Autosomal dominant stromal corneal dystrophy associated with a SPARCL1 missense variant. European Journal of Human Genetics 32 (12), pp.1583-1589. (10.1038/s41431-024-01687-8)
- Maeno, S. et al., 2024. Imaging pathology in archived cornea with Fuchs' endothelial corneal dystrophy including tissue reprocessing for volume electron microscopy.. Scientific Reports 14 (1) 31786. (10.1038/s41598-024-82888-5)
- Regini, J. W. et al. 2024. Membrane structures and functional correlates in the bi-segmented eye lens of the cephalopod. Biology Open 13 (9) bio060445. (10.1242/bio.060445)
2023
- Bains, K. K. et al. 2023. Chondroitin sulphate/dermatan sulphate proteoglycans: potential regulators of corneal stem/progenitor cell phenotype in vitro. International Journal of Molecular Sciences 24 (3) 2095. (10.3390/ijms24032095)
- Bains, K. K. et al. 2023. Cell–cell and cell–matrix interactions at the presumptive stem cell niche of the chick corneal limbus. Cells 12 (19) 2334. (10.3390/cells12192334)
- Koudouna, E. et al. 2023. Developmental changes in patterns of distribution of fibronectin and tenascin-C in the chicken cornea: evidence for distinct and independent functions during corneal development and morphogenesis. International Journal of Molecular Sciences 24 (4) 3555. (10.3390/ijms24043555)
2022
- Hayashi, R. et al., 2022. Generation of 3D lacrimal gland organoids from human pluripotent stem cells. Nature 605 (7908), pp.126-131. (10.1038/s41586-022-04613-4)
2021
- Ashworth, S. et al. 2021. Chondroitin sulfate as a potential modulator of the stem cell niche in cornea. Frontiers in Cell and Developmental Biology 8 567358. (10.3389/fcell.2020.567358)
- Koudouna, E. et al. 2021. Response to letter to Editor “comments on ‘cell regulation of collagen fibril macrostructure during corneal morphogenesis’ by Koudouna et al.”. Acta Biomaterialia 136 , pp.594-595. (10.1016/j.actbio.2021.09.061)
- Lewis, P. N. et al. 2021. Contrast-enhanced tissue processing of fibrillin-rich elastic fibres for 3D visualization by volume scanning electron microscopy. Methods and Protocols 4 (3) 56. (10.3390/mps4030056)
2020
- Hammond, G. M. et al. 2020. The microanatomy of Bowman’s layer in the cornea of the pig: changes in collagen fibril architecture at the corneoscleral limbus. European Journal of Anatomy 24 (5), pp.399-406.
- Wang, K. et al., 2020. Cell compaction is not required for the development of gradient refractive index profiles in the embryonic chick lens. Experimental Eye Research 197 108112. (10.1016/j.exer.2020.108112)
- Young, R. D. et al. 2020. Observations on nascent matrix structures in embryonic cornea: Important in cell interactions, or merely vestiges of the lens surface?. Archives of Clinical and Experimental Ophthalmology 2 (2), pp.67-72. (10.46439/ophthalmology.2.014)
2019
- Lewis, P. et al. 2019. Elastin content and distribution in endothelial keratoplasty tissue determines direction of scrolling. American Journal of Ophthalmology 197 , pp.181-182. (10.1016/j.ajo.2018.08.047)
- Young, R. D. et al. 2019. Cell-independent matrix configuration in early corneal development. Experimental Eye Research 187 107772. (10.1016/j.exer.2019.107772)
2018
