Professor Jeremy Guggenheim
(he/him)
- Available for postgraduate supervision
Teams and roles for Jeremy Guggenheim
Professor of Myopia Research
Overview
My research is aimed at discovering the causes of short-sightedness (myopia). Approximately 1 in 3 people in the United Kingdom suffer from myopia, and the condition increases the risk of a number of serious eye disorders. I have contributed to collaborative efforts with researchers from across the world, leading to the discovery of more than a four hundred genetic variants that increase susceptibility to myopia.
Nobody yet knows how most of these genetic variants play a role in myopia development, nor how best they can be used to target and improve treatment.
Publication
2025
- Clark, R. et al., 2025. Revisiting the trans-ancestry genetic correlation of refractive error. Investigative Ophthalmology & Visual Science 66 (11) 60. (10.1167/iovs.66.11.60)
- Guggenheim, J. A. and Terry, L. 2025. Mechanism of optical treatments for myopia: Are lenslets joining the DOTs?. Ophthalmic and Physiological Optics 45 (2), pp.337-339. (10.1111/opo.13426)
- He, W. et al., 2025. Large-scale GWAS of strabismus identifies risk loci and provides support for a link with maternal smoking. Nature Communications 16 (1) 7890. (10.1038/s41467-025-62456-9)
- Li, S. W. R. et al., 2025. Advances in the genetics of refractive errors: Contributions from the CREAM consortium. Acta Ophthalmologica (10.1111/aos.70025)
- Nguyen, T. N. , Terry, L. and Guggenheim, J. A. 2025. Mendelian randomization studies of myopia: choosing the right summary statistics. Investigative Ophthalmology & Visual Science 66 (13) 57. (10.1167/iovs.66.13.57)
- Rajesh, A. E. et al., 2025. Machine learning derived retinal pigment score from ophthalmic imaging shows ethnicity is not biology. Nature Communications 16 60. (10.1038/s41467-024-55198-7)
- Schaeffel, F. et al., 2025. Key lines of discovery in myopia research. Ophthalmic and Physiological Optics 45 (4), pp.899-902. (10.1111/opo.13508)
- Verhoeven, V. J. M. , Morgan, I. G. and Guggenheim, J. A. 2025. Myopia is predominantly genetic or predominantly environmental?. Ophthalmic and Physiological Optics 45 (4), pp.911-917. (10.1111/opo.13464)
- Voogelaar, M. et al., 2025. IMI-myopia genetics report. Investigative Ophthalmology & Visual Science 66 (13) 22. (10.1167/iovs.66.13.22)
2024
- Dahlmann-Noor, A. H. et al., 2024. 2024 UK and Ireland modified Delphi consensus on myopia management in children and young people. Ophthalmic and Physiological Optics 44 (7), pp.1368-1391. (10.1111/opo.13381)
- Guggenheim, J. A. et al. 2024. Estimating the true effect of lifestyle risk factors for myopia: a longitudinal study of UK children. Translational Vision Science & Technology 13 (11) 10. (10.1167/tvst.13.11.10)
- Huang, Y. et al., 2024. GWAS-by-subtraction reveals an IOP-independent component of primary open angle glaucoma. Nature Communications 15 (1) 8962. (10.1038/s41467-024-53331-0)
- Tapasztó, B. et al., 2024. Myopia management algorithm. Annexe to the article titled Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. European Journal of Ophthalmology 34 (4), pp.952-966. (10.1177/11206721231219532)
2023
- Clark, R. et al., 2023. Time spent outdoors partly accounts for the effect of education on myopia. Investigative Ophthalmology & Visual Science 64 (14) 38. (10.1167/iovs.64.14.38)
- Clark, R. et al. 2023. A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration. EBioMedicine 104551. (10.1016/j.ebiom.2023.104551)
- Guggenheim, J. A. and Walline, J. J. 2023. Identifying non-responders to treatments for myopia. Ophthalmic and Physiological Optics 43 (5), pp.945-946. (10.1111/opo.13162)
- Jiang, C. et al., 2023. A multiethnic genome-wide analysis of 19,420 individuals identifies novel loci associated with axial length and shared genetic influences with refractive error and myopia. Frontiers in Genetics 14 1113058. (10.3389/fgene.2023.1113058)
- Lee, S. S. et al., 2023. Changes in refractive error during young adulthood: the effects of longitudinal screen time, ocular sun exposure, and genetic predisposition. Investigative Ophthalmology & Visual Science 64 (14) 28. (10.1167/iovs.64.14.28)
- Musolf, A. M. et al., 2023. Rare variant analyses across multiethnic cohorts identify novel genes for refractive error. Communications Biology 6 (1) 6. (10.1038/s42003-022-04323-7)
- Plotnikov, D. , Guggenheim, J. A. and Gao, X. R. 2023. Exploiting genetics and genomics to improve the understanding of eye diseases [Editorial]. Frontiers in Genetics 14 1308071. (10.3389/fgene.2023.1308071)
- Trier, K. et al., 2023. Oral administration of caffeine metabolite 7-methylxanthine is associated with slowed myopia progression in Danish children. British Journal of Ophthalmology 107 (10), pp.1538-1544. (10.1136/bjo-2021-320920)
- Zhou, Y. et al., 2023. A foundation model for generalizable disease detection from retinal images. Nature 622 (7981), pp.156-163. (10.1038/s41586-023-06555-x)
2022
- Clark, R. et al. 2022. Education interacts with genetic variants near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C to confer susceptibility to myopia. PLoS Genetics 18 (11) e1010478. (10.1371/journal.pgen.1010478)
- Guggenheim, J. A. et al. 2022. Whole exome sequence analysis in 51?624 participants identifies novel genes and variants associated with refractive error and myopia. Human Molecular Genetics 31 (11), pp.1909-1919. (10.1093/hmg/ddac004)
- Guggenheim, J. A. et al. 2022. Assessing the contribution of genetic nurture to refractive error. European Journal of Human Genetics 30 , pp.1226-1232. (10.1038/s41431-022-01126-6)
- Lee, S. S. et al., 2022. Incidence and progression of myopia in early adulthood. JAMA Ophthalmology 140 (2), pp.162-169. (10.1001/jamaophthalmol.2021.5067)
- Patasova, K. et al., 2022. Association analyses of rare variants identify two genes associated with refractive error. PLoS ONE 17 (9) e0272379. (10.1371/journal.pone.0272379)
- Plotnikov, D. et al. 2022. High blood pressure and intraocular pressure: a Mendelian randomization study. Investigative Ophthalmology & Visual Science 63 (6) 29. (10.1167/iovs.63.6.29)
- Plotnikov, D. et al., 2022. Commonly occurring genetic polymorphisms with a major impact on the risk of nonsyndromic strabismus: replication in a sample from Finland. Journal of AAPOS 26 (1), pp.12.E1-12.E6. (10.1016/j.jaapos.2021.07.015)
2021
- Cartwright, R. et al., 2021. Genome-wide association study identifies two novel loci associated with female stress and urgency urinary incontinence. The Journal of Urology 206 (3), pp.679-687. (10.1097/JU.0000000000001822)
- Jonas, J. B. et al., 2021. IMI prevention of myopia and Its progression. Investigative Ophthalmology & Visual Science 62 (5) 6. (10.1167/iovs.62.5.6)
- Jong, M. et al., 2021. IMI 2021 Yearly Digest. Investigative Ophthalmology & Visual Science 62 (5) 7. (10.1167/iovs.62.5.7)
- Lingham, G. et al., 2021. Time spent outdoors in childhood is associated with reduced risk of myopia as an adult. Scientific Reports 11 (1) 6337. (10.1038/s41598-021-85825-y)
- Morgan, I. G. et al., 2021. IMI risk factors for myopia. Investigative Ophthalmology & Visual Science 62 (5) 3. (10.1167/iovs.62.5.3)
- Németh, J. et al., 2021. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. European Journal of Ophthalmology 31 (3), pp.853-883. (10.1177/1120672121998960)
- Plotnikov, D. et al. 2021. Genetic variants associated with human eye size are distinct from those conferring susceptibility to myopia. Investigative Ophthalmology & Visual Science 62 (13) 24. (10.1167/iovs.62.13.24)
- Plotnikov, D. et al. 2021. Hyperopia is not causally associated with a major deficit in educational attainment. Translational Vision Science & Technology 10 (12) 34. (10.1167/tvst.10.12.34)
- Tideman, J. W. L. et al., 2021. Evaluation of shared genetic susceptibility to high and low myopia and hyperopia. JAMA Ophthalmology 139 (6), pp.601-609. (10.1001/jamaophthalmol.2021.0497)
2020
- Baird, P. N. et al., 2020. Myopia. Nature Reviews Disease Primers 6 (1) 99. (10.1038/s41572-020-00231-4)
- Fan, Q. et al., 2020. Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error. Communications Biology 3 (1) 133. (10.1038/s42003-020-0802-y)
- Hysi, P. G. et al., 2020. Meta-analysis of 542,934 subjects of European ancestry identifies 336 novel genes and mechanisms predisposing to refractive error and myopia. Nature Genetics 52 , pp.401-407. (10.1038/s41588-020-0599-0)
- Plotnikov, D. et al. 2020. Effect of education on myopia: evidence from the United Kingdom ROSLA 1972 reform. Investigative Ophthalmology & Visual Science 61 (11) 7. (10.1167/iovs.61.11.7)
- Pozarickij, A. et al. 2020. Evidence that emmetropization buffers against both genetic and environmental risk factors for myopia. Investigative Ophthalmology & Visual Science 61 (2) 41. (10.1167/iovs.61.2.41)
- Pozarickij, A. , Williamson, C. and Guggenheim, J. A. 2020. Non-additive (dominance) effects of genetic variants associated with refractive error and myopia. Molecular Genetics and Genomics 295 , pp.843-853. (10.1007/s00438-020-01666-w)
2019
- Huang, Y. et al., 2019. A Genome-Wide Association Study for Susceptibility to Visual Experience-Induced Myopia. Investigative Ophthalmology & Visual Science 60 (2), pp.559-569. (10.1167/iovs.18-25597)
- Plotnikov, D. and Guggenheim, J. 2019. Mendelian randomization and the goal of inferring causation from observational studies in the vision sciences. Ophthalmic and Physiological Optics 39 (1), pp.11-25. (10.1111/opo.12596)
- Plotnikov, D. et al. 2019. A commonly occurring genetic variant within the NPLOC4-TSPAN10-PDE6G gene cluster is associated with the risk of strabismus. Human Genetics 138 (7), pp.723-737. (10.1007/s00439-019-02022-8)
- Plotnikov, D. , Williams, C. and Guggenheim, J. A. 2019. Association between birth weight and refractive error in adulthood: a Mendelian randomisation study. British Journal of Ophthalmology (10.1136/bjophthalmol-2018-313640)
- Pozarickij, A. et al. 2019. Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development. Communications Biology 2 167. (10.1038/s42003-019-0387-5)
- Tedja, M. S. et al., 2019. IMI myopia genetics report. Investigative Ophthalmology & Visual Science 60 , pp.M89-M105. (10.1167/iovs.18-25965)
- Wildsoet, C. F. et al., 2019. IMI - Interventions for myopia onset and progression report. Investigative Ophthalmology & Visual Science 60 (3), pp.M106-M131. (10.1167/iovs.18-25958)
- Wood, A. and Guggenheim, J. A. 2019. Refractive error has minimal influence on the risk of age-related macular degeneration: a Mendelian randomization study. American Journal of Ophthalmology 206 , pp.87-93. (10.1016/j.ajo.2019.03.018)
2018
- Flitcroft, D. I. et al., 2018. Novel myopia genes and pathways identified from syndromic forms of myopia. Investigative Ophthalmology & Visual Science 59 (1), pp.338-348. (10.1167/iovs.17-22173)
- Ghorbani Mojarrad, N. , Williams, C. and Guggenheim, J. 2018. A genetic risk score and number of myopic parents independently predict myopia. Ophthalmic and Physiological Optics 38 (5), pp.492-502. (10.1111/opo.12579)
- Kang, B. S. et al., 2018. High myopia induced by form deprivation is associated with altered corneal biomechanical properties in chicks. PLoS ONE 13 (11) e0207189. (10.1371/journal.pone.0207189)
- Mountjoy, E. et al., 2018. Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ 361 k2022. (10.1136/bmj.k2022)
- Shah, R. L. and Guggenheim, J. 2018. Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci. Human Genetics 137 (11-12), pp.881-896. (10.1007/s00439-018-1942-8)
- Shah, R. et al. 2018. A genome-wide association study for corneal astigmatism: The CREAM Consortium. Molecular Vision 24 , pp.127-142.
- Tedja, M. S. et al., 2018. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics 50 , pp.834-848. (10.1038/s41588-018-0127-7)
- Tideman, J. W. L. et al., 2018. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmologica 96 (3), pp.301-309.
2017
- Cuellar-Partida, G. et al., 2017. Genetically low vitamin D concentrations and myopic refractive error: a Mendelian randomization study. International Journal of Epidemiology 46 (6), pp.1882-1890. (10.1093/ije/dyx068)
- Dillingham, C. M. , Guggenheim, J. A. and Erichsen, J. T. 2017. The effect of unilateral disruption of the centrifugal visual system on normal eye development in chicks raised under constant light conditions. Brain Structure and Function 222 (3), pp.1315-1330. (10.1007/s00429-016-1279-9)
- Guggenheim, J. et al. 2017. Genetic prediction of myopia: Prospects and challenges. Ophthalmic and Physiological Optics 37 (5), pp.549-556. (10.1111/opo.12403)
- Shah, R. L. et al. 2017. Time outdoors at specific ages during early childhood and the risk of incident myopia. Investigative Ophthalmology & Visual Science 58 (2), pp.1158-1166. (10.1167/iovs.16-20894)
2016
- Fan, Q. et al., 2016. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications 7 11008. (10.1038/ncomms11008)
- Fan, Q. et al., 2016. Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports 6 25853. (10.1038/srep25853)
- Guggenheim, J. A. and Williams, C. 2016. Childhood febrile illness and the risk of myopia in UK Biobank participants. Eye 30 , pp.608-614. (10.1038/eye.2016.7)
- Guggenheim, J. A. and Williams, C. 2016. Response to: 'data from UK Biobank on febrile illness'. Eye 30 (12), pp.1651-1652. (10.1038/eye.2016.201)
- Tideman, J. W. L. et al., 2016. When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genetic Epidemiology 40 (8), pp.756 -766. (10.1002/gepi.21999)
2015
- Guggenheim, J. A. et al. 2015. Assumption-free estimation of the genetic contribution to refractive error across childhood. Molecular Vision 21 , pp.621-632.