- Koudouna, E. et al. 2018. Cell regulation of collagen fibril macrostructure during corneal morphogenesis. Acta Biomaterialia 79 , pp.96-112. (10.1016/j.actbio.2018.08.017)
- Littlechild, S. et al. 2018. Keratan sulfate phenotype in the β-1,3-N-acetylglucosaminyltransferase-7-null mouse cornea. Investigative Ophthalmology and Visual Science 59 , pp.1641-1651. (10.1167/iovs.17-22716)
2017
- Akhbanbetova, A. et al. 2017. A surgical cryoprobe for targeted transcorneal freezing and endothelial cell removal. Journal of Ophthalmology 2017 5614089. (10.1155/2017/5614089)
- Okumura, N. et al., 2017. Sustained activation of the unfolded protein response induces cell death in Fuchs' endothelial corneal dystrophy. Investigative Ophthalmology & Visual Science 58 (9), pp.3697-3707. (10.1167/iovs.16-21023)
- White, T. et al. 2017. Elastic microfibril distribution in the cornea: Differences between normal and keratoconic stroma. Experimental Eye Research 159 , pp.40-48. (10.1016/j.exer.2017.03.002)
2016
- Kamma-Lorger, C. S. et al., 2016. Role of Decorin core protein in collagen organisation in Congenital Stromal Corneal Dystrophy (CSCD). PLoS ONE 11 (2) e0147948. (10.1371/journal.pone.0147948)
- Lewis, P. et al. 2016. Three-dimensional arrangement of elastic fibers in the human corneal stroma. Experimental Eye Research 146 , pp.43-53. (10.1016/j.exer.2015.12.006)
- Parfitt, G. et al., 2016. Renewal of the holocrine meibomian glands by label-retaining, unipotent epithelial progenitors. Stem Cell Reports 7 (3), pp.399-410. (10.1016/j.stemcr.2016.07.010)
2015
- Okumura, N. et al., 2015. Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. Laboratory Investigation 95 , pp.1291-1304. (10.1038/labinvest.2015.111)
- Quantock, A. J. et al. 2015. From nano to macro: Studying the hierarchical structure of the corneal extracellular matrix. Experimental Eye Research 133 , pp.81-99. (10.1016/j.exer.2014.07.018)
- Yamada, K. et al., 2015. Mesenchymal-epithelial cell interactions and proteoglycan matrix composition in the presumptive stem cell niche of the rabbit corneal limbus. Molecular Vision 21 , pp.1328-1329.
2014
- Ho, L. T. Y. et al. 2014. A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea. Matrix Biology 38 , pp.59-68. (10.1016/j.matbio.2014.06.004)
- White, T. et al., 2014. 3D structural studies of the cornea. Presented at: British Congress of Optometry and Vision Science Cardiff 01 November 2014. (10.1111/opo.12160)
- Young, R. D. et al. 2014. Three-dimensional aspects of matrix assembly by cells in the developing cornea. Proceedings of the National Academy of Sciences 111 (2), pp.687-692. (10.1073/pnas.1313561110)
2013
- Hayes, S. et al. 2013. The effect of Riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS ONE 8 (1) e52860. (10.1371/journal.pone.0052860)
- Khan, I. M. et al. 2013. In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials 34 (5), pp.1478-1487. (10.1016/j.biomaterials.2012.09.076)
2011
- Bushby, A. J. et al., 2011. Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nature Protocols 6 (6), pp.845-858. (10.1038/nprot.2011.332)
- Hayes, S. et al. 2011. The effect of vitamin C deficiency and chronic ultraviolet-B exposure on corneal ultrastructure: a preliminary investigation. Molecular Vision 17 , pp.3107-3115.