- Guggenheim, J. A. and Williams, C. 2015. Role of educational exposure in the association between myopia and birth order. JAMA Ophthalmology 133 (12), pp.1408-1414. (10.1001/jamaophthalmol.2015.3556)
- Mahroo, O. A. et al., 2015. Interocular asymmetries in axial length and refractive error in 4 cohorts. Ophthalmology 122 (3), pp.648-649. (10.1016/j.ophtha.2014.10.021)
- Tkatchenko, A. V. et al., 2015. APLP2 regulates refractive error and myopia development in mice and humans. PLoS Genetics 11 (8) e1005432. (10.1371/journal.pgen.1005432)
2014
- Guggenheim, J. A. et al. 2014. Does vitamin D mediate the protective effects of time outdoors on myopia? Findings from a prospective birth cohort. Investigative Ophthalmology and Visual Science 55 (12), pp.8550-8558. (10.1167/iovs.14-15839)
- Li, Q. et al., 2014. Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium. Human Genetics 134 (2), pp.131-146. (10.1007/s00439-014-1500-y)
2013
- Cheng, C. et al., 2013. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. American Journal of Human Genetics 93 (2), pp.264-277. (10.1016/j.ajhg.2013.06.016)
- Dillingham, C. M. , Guggenheim, J. A. and Erichsen, J. T. 2013. Disruption of the centrifugal visual system inhibits early eye growth in chicks. Investigative Ophthalmology and Visual Science 54 (5), pp.3632-3643. (10.1167/iovs.12-11548)
- Guggenheim, J. A. et al. 2013. Birth order and myopia. Ophthalmic Epidemiology 20 (6), pp.375-384. (10.3109/09286586.2013.848457))
- Guggenheim, J. A. et al. 2013. Coordinated genetic scaling of the human eye: shared determination of axial eye length and corneal curvature. Investigative Ophthalmology & Visual Science 54 (3), pp.1715-1721. (10.1167/iovs.12-10560)
- Hawthorne, F. et al., 2013. Association mapping of the high-grade myopia MYP3 locus reveals novel candidates UHRF1BP1L, PTPRR, and PPFIA2. Investigative Ophthalmology & Visual Science 54 (3), pp.2076-2086. (10.1167/iovs.12-11102)
- Hocking, P. M. and Guggenheim, J. A. 2013. The chick as an animal model of eye disease. Drug Discovery Today: Disease Models 10 (4), pp.e225-e230. (10.1016/j.ddmod.2014.02.003)
- Northstone, K. et al., 2013. Body stature growth trajectories during childhood and the development of myopia. Ophthalmology 120 (5), pp.1064-1073. e1. (10.1016/j.ophtha.2012.11.004)
- Verhoeven, V. J. M. et al., 2013. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nature Genetics 45 (3), pp.314-318. (10.1038/ng.2554)
- Wildsoet, C. F. et al., 2013. On the shoulders of a giant: his legacy will live on. Ophthalmic and Physiological Optics 33 (3), pp.193-195. (10.1111/opo.12064)
2012
- Guggenheim, J. A. et al. 2012. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Investigative Ophthalmology & Visual Science 53 (6), pp.2856-2865. (10.1167/iovs.11-9091)
- Guggenheim, J. A. and Saw, S. 2012. Ocular epidemiology and genetics. Ophthalmic and Physiological Optics 32 (1), pp.1-2. (10.1111/j.1475-1313.2011.00890.x)
- Verhoeven, V. J. M. et al., 2012. Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Human Genetics , pp.n/a. (10.1007/s00439-012-1176-0)
- Wang, L. et al., 2012. Graphics processing unit based dispersion encoded full-range frequency domain OCT. Optical Coherence Tomography And Coherence Domain Optical Methods In Biomedicine XVI 8213 , pp.2B-2D. (10.1117/12.911247)
2011
- Chen, P. Y. P. et al. 2011. Heritability of ocular component dimensions in chickens: genetic variants controlling susceptibility to experimentally induced myopia and pretreatment eye size are distinct. Investigative Ophthalmology and Visual Science 52 (7), pp.4012-4020. (10.1167/iovs.10-7045)
- Chen, P. Y. et al. 2011. Selective breeding for susceptibility to myopia reveals a gene-environment interaction. Investigative Ophthalmology and Visual Science 52 (7), pp.4003-4011. (10.1167/iovs.10-7044)
- Guggenheim, J. et al. 2011. Pre-treatment choroidal thickness is not predictive of susceptibility to form-deprivation myopia in chickens. Ophthalmic And Physiological Optics 31 (5), pp.516-528. (10.1111/j.1475-1313.2011.00827.x)
- Mackey, D. A. et al., 2011. Pediatric cataract, myopic astigmatism, familial exudative vitreoretinopathy and primary open-angle glaucoma co-segregating in a family. Molecular Vision 17 , pp.2118-2128.
- Wang, L. et al. 2011. Heritability of ocular component dimensions in mice phenotyped using depth-enhanced swept source optical coherence tomography. Experimental Eye Research 93 (4), pp.482-490. (10.1016/j.exer.2011.06.008)
2010
- Chen, P. Y. et al. 2010. Sex, eye size, and the rate of myopic eye growth due to form deprivation in outbred white leghorn chickens. Investigative Ophthalmology and Visual Science 51 (2), pp.651-657. (10.1167/iovs.09-3826)
- Guggenheim, J. A. et al. 2010. Lumican and muscarinic acetylcholine receptor 1 gene polymorphisms associated with high myopia [Correspondence]. Eye 24 (8), pp.1411-1412. (10.1038/eye.2010.55)
- Metlapally, R. et al., 2010. Genetic association of insulin-like growth factor-1 polymorphisms with high-grade myopia in an international family cohort. Investigative Ophthalmology and Visual Science 51 (9), pp.4476-4479. (10.1167/iovs.09-4912)
- Tattersall, R. J. et al., 2010. Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken. Molecular Vision 16 (18), pp.144-153.
- Wang, L. et al. 2010. Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye. Journal of Biomedical Optics 15 (4) 046004. (10.1117/1.3463480)
2009
- Goodall, N. et al. 2009. 3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging. Experimental Eye Research 89 (4), pp.511-521. (10.1016/j.exer.2009.05.014)
- Li, Y. et al., 2009. An international collaborative family-based whole-genome linkage scan for high-grade myopia. Investigative Ophthalmology & Visual Science 50 (7), pp.3116-3127. (10.1167/iovs.08-2781)
- McMahon, G. et al. 2009. Season of birth, daylight hours at birth, and high myopia. Ophthalmology 116 (3), pp.468-473. (10.1016/j.ophtha.2008.10.004)
- Metlapally, R. et al., 2009. COL1A1 and COL2A1 genes and myopia susceptibility: evidence of association and suggestive linkage to the COL2A1 locus. Investigative Ophthalmology and Visual Science 50 (9), pp.4080-4086. (10.1167/iovs.08-3346)
- Prashar, A. et al. 2009. Common determinants of body size and eye size in chickens from an advanced intercross line. Experimental Eye Research 89 (1), pp.42-48. (10.1016/j.exer.2009.02.008)
- Zayats, T. et al. 2009. Myocilin polymorphisms and high myopia in subjects of European origin. Molecular vision 15 (20-23), pp.213-222.
- Zayats, T. et al. 2009. Quality of DNA extracted from mouthwashes. PLoS ONE 4 (7) e6165. (10.1371/journal.pone.0006165)
2008
- Guggenheim, J. A. et al. 2008. Axes of astigmatism in fellow eyes show mirror rather than direct symmetry. Ophthalmic And Physiological Optics 28 (4), pp.327-333. (10.1111/j.1475-1313.2008.00576.x)
- Zayats, T. et al. 2008. Comment on 'A PAX6 gene polymorphism is associated with genetic predisposition to extreme myopia'. Eye 22 (4), pp.598-599. (10.1038/sj.eye.6703096)
2007
- Albon, J. et al. 2007. Connective tissue structure of the tree shrew optic nerve and associated ageing changes. Investigative Ophthalmology and Visual Science 48 (5), pp.2134-2144. (10.1167/iovs.06-0084)
- Lam, T. C. et al., 2007. Application of fluorescence difference gel electrophoresis technology in searching for protein biomarkers in chick myopia. Journal of Proteome Research 6 (11), pp.4135-4149. (10.1021/pr0701097)
- Prashar, A. et al. 2007. Measurement of intraocular pressure (IOP) in chickens using a rebound tonometer: Quantitative evaluation of variance due to position inaccuracies. Experimental Eye Research 85 (4), pp.563-571. (10.1016/j.exer.2007.07.010)
- Tse, D. Y. et al., 2007. Simultaneous defocus integration during refractive development. Investigative Ophthalmology and Visual Science 48 (12), pp.5352-5359. (10.1167/iovs.07-0383)
2005
- Guggenheim, J. A. and Farbrother, J. E. 2005. A deficit in visits to the optometrist by preschool age children: implications for vision screening. British Journal of Ophthalmology 89 (2), pp.246-247. (10.1136/bjo.2004.052027)
- Qin, X. et al., 2005. Anisometropia is independently associated with both spherical and cylindrical ametropia. Investigative Ophthalmology & Visual Science 46 (11), pp.4024-4031. (10.1167/iovs.05-0120)
2004
- Davies, N. et al., 2004. Chloride channel gene expression in the rabbit cornea. Molecular Vision 10 (122-23), pp.1028-1037.
- Farbrother, J. E. et al., 2004. Family aggregation of high myopia: estimation of the sibling recurrence risk ratio. Investigative Ophthalmology and Visual Science 45 (9), pp.2873-2878. (10.1167/iovs.03-1155)
- Farbrother, J. E. et al., 2004. Linkage analysis of the genetic loci for high myopia on chromosomes 18p, 12q and 17q in 51 UK families. Investigative Ophthalmology and Visual Science 45 (9), pp.2879-2885. (10.1167/iovs.03-1156)
2003
- Farbrother, J. E. et al., 2003. Linkage analysis of 18p, 12q and 17q high myopia loci in 51 UK families. Investigative ophthalmology & visual science 44 (E-Abst)
- Guggenheim, J. A. , Hill, C. and Yam, T. 2003. Myopia, genetics, and ambient lighting at night in a UK sample. British Journal of Ophthalmology 87 (5), pp.580-582. (10.1136/bjo.87.5.580)
2002
- Farbrother, J. E. et al., 2002. Genetic epidemiology of high myopia: prevalence of myopia in siblings and parents of high myopes. Investigative Ophthalmology and Visual Science 43 (E-Abst)
- Guggenheim, J. A. et al. 2002. Similar genetic susceptibility to form-deprivation myopia in three strains of chicken. Vision Research 42 (25), pp.2747-2756. (10.1016/S0042-6989(02)00383-8)
2001
- Davies, N. , Guggenheim, J. A. and Wigham, C. 2001. PCR-based investigations of chloride channels in rabbit corneal endothelium. Investigative Ophthalmology & Visual Science 42 (4), pp.S275-S275.
Articles
- Albon, J. et al. 2007. Connective tissue structure of the tree shrew optic nerve and associated ageing changes. Investigative Ophthalmology and Visual Science 48 (5), pp.2134-2144. (10.1167/iovs.06-0084)
- Baird, P. N. et al., 2020. Myopia. Nature Reviews Disease Primers 6 (1) 99. (10.1038/s41572-020-00231-4)
- Cartwright, R. et al., 2021. Genome-wide association study identifies two novel loci associated with female stress and urgency urinary incontinence. The Journal of Urology 206 (3), pp.679-687. (10.1097/JU.0000000000001822)
- Chen, P. Y. P. et al. 2011. Heritability of ocular component dimensions in chickens: genetic variants controlling susceptibility to experimentally induced myopia and pretreatment eye size are distinct. Investigative Ophthalmology and Visual Science 52 (7), pp.4012-4020. (10.1167/iovs.10-7045)
- Chen, P. Y. et al. 2011. Selective breeding for susceptibility to myopia reveals a gene-environment interaction. Investigative Ophthalmology and Visual Science 52 (7), pp.4003-4011. (10.1167/iovs.10-7044)
- Chen, P. Y. et al. 2010. Sex, eye size, and the rate of myopic eye growth due to form deprivation in outbred white leghorn chickens. Investigative Ophthalmology and Visual Science 51 (2), pp.651-657. (10.1167/iovs.09-3826)
- Cheng, C. et al., 2013. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. American Journal of Human Genetics 93 (2), pp.264-277. (10.1016/j.ajhg.2013.06.016)
- Clark, R. et al., 2025. Revisiting the trans-ancestry genetic correlation of refractive error. Investigative Ophthalmology & Visual Science 66 (11) 60. (10.1167/iovs.66.11.60)
- Clark, R. et al., 2023. Time spent outdoors partly accounts for the effect of education on myopia. Investigative Ophthalmology & Visual Science 64 (14) 38. (10.1167/iovs.64.14.38)
- Clark, R. et al. 2023. A new polygenic score for refractive error improves detection of children at risk of high myopia but not the prediction of those at risk of myopic macular degeneration. EBioMedicine 104551. (10.1016/j.ebiom.2023.104551)
- Clark, R. et al. 2022. Education interacts with genetic variants near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C to confer susceptibility to myopia. PLoS Genetics 18 (11) e1010478. (10.1371/journal.pgen.1010478)
- Cuellar-Partida, G. et al., 2017. Genetically low vitamin D concentrations and myopic refractive error: a Mendelian randomization study. International Journal of Epidemiology 46 (6), pp.1882-1890. (10.1093/ije/dyx068)
- Dahlmann-Noor, A. H. et al., 2024. 2024 UK and Ireland modified Delphi consensus on myopia management in children and young people. Ophthalmic and Physiological Optics 44 (7), pp.1368-1391. (10.1111/opo.13381)
- Davies, N. , Guggenheim, J. A. and Wigham, C. 2001. PCR-based investigations of chloride channels in rabbit corneal endothelium. Investigative Ophthalmology & Visual Science 42 (4), pp.S275-S275.