- Jones, F. E. et al. 2011. Investigation into endothelial cell morphology following new methods of posterior corneal surgery [Abstract]. International Journal of Experimental Pathology 92 (3), pp.A24. (10.1111/j.1365-2613.2010.00759.x)
- Khan, I. M. et al. 2011. Fibroblast growth factor 2 and transforming growth factor β1 induce precocious maturation of articular cartilage. Arthritis & Rheumatism 63 (11), pp.3417-3427. (10.1002/art.30543)
- Koudouna, E. et al. 2011. Preliminary electron microscopical studies of connective tissue in the human lamina cribrosa [Abstract]. International Journal of Experimental Pathology 92 (6), pp.A26. (10.1111/j.1365-2613.2011.00780.x)
- Parfitt, G. et al. 2011. Electron tomography reveals multiple self-association of chondroitin sulphate/dermatan sulphate proteoglycans in Chst5-null mouse corneas. Journal of Structural Biology 174 (3), pp.536-541. (10.1016/j.jsb.2011.03.015)
- Young, R. D. et al. 2011. Large Proteoglycan Complexes and Disturbed Collagen Architecture in the Corneal Extracellular Matrix of Mucopolysaccharidosis Type VII (Sly Syndrome). Investigative Ophthalmology & Visual Science 52 (9), pp.6720-6728. (10.1167/iovs.11-7377)
2010
- Kamma-Lorger, C. S. et al. 2010. Collagen and mature elastic fibre organisation as a function of depth in the human cornea and limbus. Journal of Structural Biology 169 (3), pp.424-430. (10.1016/j.jsb.2009.11.004)
- Lewis, P. et al. 2010. Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Structure 18 (2), pp.239-245. (10.1016/j.str.2009.11.013)
- Liles, M. et al., 2010. Differential relative sulfation of keratan sulfate glycosaminoglycan in the chick cornea during embryonic development. Investigative Ophthalmology and Visual Science 51 (3), pp.1365-1372. (10.1167/iovs.09-4004)
- Palka, B. P. et al. 2010. Structural Collagen Alterations in Macular Corneal Dystrophy Occur Mainly in the Posterior Stroma. Current Eye Research 35 (7), pp.580-586. (10.3109/02713681003760150)
- Parfitt, G. J. et al. 2010. Three-dimensional reconstruction of collagen-proteoglycan interactions in the mouse corneal stroma by electron tomography. Journal of Structural Biology 170 (2), pp.392-397. (10.1016/j.jsb.2010.01.019)
- Quantock, A. J. , Young, R. D. and Akama, T. O. 2010. Structural and biochemical aspects of keratan sulphate in the cornea. Cellular and Molecular Life Sciences 67 (6), pp.891-906. (10.1007/s00018-009-0228-7)
2009
- Boote, C. et al. 2009. Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. Journal of Structural Biology 166 (2), pp.195-204. (10.1016/j.jsb.2009.01.009)
- Gealy, E. C. et al. 2009. Actin and type I collagen propeptide distribution in the developing chick cornea. Investigative Ophthalmology & Visual Science 50 (4), pp.1653 -1658. (10.1167/iovs.08-2554)
- Hayes, S. et al. 2009. A structural investigation of corneal graft failure in suspected recurrent keratoconus. Eye 24 (4), pp.728-734. (10.1038/eye.2009.159)
- Knupp, C. et al. 2009. The architecture of the cornea and structural basis of its transparency. In: McPherson, A. ed. Advances in Protein Chemistry and Structural Biology. Vol. 78, London: Academic Press. , pp.25-49. (10.1016/S1876-1623(08)78002-7)
- Palka, B. P. et al. 2009. Depth-profiled synchrotron microbeam analysis of collagen fibril ultrastructure in the developing chick cornea [Abstract]. International Journal of Experimental Pathology 90 (2), pp.A126. (10.1111/j.1365-2613.2009.00644.x)
- Young, R. D. et al. 2009. Stromal Edema in Klf4 Conditional Null Mouse Cornea Is Associated with Altered Collagen Fibril Organization and Reduced Proteoglycans. Investigative Ophthalmology & Visual Science 50 (9), pp.4155-4161. (10.1167/iovs.09-3561)
2008