- Davies, N. et al., 2004. Chloride channel gene expression in the rabbit cornea. Molecular Vision 10 (122-23), pp.1028-1037.
- Dillingham, C. M. , Guggenheim, J. A. and Erichsen, J. T. 2013. Disruption of the centrifugal visual system inhibits early eye growth in chicks. Investigative Ophthalmology and Visual Science 54 (5), pp.3632-3643. (10.1167/iovs.12-11548)
- Dillingham, C. M. , Guggenheim, J. A. and Erichsen, J. T. 2017. The effect of unilateral disruption of the centrifugal visual system on normal eye development in chicks raised under constant light conditions. Brain Structure and Function 222 (3), pp.1315-1330. (10.1007/s00429-016-1279-9)
- Fan, Q. et al., 2016. Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications 7 11008. (10.1038/ncomms11008)
- Fan, Q. et al., 2020. Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error. Communications Biology 3 (1) 133. (10.1038/s42003-020-0802-y)
- Fan, Q. et al., 2016. Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports 6 25853. (10.1038/srep25853)
- Farbrother, J. E. et al., 2002. Genetic epidemiology of high myopia: prevalence of myopia in siblings and parents of high myopes. Investigative Ophthalmology and Visual Science 43 (E-Abst)
- Farbrother, J. E. et al., 2004. Family aggregation of high myopia: estimation of the sibling recurrence risk ratio. Investigative Ophthalmology and Visual Science 45 (9), pp.2873-2878. (10.1167/iovs.03-1155)
- Farbrother, J. E. et al., 2003. Linkage analysis of 18p, 12q and 17q high myopia loci in 51 UK families. Investigative ophthalmology & visual science 44 (E-Abst)
- Farbrother, J. E. et al., 2004. Linkage analysis of the genetic loci for high myopia on chromosomes 18p, 12q and 17q in 51 UK families. Investigative Ophthalmology and Visual Science 45 (9), pp.2879-2885. (10.1167/iovs.03-1156)
- Flitcroft, D. I. et al., 2018. Novel myopia genes and pathways identified from syndromic forms of myopia. Investigative Ophthalmology & Visual Science 59 (1), pp.338-348. (10.1167/iovs.17-22173)
- Ghorbani Mojarrad, N. , Williams, C. and Guggenheim, J. 2018. A genetic risk score and number of myopic parents independently predict myopia. Ophthalmic and Physiological Optics 38 (5), pp.492-502. (10.1111/opo.12579)
- Goodall, N. et al. 2009. 3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging. Experimental Eye Research 89 (4), pp.511-521. (10.1016/j.exer.2009.05.014)
- Guggenheim, J. et al. 2011. Pre-treatment choroidal thickness is not predictive of susceptibility to form-deprivation myopia in chickens. Ophthalmic And Physiological Optics 31 (5), pp.516-528. (10.1111/j.1475-1313.2011.00827.x)
- Guggenheim, J. et al. 2017. Genetic prediction of myopia: Prospects and challenges. Ophthalmic and Physiological Optics 37 (5), pp.549-556. (10.1111/opo.12403)
- Guggenheim, J. A. et al. 2022. Whole exome sequence analysis in 51?624 participants identifies novel genes and variants associated with refractive error and myopia. Human Molecular Genetics 31 (11), pp.1909-1919. (10.1093/hmg/ddac004)
- Guggenheim, J. A. et al. 2024. Estimating the true effect of lifestyle risk factors for myopia: a longitudinal study of UK children. Translational Vision Science & Technology 13 (11) 10. (10.1167/tvst.13.11.10)
- Guggenheim, J. A. et al. 2022. Assessing the contribution of genetic nurture to refractive error. European Journal of Human Genetics 30 , pp.1226-1232. (10.1038/s41431-022-01126-6)
- Guggenheim, J. A. and Terry, L. 2025. Mechanism of optical treatments for myopia: Are lenslets joining the DOTs?. Ophthalmic and Physiological Optics 45 (2), pp.337-339. (10.1111/opo.13426)
- Guggenheim, J. A. and Walline, J. J. 2023. Identifying non-responders to treatments for myopia. Ophthalmic and Physiological Optics 43 (5), pp.945-946. (10.1111/opo.13162)
- Guggenheim, J. A. et al. 2002. Similar genetic susceptibility to form-deprivation myopia in three strains of chicken. Vision Research 42 (25), pp.2747-2756. (10.1016/S0042-6989(02)00383-8)
- Guggenheim, J. A. and Farbrother, J. E. 2005. A deficit in visits to the optometrist by preschool age children: implications for vision screening. British Journal of Ophthalmology 89 (2), pp.246-247. (10.1136/bjo.2004.052027)
- Guggenheim, J. A. , Hill, C. and Yam, T. 2003. Myopia, genetics, and ambient lighting at night in a UK sample. British Journal of Ophthalmology 87 (5), pp.580-582. (10.1136/bjo.87.5.580)
- Guggenheim, J. A. et al. 2013. Birth order and myopia. Ophthalmic Epidemiology 20 (6), pp.375-384. (10.3109/09286586.2013.848457))
- Guggenheim, J. A. et al. 2012. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Investigative Ophthalmology & Visual Science 53 (6), pp.2856-2865. (10.1167/iovs.11-9091)
- Guggenheim, J. A. and Saw, S. 2012. Ocular epidemiology and genetics. Ophthalmic and Physiological Optics 32 (1), pp.1-2. (10.1111/j.1475-1313.2011.00890.x)
- Guggenheim, J. A. et al. 2015. Assumption-free estimation of the genetic contribution to refractive error across childhood. Molecular Vision 21 , pp.621-632.
- Guggenheim, J. A. and Williams, C. 2016. Childhood febrile illness and the risk of myopia in UK Biobank participants. Eye 30 , pp.608-614. (10.1038/eye.2016.7)
- Guggenheim, J. A. and Williams, C. 2016. Response to: 'data from UK Biobank on febrile illness'. Eye 30 (12), pp.1651-1652. (10.1038/eye.2016.201)
- Guggenheim, J. A. and Williams, C. 2015. Role of educational exposure in the association between myopia and birth order. JAMA Ophthalmology 133 (12), pp.1408-1414. (10.1001/jamaophthalmol.2015.3556)
- Guggenheim, J. A. et al. 2014. Does vitamin D mediate the protective effects of time outdoors on myopia? Findings from a prospective birth cohort. Investigative Ophthalmology and Visual Science 55 (12), pp.8550-8558. (10.1167/iovs.14-15839)
- Guggenheim, J. A. et al. 2010. Lumican and muscarinic acetylcholine receptor 1 gene polymorphisms associated with high myopia [Correspondence]. Eye 24 (8), pp.1411-1412. (10.1038/eye.2010.55)
- Guggenheim, J. A. et al. 2008. Axes of astigmatism in fellow eyes show mirror rather than direct symmetry. Ophthalmic And Physiological Optics 28 (4), pp.327-333. (10.1111/j.1475-1313.2008.00576.x)
- Guggenheim, J. A. et al. 2013. Coordinated genetic scaling of the human eye: shared determination of axial eye length and corneal curvature. Investigative Ophthalmology & Visual Science 54 (3), pp.1715-1721. (10.1167/iovs.12-10560)
- Hawthorne, F. et al., 2013. Association mapping of the high-grade myopia MYP3 locus reveals novel candidates UHRF1BP1L, PTPRR, and PPFIA2. Investigative Ophthalmology & Visual Science 54 (3), pp.2076-2086. (10.1167/iovs.12-11102)
- He, W. et al., 2025. Large-scale GWAS of strabismus identifies risk loci and provides support for a link with maternal smoking. Nature Communications 16 (1) 7890. (10.1038/s41467-025-62456-9)
- Hocking, P. M. and Guggenheim, J. A. 2013. The chick as an animal model of eye disease. Drug Discovery Today: Disease Models 10 (4), pp.e225-e230. (10.1016/j.ddmod.2014.02.003)
- Huang, Y. et al., 2019. A Genome-Wide Association Study for Susceptibility to Visual Experience-Induced Myopia. Investigative Ophthalmology & Visual Science 60 (2), pp.559-569. (10.1167/iovs.18-25597)
- Huang, Y. et al., 2024. GWAS-by-subtraction reveals an IOP-independent component of primary open angle glaucoma. Nature Communications 15 (1) 8962. (10.1038/s41467-024-53331-0)
- Hysi, P. G. et al., 2020. Meta-analysis of 542,934 subjects of European ancestry identifies 336 novel genes and mechanisms predisposing to refractive error and myopia. Nature Genetics 52 , pp.401-407. (10.1038/s41588-020-0599-0)
- Jiang, C. et al., 2023. A multiethnic genome-wide analysis of 19,420 individuals identifies novel loci associated with axial length and shared genetic influences with refractive error and myopia. Frontiers in Genetics 14 1113058. (10.3389/fgene.2023.1113058)
- Jonas, J. B. et al., 2021. IMI prevention of myopia and Its progression. Investigative Ophthalmology & Visual Science 62 (5) 6. (10.1167/iovs.62.5.6)
- Jong, M. et al., 2021. IMI 2021 Yearly Digest. Investigative Ophthalmology & Visual Science 62 (5) 7. (10.1167/iovs.62.5.7)
- Kang, B. S. et al., 2018. High myopia induced by form deprivation is associated with altered corneal biomechanical properties in chicks. PLoS ONE 13 (11) e0207189. (10.1371/journal.pone.0207189)
- Lam, T. C. et al., 2007. Application of fluorescence difference gel electrophoresis technology in searching for protein biomarkers in chick myopia. Journal of Proteome Research 6 (11), pp.4135-4149. (10.1021/pr0701097)
- Lee, S. S. et al., 2022. Incidence and progression of myopia in early adulthood. JAMA Ophthalmology 140 (2), pp.162-169. (10.1001/jamaophthalmol.2021.5067)
- Lee, S. S. et al., 2023. Changes in refractive error during young adulthood: the effects of longitudinal screen time, ocular sun exposure, and genetic predisposition. Investigative Ophthalmology & Visual Science 64 (14) 28. (10.1167/iovs.64.14.28)
- Li, Q. et al., 2014. Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium. Human Genetics 134 (2), pp.131-146. (10.1007/s00439-014-1500-y)
- Li, S. W. R. et al., 2025. Advances in the genetics of refractive errors: Contributions from the CREAM consortium. Acta Ophthalmologica (10.1111/aos.70025)
- Li, Y. et al., 2009. An international collaborative family-based whole-genome linkage scan for high-grade myopia. Investigative Ophthalmology & Visual Science 50 (7), pp.3116-3127. (10.1167/iovs.08-2781)
- Lingham, G. et al., 2021. Time spent outdoors in childhood is associated with reduced risk of myopia as an adult. Scientific Reports 11 (1) 6337. (10.1038/s41598-021-85825-y)
- Mackey, D. A. et al., 2011. Pediatric cataract, myopic astigmatism, familial exudative vitreoretinopathy and primary open-angle glaucoma co-segregating in a family. Molecular Vision 17 , pp.2118-2128.
- Mahroo, O. A. et al., 2015. Interocular asymmetries in axial length and refractive error in 4 cohorts. Ophthalmology 122 (3), pp.648-649. (10.1016/j.ophtha.2014.10.021)
- McMahon, G. et al. 2009. Season of birth, daylight hours at birth, and high myopia. Ophthalmology 116 (3), pp.468-473. (10.1016/j.ophtha.2008.10.004)
- Metlapally, R. et al., 2010. Genetic association of insulin-like growth factor-1 polymorphisms with high-grade myopia in an international family cohort. Investigative Ophthalmology and Visual Science 51 (9), pp.4476-4479. (10.1167/iovs.09-4912)
- Metlapally, R. et al., 2009. COL1A1 and COL2A1 genes and myopia susceptibility: evidence of association and suggestive linkage to the COL2A1 locus. Investigative Ophthalmology and Visual Science 50 (9), pp.4080-4086. (10.1167/iovs.08-3346)
- Morgan, I. G. et al., 2021. IMI risk factors for myopia. Investigative Ophthalmology & Visual Science 62 (5) 3. (10.1167/iovs.62.5.3)
- Mountjoy, E. et al., 2018. Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ 361 k2022. (10.1136/bmj.k2022)
- Musolf, A. M. et al., 2023. Rare variant analyses across multiethnic cohorts identify novel genes for refractive error. Communications Biology 6 (1) 6. (10.1038/s42003-022-04323-7)
- Németh, J. et al., 2021. Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. European Journal of Ophthalmology 31 (3), pp.853-883. (10.1177/1120672121998960)
- Nguyen, T. N. , Terry, L. and Guggenheim, J. A. 2025. Mendelian randomization studies of myopia: choosing the right summary statistics. Investigative Ophthalmology & Visual Science 66 (13) 57. (10.1167/iovs.66.13.57)
- Northstone, K. et al., 2013. Body stature growth trajectories during childhood and the development of myopia. Ophthalmology 120 (5), pp.1064-1073. e1. (10.1016/j.ophtha.2012.11.004)
- Patasova, K. et al., 2022. Association analyses of rare variants identify two genes associated with refractive error. PLoS ONE 17 (9) e0272379. (10.1371/journal.pone.0272379)
- Plotnikov, D. et al. 2021. Genetic variants associated with human eye size are distinct from those conferring susceptibility to myopia. Investigative Ophthalmology & Visual Science 62 (13) 24. (10.1167/iovs.62.13.24)
- Plotnikov, D. and Guggenheim, J. 2019. Mendelian randomization and the goal of inferring causation from observational studies in the vision sciences. Ophthalmic and Physiological Optics 39 (1), pp.11-25. (10.1111/opo.12596)