- Quantock, A. J. and Young, R. D. 2008. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Developmental Dynamics 237 (10), pp.2607-2621. (10.1002/dvdy.21579)
- Yamasaki, K. et al., 2008. Genomic Aberrations and Cellular Heterogeneity in SV40-Immortalized Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science 50 (2), pp.604-613. (10.1167/iovs.08-2239)
2007
- Albon, J. et al. 2007. Connective tissue structure of the tree shrew optic nerve and associated ageing changes. Investigative Ophthalmology and Visual Science 48 (5), pp.2134-2144. (10.1167/iovs.06-0084)
- Gealy, E. C. et al. 2007. Differential expression of the keratan sulphate proteoglycan, keratocan, during chick corneal embryogenesis. Histochemistry and Cell Biology 128 (6), pp.551-555. (10.1007/s00418-007-0332-4)
- Quantock, A. J. et al. 2007. Small-angle fibre diffraction studies of corneal matrix structure: a depth profiled investigation of the human eye-bank cornea. Journal of Applied Crystallography 40 (S1), pp.S335-S340. (10.1107/S0021889807005523)
- Young, R. D. et al. 2007. Differential immunogold localisation of sulphated and unsulphated keratan sulphate proteoglycans in normal and macular dystrophy cornea using sulphation motif-specific antibodies. Histochemistry and Cell Biology 127 (1), pp.115-120. (10.1007/s00418-006-0228-8)
- Young, R. D. et al. 2007. Keratan sulfate glycosaminoglycan and the association with collagen fibrils in rudimentary lamellae in the developing avian cornea. Investigative Ophthalmology and Visual Science 48 (7), pp.3083-3088. (10.1167/iovs.06-1323)
2006
- Hayashida, Y. et al., 2006. Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. PNAS 103 (36), pp.13333-13338. (10.1073/pnas.0605441103)
- Young, R. D. et al. 2006. Immunogold localization of keratan sulphate in macular corneal dystrophy using monoclonal antibodies to specific sulphation motifs [Abstract]. International Journal of Experimental Pathology 87 (1), pp.A49-A50. (10.1111/j.0959-9673.2006.00458.x)
- Young, R. D. et al. 2006. Sulphation patterns of keratan sulphate proteoglycan in sclerocornea resemble cornea rather than sclera [Letter]. British Journal of Ophthalmology 90 (3), pp.391-393. (10.1136/bjo.2005.085803)
2005
- Quantock, A. J. et al. 2005. Stromal architecture and immune tolerance in additive corneal xenografts in rodents. Acta Ophthalmologica Scandinavica 83 (4), pp.462-466. (10.1111/j.1600-0420.2005.00509.x)
- Young, R. D. et al. 2005. Atypical composition and ultrastructure of proteoglycans in the mouse corneal stroma. Investigative Ophthalmology and Visual Science 46 (6), pp.1973-1978. (10.1167/iovs.04-1309)
2003
- Connon, C. J. , Young, R. D. and Kidd, E. J. 2003. P2X7 receptors are redistributed on human monocytes after pore formation in response to prolonged agonist exposure. Pharmacology 67 (3), pp.163-168. (10.1159/000067795)
2000
- Young, R. D. et al. 2000. Immunolocalization of collagen Types II and III in single fibrils of human articular cartilage. Journal of Histochemistry and Cytochemistry 48 (3), pp.423-432. (10.1177/002215540004800312)
Articles
- Akhbanbetova, A. et al. 2017. A surgical cryoprobe for targeted transcorneal freezing and endothelial cell removal. Journal of Ophthalmology 2017 5614089. (10.1155/2017/5614089)
- Albon, J. et al. 2007. Connective tissue structure of the tree shrew optic nerve and associated ageing changes. Investigative Ophthalmology and Visual Science 48 (5), pp.2134-2144. (10.1167/iovs.06-0084)
- Ashworth, S. et al. 2021. Chondroitin sulfate as a potential modulator of the stem cell niche in cornea. Frontiers in Cell and Developmental Biology 8 567358. (10.3389/fcell.2020.567358)
- Bains, K. K. et al. 2023. Chondroitin sulphate/dermatan sulphate proteoglycans: potential regulators of corneal stem/progenitor cell phenotype in vitro. International Journal of Molecular Sciences 24 (3) 2095. (10.3390/ijms24032095)
- Bains, K. K. et al. 2023. Cell–cell and cell–matrix interactions at the presumptive stem cell niche of the chick corneal limbus. Cells 12 (19) 2334. (10.3390/cells12192334)
- Boote, C. et al. 2009. Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea. Journal of Structural Biology 166 (2), pp.195-204. (10.1016/j.jsb.2009.01.009)
- Braddock, F. L. et al., 2024. Autosomal dominant stromal corneal dystrophy associated with a SPARCL1 missense variant. European Journal of Human Genetics 32 (12), pp.1583-1589. (10.1038/s41431-024-01687-8)
- Bushby, A. J. et al., 2011. Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nature Protocols 6 (6), pp.845-858. (10.1038/nprot.2011.332)
- Connon, C. J. , Young, R. D. and Kidd, E. J. 2003. P2X7 receptors are redistributed on human monocytes after pore formation in response to prolonged agonist exposure. Pharmacology 67 (3), pp.163-168. (10.1159/000067795)
- Gealy, E. C. et al. 2009. Actin and type I collagen propeptide distribution in the developing chick cornea. Investigative Ophthalmology & Visual Science 50 (4), pp.1653 -1658. (10.1167/iovs.08-2554)
- Gealy, E. C. et al. 2007. Differential expression of the keratan sulphate proteoglycan, keratocan, during chick corneal embryogenesis. Histochemistry and Cell Biology 128 (6), pp.551-555. (10.1007/s00418-007-0332-4)
- Hammond, G. M. et al. 2020. The microanatomy of Bowman’s layer in the cornea of the pig: changes in collagen fibril architecture at the corneoscleral limbus. European Journal of Anatomy 24 (5), pp.399-406.
- Hayashi, R. et al., 2022. Generation of 3D lacrimal gland organoids from human pluripotent stem cells. Nature 605 (7908), pp.126-131. (10.1038/s41586-022-04613-4)
- Hayashida, Y. et al., 2006. Matrix morphogenesis in cornea is mediated by the modification of keratan sulfate by GlcNAc 6-O-sulfotransferase. PNAS 103 (36), pp.13333-13338. (10.1073/pnas.0605441103)
- Hayes, S. et al. 2011. The effect of vitamin C deficiency and chronic ultraviolet-B exposure on corneal ultrastructure: a preliminary investigation. Molecular Vision 17 , pp.3107-3115.
- Hayes, S. et al. 2013. The effect of Riboflavin/UVA collagen cross-linking therapy on the structure and hydrodynamic behaviour of the ungulate and rabbit corneal stroma. PLoS ONE 8 (1) e52860. (10.1371/journal.pone.0052860)
- Hayes, S. et al. 2009. A structural investigation of corneal graft failure in suspected recurrent keratoconus. Eye 24 (4), pp.728-734. (10.1038/eye.2009.159)
- Ho, L. T. Y. et al. 2014. A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea. Matrix Biology 38 , pp.59-68. (10.1016/j.matbio.2014.06.004)
- Jones, F. E. et al. 2011. Investigation into endothelial cell morphology following new methods of posterior corneal surgery [Abstract]. International Journal of Experimental Pathology 92 (3), pp.A24. (10.1111/j.1365-2613.2010.00759.x)
- Kamma-Lorger, C. S. et al. 2010. Collagen and mature elastic fibre organisation as a function of depth in the human cornea and limbus. Journal of Structural Biology 169 (3), pp.424-430. (10.1016/j.jsb.2009.11.004)
- Kamma-Lorger, C. S. et al., 2016. Role of Decorin core protein in collagen organisation in Congenital Stromal Corneal Dystrophy (CSCD). PLoS ONE 11 (2) e0147948. (10.1371/journal.pone.0147948)
- Khan, I. M. et al. 2011. Fibroblast growth factor 2 and transforming growth factor β1 induce precocious maturation of articular cartilage. Arthritis & Rheumatism 63 (11), pp.3417-3427. (10.1002/art.30543)
- Khan, I. M. et al. 2013. In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials 34 (5), pp.1478-1487. (10.1016/j.biomaterials.2012.09.076)