- Plotnikov, D. , Guggenheim, J. A. and Gao, X. R. 2023. Exploiting genetics and genomics to improve the understanding of eye diseases [Editorial]. Frontiers in Genetics 14 1308071. (10.3389/fgene.2023.1308071)
- Plotnikov, D. et al. 2022. High blood pressure and intraocular pressure: a Mendelian randomization study. Investigative Ophthalmology & Visual Science 63 (6) 29. (10.1167/iovs.63.6.29)
- Plotnikov, D. et al., 2022. Commonly occurring genetic polymorphisms with a major impact on the risk of nonsyndromic strabismus: replication in a sample from Finland. Journal of AAPOS 26 (1), pp.12.E1-12.E6. (10.1016/j.jaapos.2021.07.015)
- Plotnikov, D. et al. 2019. A commonly occurring genetic variant within the NPLOC4-TSPAN10-PDE6G gene cluster is associated with the risk of strabismus. Human Genetics 138 (7), pp.723-737. (10.1007/s00439-019-02022-8)
- Plotnikov, D. et al. 2021. Hyperopia is not causally associated with a major deficit in educational attainment. Translational Vision Science & Technology 10 (12) 34. (10.1167/tvst.10.12.34)
- Plotnikov, D. et al. 2020. Effect of education on myopia: evidence from the United Kingdom ROSLA 1972 reform. Investigative Ophthalmology & Visual Science 61 (11) 7. (10.1167/iovs.61.11.7)
- Plotnikov, D. , Williams, C. and Guggenheim, J. A. 2019. Association between birth weight and refractive error in adulthood: a Mendelian randomisation study. British Journal of Ophthalmology (10.1136/bjophthalmol-2018-313640)
- Pozarickij, A. et al. 2020. Evidence that emmetropization buffers against both genetic and environmental risk factors for myopia. Investigative Ophthalmology & Visual Science 61 (2) 41. (10.1167/iovs.61.2.41)
- Pozarickij, A. et al. 2019. Quantile regression analysis reveals widespread evidence for gene-environment or gene-gene interactions in myopia development. Communications Biology 2 167. (10.1038/s42003-019-0387-5)
- Pozarickij, A. , Williamson, C. and Guggenheim, J. A. 2020. Non-additive (dominance) effects of genetic variants associated with refractive error and myopia. Molecular Genetics and Genomics 295 , pp.843-853. (10.1007/s00438-020-01666-w)
- Prashar, A. et al. 2007. Measurement of intraocular pressure (IOP) in chickens using a rebound tonometer: Quantitative evaluation of variance due to position inaccuracies. Experimental Eye Research 85 (4), pp.563-571. (10.1016/j.exer.2007.07.010)
- Prashar, A. et al. 2009. Common determinants of body size and eye size in chickens from an advanced intercross line. Experimental Eye Research 89 (1), pp.42-48. (10.1016/j.exer.2009.02.008)
- Qin, X. et al., 2005. Anisometropia is independently associated with both spherical and cylindrical ametropia. Investigative Ophthalmology & Visual Science 46 (11), pp.4024-4031. (10.1167/iovs.05-0120)
- Rajesh, A. E. et al., 2025. Machine learning derived retinal pigment score from ophthalmic imaging shows ethnicity is not biology. Nature Communications 16 60. (10.1038/s41467-024-55198-7)
- Schaeffel, F. et al., 2025. Key lines of discovery in myopia research. Ophthalmic and Physiological Optics 45 (4), pp.899-902. (10.1111/opo.13508)
- Shah, R. L. and Guggenheim, J. 2018. Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci. Human Genetics 137 (11-12), pp.881-896. (10.1007/s00439-018-1942-8)
- Shah, R. et al. 2018. A genome-wide association study for corneal astigmatism: The CREAM Consortium. Molecular Vision 24 , pp.127-142.
- Shah, R. L. et al. 2017. Time outdoors at specific ages during early childhood and the risk of incident myopia. Investigative Ophthalmology & Visual Science 58 (2), pp.1158-1166. (10.1167/iovs.16-20894)
- Tapasztó, B. et al., 2024. Myopia management algorithm. Annexe to the article titled Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. European Journal of Ophthalmology 34 (4), pp.952-966. (10.1177/11206721231219532)
- Tattersall, R. J. et al., 2010. Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken. Molecular Vision 16 (18), pp.144-153.
- Tedja, M. S. et al., 2019. IMI myopia genetics report. Investigative Ophthalmology & Visual Science 60 , pp.M89-M105. (10.1167/iovs.18-25965)
- Tedja, M. S. et al., 2018. Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics 50 , pp.834-848. (10.1038/s41588-018-0127-7)
- Tideman, J. W. L. et al., 2018. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmologica 96 (3), pp.301-309.
- Tideman, J. W. L. et al., 2016. When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genetic Epidemiology 40 (8), pp.756 -766. (10.1002/gepi.21999)
- Tideman, J. W. L. et al., 2021. Evaluation of shared genetic susceptibility to high and low myopia and hyperopia. JAMA Ophthalmology 139 (6), pp.601-609. (10.1001/jamaophthalmol.2021.0497)
- Tkatchenko, A. V. et al., 2015. APLP2 regulates refractive error and myopia development in mice and humans. PLoS Genetics 11 (8) e1005432. (10.1371/journal.pgen.1005432)
- Trier, K. et al., 2023. Oral administration of caffeine metabolite 7-methylxanthine is associated with slowed myopia progression in Danish children. British Journal of Ophthalmology 107 (10), pp.1538-1544. (10.1136/bjo-2021-320920)
- Tse, D. Y. et al., 2007. Simultaneous defocus integration during refractive development. Investigative Ophthalmology and Visual Science 48 (12), pp.5352-5359. (10.1167/iovs.07-0383)
- Verhoeven, V. J. M. et al., 2012. Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Human Genetics , pp.n/a. (10.1007/s00439-012-1176-0)
- Verhoeven, V. J. M. et al., 2013. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nature Genetics 45 (3), pp.314-318. (10.1038/ng.2554)
- Verhoeven, V. J. M. , Morgan, I. G. and Guggenheim, J. A. 2025. Myopia is predominantly genetic or predominantly environmental?. Ophthalmic and Physiological Optics 45 (4), pp.911-917. (10.1111/opo.13464)
- Voogelaar, M. et al., 2025. IMI-myopia genetics report. Investigative Ophthalmology & Visual Science 66 (13) 22. (10.1167/iovs.66.13.22)
- Wang, L. et al. 2010. Highly reproducible swept-source, dispersion-encoded full-range biometry and imaging of the mouse eye. Journal of Biomedical Optics 15 (4) 046004. (10.1117/1.3463480)
- Wang, L. et al. 2011. Heritability of ocular component dimensions in mice phenotyped using depth-enhanced swept source optical coherence tomography. Experimental Eye Research 93 (4), pp.482-490. (10.1016/j.exer.2011.06.008)
- Wang, L. et al., 2012. Graphics processing unit based dispersion encoded full-range frequency domain OCT. Optical Coherence Tomography And Coherence Domain Optical Methods In Biomedicine XVI 8213 , pp.2B-2D. (10.1117/12.911247)
- Wildsoet, C. F. et al., 2013. On the shoulders of a giant: his legacy will live on. Ophthalmic and Physiological Optics 33 (3), pp.193-195. (10.1111/opo.12064)
- Wildsoet, C. F. et al., 2019. IMI - Interventions for myopia onset and progression report. Investigative Ophthalmology & Visual Science 60 (3), pp.M106-M131. (10.1167/iovs.18-25958)
- Wood, A. and Guggenheim, J. A. 2019. Refractive error has minimal influence on the risk of age-related macular degeneration: a Mendelian randomization study. American Journal of Ophthalmology 206 , pp.87-93. (10.1016/j.ajo.2019.03.018)
- Zayats, T. et al. 2008. Comment on 'A PAX6 gene polymorphism is associated with genetic predisposition to extreme myopia'. Eye 22 (4), pp.598-599. (10.1038/sj.eye.6703096)
- Zayats, T. et al. 2009. Myocilin polymorphisms and high myopia in subjects of European origin. Molecular vision 15 (20-23), pp.213-222.