- Koudouna, E. et al. 2018. Cell regulation of collagen fibril macrostructure during corneal morphogenesis. Acta Biomaterialia 79 , pp.96-112. (10.1016/j.actbio.2018.08.017)
- Koudouna, E. et al. 2021. Response to letter to Editor “comments on ‘cell regulation of collagen fibril macrostructure during corneal morphogenesis’ by Koudouna et al.”. Acta Biomaterialia 136 , pp.594-595. (10.1016/j.actbio.2021.09.061)
- Koudouna, E. et al. 2011. Preliminary electron microscopical studies of connective tissue in the human lamina cribrosa [Abstract]. International Journal of Experimental Pathology 92 (6), pp.A26. (10.1111/j.1365-2613.2011.00780.x)
- Koudouna, E. et al. 2023. Developmental changes in patterns of distribution of fibronectin and tenascin-C in the chicken cornea: evidence for distinct and independent functions during corneal development and morphogenesis. International Journal of Molecular Sciences 24 (4) 3555. (10.3390/ijms24043555)
- Lewis, P. et al. 2010. Structural interactions between collagen and proteoglycans are elucidated by three-dimensional electron tomography of bovine cornea. Structure 18 (2), pp.239-245. (10.1016/j.str.2009.11.013)
- Lewis, P. et al. 2019. Elastin content and distribution in endothelial keratoplasty tissue determines direction of scrolling. American Journal of Ophthalmology 197 , pp.181-182. (10.1016/j.ajo.2018.08.047)
- Lewis, P. et al. 2016. Three-dimensional arrangement of elastic fibers in the human corneal stroma. Experimental Eye Research 146 , pp.43-53. (10.1016/j.exer.2015.12.006)
- Lewis, P. N. et al. 2021. Contrast-enhanced tissue processing of fibrillin-rich elastic fibres for 3D visualization by volume scanning electron microscopy. Methods and Protocols 4 (3) 56. (10.3390/mps4030056)
- Liao, Y. et al., 2025. A bioequivalent cornea cross-linking method using photo-initiators LAP and visible light. Materials Today Bio 34 102110. (10.1016/j.mtbio.2025.102110)
- Liles, M. et al., 2010. Differential relative sulfation of keratan sulfate glycosaminoglycan in the chick cornea during embryonic development. Investigative Ophthalmology and Visual Science 51 (3), pp.1365-1372. (10.1167/iovs.09-4004)
- Littlechild, S. et al. 2018. Keratan sulfate phenotype in the β-1,3-N-acetylglucosaminyltransferase-7-null mouse cornea. Investigative Ophthalmology and Visual Science 59 , pp.1641-1651. (10.1167/iovs.17-22716)
- Ma, Q. et al. 2025. Ultrastructural aspects of corneal functional recovery in rats following intrastromal keratocyte injection. Investigative Ophthalmology & Visual Science 66 (2) 45. (10.1167/iovs.66.2.45)
- Maeno, S. et al., 2024. Imaging pathology in archived cornea with Fuchs' endothelial corneal dystrophy including tissue reprocessing for volume electron microscopy.. Scientific Reports 14 (1) 31786. (10.1038/s41598-024-82888-5)
- Okumura, N. et al., 2017. Sustained activation of the unfolded protein response induces cell death in Fuchs' endothelial corneal dystrophy. Investigative Ophthalmology & Visual Science 58 (9), pp.3697-3707. (10.1167/iovs.16-21023)
- Okumura, N. et al., 2015. Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. Laboratory Investigation 95 , pp.1291-1304. (10.1038/labinvest.2015.111)
- Palka, B. P. et al. 2009. Depth-profiled synchrotron microbeam analysis of collagen fibril ultrastructure in the developing chick cornea [Abstract]. International Journal of Experimental Pathology 90 (2), pp.A126. (10.1111/j.1365-2613.2009.00644.x)
- Palka, B. P. et al. 2010. Structural Collagen Alterations in Macular Corneal Dystrophy Occur Mainly in the Posterior Stroma. Current Eye Research 35 (7), pp.580-586. (10.3109/02713681003760150)
- Parfitt, G. et al. 2011. Electron tomography reveals multiple self-association of chondroitin sulphate/dermatan sulphate proteoglycans in Chst5-null mouse corneas. Journal of Structural Biology 174 (3), pp.536-541. (10.1016/j.jsb.2011.03.015)
- Parfitt, G. J. et al. 2010. Three-dimensional reconstruction of collagen-proteoglycan interactions in the mouse corneal stroma by electron tomography. Journal of Structural Biology 170 (2), pp.392-397. (10.1016/j.jsb.2010.01.019)
- Parfitt, G. et al., 2016. Renewal of the holocrine meibomian glands by label-retaining, unipotent epithelial progenitors. Stem Cell Reports 7 (3), pp.399-410. (10.1016/j.stemcr.2016.07.010)
- Quantock, A. J. et al. 2007. Small-angle fibre diffraction studies of corneal matrix structure: a depth profiled investigation of the human eye-bank cornea. Journal of Applied Crystallography 40 (S1), pp.S335-S340. (10.1107/S0021889807005523)
- Quantock, A. J. et al. 2005. Stromal architecture and immune tolerance in additive corneal xenografts in rodents. Acta Ophthalmologica Scandinavica 83 (4), pp.462-466. (10.1111/j.1600-0420.2005.00509.x)
- Quantock, A. J. et al. 2015. From nano to macro: Studying the hierarchical structure of the corneal extracellular matrix. Experimental Eye Research 133 , pp.81-99. (10.1016/j.exer.2014.07.018)
- Quantock, A. J. and Young, R. D. 2008. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Developmental Dynamics 237 (10), pp.2607-2621. (10.1002/dvdy.21579)
- Quantock, A. J. , Young, R. D. and Akama, T. O. 2010. Structural and biochemical aspects of keratan sulphate in the cornea. Cellular and Molecular Life Sciences 67 (6), pp.891-906. (10.1007/s00018-009-0228-7)
- Regini, J. W. et al. 2024. Membrane structures and functional correlates in the bi-segmented eye lens of the cephalopod. Biology Open 13 (9) bio060445. (10.1242/bio.060445)
- Wang, K. et al., 2020. Cell compaction is not required for the development of gradient refractive index profiles in the embryonic chick lens. Experimental Eye Research 197 108112. (10.1016/j.exer.2020.108112)
- White, T. et al. 2017. Elastic microfibril distribution in the cornea: Differences between normal and keratoconic stroma. Experimental Eye Research 159 , pp.40-48. (10.1016/j.exer.2017.03.002)
- Yamada, K. et al., 2015. Mesenchymal-epithelial cell interactions and proteoglycan matrix composition in the presumptive stem cell niche of the rabbit corneal limbus. Molecular Vision 21 , pp.1328-1329.
- Yamasaki, K. et al., 2008. Genomic Aberrations and Cellular Heterogeneity in SV40-Immortalized Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science 50 (2), pp.604-613. (10.1167/iovs.08-2239)
- Young, R. D. et al. 2019. Cell-independent matrix configuration in early corneal development. Experimental Eye Research 187 107772. (10.1016/j.exer.2019.107772)
- Young, R. D. et al. 2020. Observations on nascent matrix structures in embryonic cornea: Important in cell interactions, or merely vestiges of the lens surface?. Archives of Clinical and Experimental Ophthalmology 2 (2), pp.67-72. (10.46439/ophthalmology.2.014)
- Young, R. D. et al. 2014. Three-dimensional aspects of matrix assembly by cells in the developing cornea. Proceedings of the National Academy of Sciences 111 (2), pp.687-692. (10.1073/pnas.1313561110)
- Young, R. D. et al. 2007. Differential immunogold localisation of sulphated and unsulphated keratan sulphate proteoglycans in normal and macular dystrophy cornea using sulphation motif-specific antibodies. Histochemistry and Cell Biology 127 (1), pp.115-120. (10.1007/s00418-006-0228-8)
- Young, R. D. et al. 2006. Immunogold localization of keratan sulphate in macular corneal dystrophy using monoclonal antibodies to specific sulphation motifs [Abstract]. International Journal of Experimental Pathology 87 (1), pp.A49-A50. (10.1111/j.0959-9673.2006.00458.x)