- Zayats, T. et al. 2009. Quality of DNA extracted from mouthwashes. PLoS ONE 4 (7) e6165. (10.1371/journal.pone.0006165)
- Zhou, Y. et al., 2023. A foundation model for generalizable disease detection from retinal images. Nature 622 (7981), pp.156-163. (10.1038/s41586-023-06555-x)
Research
Research Topics and Related Projects
MyoTeat: Myopia - from genes and environment to cellular responses and treatment
Collaborators: Dr Marita Feldkaemper and Dr Siegfried Wahl (Eberhard Karls University Tübingen), Prof. Caroline Klaver (Erasmus Medical University), Prof. Falk Schroedl (Paracelsus Medical University), Rigmor Baraas (University of South-Eastern Norway), Christina Zeitz (Sorbonne Université) and Frank Schaeffel (Institute of Molecular and Clinical Ophthalmo-logy Basel), TRB Chemedia Internat, Signify Netherlands, Norway National Institute of Public Health.
This Marie Skłodowska-Curie Actions Doctoral Network funded by the European Union and UK EPSRC aims to understand the mechanisms responsible for myopia development and to use this knowledge to develop better treatments to prevent or slow myopia progression.
Translating myopia genetics discoveries into strategies for early detection and mechanistic insight
Collaborators: Dr Cathy Williams (University of Bristol, UK) and Professor Kyoko Ohno-Matsui (Tokyo Medical and
Dental University, Japan).
This study is funded jointly by the Welsh Assembly government and the eye research charity, Fight for Sight. It aims to discover if genetic information can help detect patients with high myopia who are at most risk of developing sight-threatening changes such as myopic maculopathy.
The Consortium for Refractive Error and Myopia (CREAM)
Collaborators: More than 30 teams of researchers from across the world.
The CREAM consortium carry out collaborative projects designed to identify genetic risk factors for refractive errors. Projects are co-ordinated by working groups, involving teams of researchers with expertise in genetics, biostatistics and ophthalmology. I co-Chair of the Astigmatism Working Group (with Joan Bailey-Wilson, NIH/NHGRI, USA) and the Longitudinal Studies Working Group (with Cathy Williams, Bristol, UK).
The UK Biobank Eye and Vision Consortium is a team of researchers working collaboratively to identify risk factors for eye diseases in the UK and to develop new treatments, by studying participants of UK Biobank.
Past Postgraduate Student (with degree and year submitted)
Michael Frost PhD 2000
Natalie Davies PhD 2002
Jane Farbrother PhD 2003
Carolina Chan PhD 2005
Rosalind Creer PhD 2006
Tetyana Zayats MD PhD 2009
Yen-Po (Paul) Chen MD PhD 2010
George McMahon PhD 2010
Chris Dillingham PhD 2012
Rupal Shah PhD 2018
Yvonne Huang Yu MD PhD 2018
Neema Ghorbani Mojarrad PhD 2020
Alfred Pozarickij PhD 2020
Denis Plotnikov MD PhD 2020
Teaching
Currently I am module leader for the Investigative Technqiues undergraduate course. I also teach Professional Awareness and Research Skills.
Biography
Educational and Professional Qualifications
1989-1992: PhD, Cardiff University, UK
1988-1989: PQE (Optometry), British College of Optometrists
1985-1988: BSc (Hons) Optometry, UWIST (Cardiff University)
Career Overview
2013-2015 Assoc. Prof. & Assoc. Head, Optometry, Hong Kong Polytechnic University
2012-2013 Assoc. Prof., School of Optometry, Hong Kong Polytechnic University
2011-2012 Reader, School of Optometry & Vision Sciences, Cardiff University, UK
2006-2011 Senior Lecturer, School of Optometry & Vision Sciences, Cardiff University, UK
1994-2006 Lecturer, School of Optometry & Vision Sciences, Cardiff University, UK
Honours and awards
2012/2013 College of Optometrists, Biennial Arthur Bennett Prize for Outstanding Research Anywhere in the World
2022 Association for Research in Vision & Ophthalmology (ARVO) Gold Fellow Award
Professional memberships
1989 - present: Member of the College of Optometrists (MCOptom)
Academic positions
2013-2015 Assoc. Prof. & Assoc. Head, Optometry, Hong Kong Polytechnic University
2012-2013 Assoc. Prof., School of Optometry, Hong Kong Polytechnic University
2011-2012 Reader, School of Optometry & Vision Sciences, Cardiff University, UK
2006-2011 Senior Lecturer, School of Optometry & Vision Sciences, Cardiff University, UK
1994-2006 Lecturer, School of Optometry & Vision Sciences, Cardiff University, UK
Committees and reviewing
University Committees
2015 - present: School Research Committee
2015 - present: School Research Audit Ethics Committee (Chair)
2017 - present: College Data Strategy Committee
Editorial Boards
2012 - present: Editorial Board Member, Ophthalmic & Physiological Optics (OPO)
2012 - present: Editorial Board Member, Translational Vision Science & Technology (TVST)
2023 - present: Associate Editor for Investigative Ophthalmology and Visual Science (IOVS)
Grant Panels
2020 - present: Fight for Sight UK grants assessment panel
Grant Reviewer
MRC, BBSRC, NIHR, Fight for Sight, Macular Society, College of Optometrists
Contact Details
Research themes
Specialisms
- Genetic Epidemiology
- Myopia
- Gene-environment interaction