- Young, R. D. et al. 2007. Keratan sulfate glycosaminoglycan and the association with collagen fibrils in rudimentary lamellae in the developing avian cornea. Investigative Ophthalmology and Visual Science 48 (7), pp.3083-3088. (10.1167/iovs.06-1323)
- Young, R. D. et al. 2000. Immunolocalization of collagen Types II and III in single fibrils of human articular cartilage. Journal of Histochemistry and Cytochemistry 48 (3), pp.423-432. (10.1177/002215540004800312)
- Young, R. D. et al. 2011. Large Proteoglycan Complexes and Disturbed Collagen Architecture in the Corneal Extracellular Matrix of Mucopolysaccharidosis Type VII (Sly Syndrome). Investigative Ophthalmology & Visual Science 52 (9), pp.6720-6728. (10.1167/iovs.11-7377)
- Young, R. D. et al. 2006. Sulphation patterns of keratan sulphate proteoglycan in sclerocornea resemble cornea rather than sclera [Letter]. British Journal of Ophthalmology 90 (3), pp.391-393. (10.1136/bjo.2005.085803)
- Young, R. D. et al. 2009. Stromal Edema in Klf4 Conditional Null Mouse Cornea Is Associated with Altered Collagen Fibril Organization and Reduced Proteoglycans. Investigative Ophthalmology & Visual Science 50 (9), pp.4155-4161. (10.1167/iovs.09-3561)
- Young, R. D. et al. 2005. Atypical composition and ultrastructure of proteoglycans in the mouse corneal stroma. Investigative Ophthalmology and Visual Science 46 (6), pp.1973-1978. (10.1167/iovs.04-1309)
Book sections
- Knupp, C. et al. 2009. The architecture of the cornea and structural basis of its transparency. In: McPherson, A. ed. Advances in Protein Chemistry and Structural Biology. Vol. 78, London: Academic Press. , pp.25-49. (10.1016/S1876-1623(08)78002-7)
Conferences
- White, T. et al., 2014. 3D structural studies of the cornea. Presented at: British Congress of Optometry and Vision Science Cardiff 01 November 2014. (10.1111/opo.12160)
Research
Current Research Projects
* Structural studies of cornea after freezing with a new prototype cryoprobe.
* 3D reconstruction of keratocytes and extracellular matrix in developing avian cornea by serial block face scanning electron microscopy to investigate corneal stromal development.
* Comparative ultrastructural investigation of the trabecular meshwork in normal and glaucomatous human eyes.
* Microscopical studies of corneal endothelial cells in Fuchs corneal endothelial dystrophy.
Funding
Quantock AJ (PI), K Meek & C Tucker: £836,976. A physical characterisation of assembly mechanisms and light transmission in the cornea. EPSRC project grant. 2008 – 2011
Research Collaborators
Professor Shigeru Kinoshita, Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
Professor Noriko Koizumi, Centre for Regenerative Medicine, Department of Biomedical Engineering, Doshisha University, Kyoto, Japan: A New Minimally Invasive Surgery for the Treatment of Corneal Endothelial Disease
Tissue engineering and repair expertise
- Ultrastructure of connective tissue matrices, particularly in the eye and synovial joint.
- Interaction of collagens and proteoglycans in connective tissue matrix of cornea, sclera, articular cartilage and ligament.
- Regulation of corneal transparency by tissue macromolecules.
- Development of low temperature tissue processing techniques for examination of hydrated tissue ultrastructure.
- Corneal development: establishment of corneal lamellar architecture by embryonic keratocytes.
- Development of new non-invasive surgical modalities to treat corneal endothelial disorders.
- Application of 3D scanning electron microscopy (SEM) methods (focused ion beam-and automated serial section-SEM), for large volume 3D reconstruction of ocular connective tissue matrices.
- Structural analysis of artificial matrices for corneal replacement."
Biography
Professional memberships
- Member of the Cardiff Institute of Tissue Engineering and Repair.